
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Tcl in AltaVista Forum

David Griffin
AltaVista Internet Software Inc.

Tcl in AltaVista Forum

David Griffin
AltaVista Internet Software Inc.

dave.griffin@altavista-software.com

Abstract

AltaVista Forum is an award-winning collaboration
environment based on the open technologies of the
World-Wide Web and built on the foundation of the
Tcl language [pob]. Using Tcl’s inherent extensi-
bility the AltaVista Forum toolkit provides a simple
class/inheritance mechanism, an information man-
ager customized for the data storage needs of col-
laboration applications, and a growing toolkit for
creating asynchronous collaboration applications on
the Web.

This paper details how Tcl has been employed as the
basis of a commercial web-based collaboration envi-
ronment. While the focus of the paper will be on the
design and our use of Tcl in AltaVista Forum 98, we
will also touch on how the design has evolved over
the past three releases of the product.

Selecting the Tcl Language

AltaVista Forum (formerly Workgroup Web Forum)
is described pretty thoroughly from a functional
standpoint in [Chiu]. If all has gone well, we will
have released the third version of this product since
its debut in 1995: spanning the use of Tcl 7.3
through 7.6 (and looking forward to Tcl 8). (More
information can be found at:
http://www.altavista.software.digital.com/forum)

In late 1994 a small team of engineers in Digital’s
Networks group began pursuing two goals: building
products which worked within the framework of the
then emerging World-Wide Web and building them
in a new way which matched the rapid pace of evo-
lution expected in this space.

Rapid development, flexibility, and platform inde-
pendence pointed us towards interpreted languages
as a core technology for constructing these new
products. Perl, Python, Tcl, and a number of other
interpreters were examined and evaluated. Tcl

emerged as the tool of choice and in a matter of
weeks a toolbox of extensions began to come to-
gether along with a flurry of prototypes.

The selection of Tcl as a core technology came about
as a compromise based on a variety of factors and, to
be sure, a bit of cultural pressure within Digital. For
example, Perl was arguably more popular and
therefore would be more attractive to people who
wanted to program in our environment. Python had
a very attractive object model and reasonably clean
extension mechanism.

Tcl was selected because it was a mature (version 7
and still cooking), portable (most UNIX platforms,
Windows, and Macintosh), and highly extensible
language that possessed a vibrant user community
(comp.lang.tcl), an excellent book available in most
bookstores [Ousterhout], and (as luck would have it)
a commitment of support by a respected engineering
company (Sun Microsystems). We’ve been generally
happy with our choice.

Initial Design Elements

Following in the footsteps of Tk (and others) we cre-
ated the concept of the AltaVista Forum “Toolkit”: a
custom scripting language for developing a class of
web-based collaborative applications. Using Tcl as
the core language we extended it with both public
domain and privately developed code. The goal was
to develop a language that was sufficiently powerful
so that simple collaborative applications could be
scripted in just a few pages, but would also allow for
the development of sophisticated and customizable
applications as well. We also wanted to provide a
language which would execute identically on multi-
ple target platforms (specifically UNIX and Win-
dows NT) while not excluding the ability to use Tcl
to its fullest extent (we don’t disable any commands,
including exec),

Data Management

The ndbm library from Berkeley formed the base of
our database manager. We constructed a simple Tcl-
object interface for it and ported it to Windows NT.
(In our third release we also added a simple jour-
nalling and recovery facility to improve reliability).

Simple key/value data management was too low-
level for the applications we were envisioning, so we
created an “information manager” which was lay-
ered on top of the ndbm object. Initially written en-
tirely in Tcl, this provided for hierarchically struc-
tured data access with named fields (attributes)
which could be dynamically modified without man-
agement intervention (to match the dynamic nature
of an interpreted environment), along with a general
purpose “properties” facility. This was the basis for
our “structured” data management, with the file
system holding our unstructured data (the “blobs” of
information that were the heart of the content we
were managing).

Critical to our vision of collaborative data manage-
ment was augmenting the database with a content
retrieval mechanism: a search engine. We initially
designed a set of Tcl commands which would allow
multiple search engines to be used. For our “out of
the box” product we decided to use a Digital-
developed search engine called “NI2” - which would
later become the core of the AltaVista Search engine.
While the interface for using multiple search engines
still exists, the capabilities of the NI2 facility are so
heavily used that it would be difficult to integrate
another search engine.

Web Tools for Web Apps

Because we were a web-based application, we needed
to both interact with hypertext servers as “CGI” ap-
plications, and generate results using the HTML
language. Glenn Trewitt of Digital’s Network Sys-
tems Lab had released a paper on using Tcl for
HTML forms processing [Trewitt] along with some
C libraries. We took this code, ported it to Windows
NT, and added other features that we required. In
parallel, the “HTML library” took form as a collec-
tion of Tcl commands and objects which attempted
to abstract the various parts of HTML page genera-
tion.

The Toolbox

Rounding out the toolkit was a suite of commands
that we felt made it easier to write compact and port-
able scripts.

The platform command set provided for platform-
independent file management (copy, delete, rename).
Another set of commands managed internal
date/time stamps. (Both of these facilities have been
partly or completely replicated in recent releases of
the Tcl core).

AltaVista Forum operates in several languages
(English, French, German, Spanish, and Japanese).
The toolkit provides the ability to internationalize
applications using “native language tags” embedded
in the code and to build catalogs that can be trans-
lated later.

A few low-level programming constructs were added
as well:

• The try-else command is a handy abstrac-
tion for Tcl’s catch command which has be-
come rather popular with our developers.

• The isnull and strequal commands are
shorthands for the Tcl string compare
command. Tcl’s relational expressions can be
tricked into raising errors when presented with
long strings of digits.

• A “mailbox” object employs a simple SMTP
mail client allowing applications to generate
mail messages or to read mail messages from
POP servers.

Applications, Classes, and Inheritance

The design of the toolkit attempted to encompass the
ideas of objects, classes, and inheritance. incr tcl
was attractive as a Tcl object framework, but we
were concerned that anything which required modi-
fications to the Tcl core might put our product at risk
for Tcl patches or releases – so we opted for our own,
very simple, set of object-based mechanisms.

AltaVista Forum applications are built from a set of
class files and module files. Module file declarations
are nothing more than glorified source commands.
Modules were added after our applications grew to
be much larger than originally envisioned and
needed to be broken down into more manageable
chunks. Class files are similar to modules, but in-
stead of simply sourcing them in, their inclusion in

the application is via the forum inherit com-
mand, which applies the toolkit’s inheritance se-
mantics.

At the outermost level an AltaVista Forum applica-
tion consists of a “class file”: a series of forum
commands which declare different types of objects.
These class files can also inherit other class files,
allowing redefinition of the objects. This mecha-
nism allows for customization of applications with-
out directly modifying the applications supplied in
our “out of the box” product.

The forum objects consist of an amalgam of global
variables, global arrays, and procedures/commands
which follow an internal naming scheme, thereby
creating separate namespaces which (ideally) could
coexist in a single interpreter. The more practical
aspect of this mechanism is that AltaVista Forum
application developers could pretty much program
freely in Tcl and not worry about bumping into the
toolkit infrastructure which was easily manipulated
through toolkit commands. For example, the com-
mand: forum button b1 -text “b1 text”
-image b1.gif -mref b1Message ends up
as entries in the class-specific array for buttons.
When the button is used later in the context of a
toolbar, the object name b1 is handed to a processing
routine which can determine the current class name,
which determines the global array name.

The following excerpts of an AltaVista Forum appli-
cation demonstrate the syntax and some of the fea-
tures of the language.

forum class paper_demo “Tcl Paper Demo”
#
Sample of language syntax. This
doesn’t really do anything useful.
#

#
Bring in standard support code
#
forum inherit _stdwgw
forum inherit _acl
forum module utiities
forum module event

#
Extended database with additional
attributes (fields)
#
forum attribute editStatus {
 {type text} {default “open”}
}
forum attribute allowEdit {
 {type text} {default no}
}

#
Define some HTML form composition

elements.
#
forum textfield t.title -mapto title \
 -cols 60 -wrap virtual \
 -label “Title” -labelid l/title
forum checkbox c.allow -mapto allowEdit \
 -label “Allow edits” -labelid l/allow \
 -labelafter

#
Sample toolbar button and toolbar
definitions.
#
forum button tb.showDoc -text “Show” \
 -mref “showDoc %3” -senseid 3 \
 -image tb_showdoc.gif \
 -inactiveimage tb_showdoc_grey.gif

forum toolbar mainbar {
 std.home tb.showDoc
}

#
Sample message that lists the titles
of child documents, with hypertext
links to those documents by clicking
on the title.
#
forum message listSubDocs {
 # Open database. Do access check
 # acl_deny_dialog is inherited from
 # the _acl class.
 wim open r
 if {![acl_permits]} {
 forum_exec view acl_deny_dialog
 wim close
 return
 }
 # Parent document is passed in the
 # message arguments (from URL)
 set docId [lindex $margs 1]
 begin_response text/html normal
 emitln [html head] [title_bar]
 emitln [html body] [std_header]
 emitln [toolbar mainbar $dodId]
 emitln <h1> [nlt h/lsd1 \
 “Subdocumment List for”] \
 [aval title $docId] </h1>
 set count 0
 # Enumerate children.
 foreach_entry -childof $docId d {
 incr count
 emitln [mlink [aval title] \
 showDoc $d] “
”
 }
 emitln “<p>”
 emitln [format [nlt h/lsd2 \
 “Total subdocuments: %d”] $count]
 emitln [std_trailer]
}

Executables

The AltaVista Forum system is controlled by three
executables: the dispatcher, the butler, and the back-
ground service. While the applications are shipped
as files that can be modified by customers, the toolkit
is a bit more protected. The hybrid C/Tcl code was
merged together with a custom derivative of the Em-

bedded-Tk [Hipp] processor which, as the name im-
plies, allows Tcl code to be embedded into a C pro-
gram framework.

The dispatcher is the web server CGI application
where most of the work in AltaVista Forum is per-
formed. Web browsers (such as Netscape Navigator

or Microsoft Internet Explorer) contact a hypertext
server, which in turn creates a process and runs the
dispatcher. The dispatcher (a Tcl interpreter ex-
tended by our toolkit with a fixed initialization
script) analyzes the request, loads the application,
executes the appropriate scripts which ultimately
generate an HTML response which is transmitted to
the web browser for formatting. The dispatcher then
runs down and the process is deleted.

The butler is the AltaVista Forum’s version of
tclsh . It has most of the same extensions that the
dispatcher has (minus the elements only of use to a
CGI program), and includes a number of forum
management commands, some application develop-
ment aids, and a reasonable reproduction of the dis-
patcher execution environment suited to offline
processing.

The background service is a program that coordi-
nates the execution of tasks that are to be performed
on a particular schedule or as a reaction to some
event in the applications. The background process
doesn’t actually do any of the work but instead
exec’s butlers with small scripts.

Code Volumes

The table below chronicles the growth of the toolkit
proper (this does not count the code in various com-
ponents we integrate into the toolkit such as Tcl,
ndbm, NI2, etc.)

C Tcl

Release # Files Lines # Files Lines

1.0 15 5,435 19 9,039

1.0A 15 7,338 19 8,900

2.0 15 9,286 19 12,994

2.0A 15 10,027 19 13,505

3.0 32 18,829 28 14,883

Compared to the applications, the use of Tcl in the
toolkit has grown only modestly. The numbers re-
veal a bit of the toolkit team’s development strategy:
where possible first implement the functions needed
in Tcl and then recode in C to gain performance
after the interfaces and behavior have stabilized

The table below shows the growth in the forum ap-
plications code volume (essentially lines of Tcl).
The ten-fold increase in size is due in part to new
applications, a large number of new features being
implemented, and a wider range of engineer experi-
ence with Tcl. It also reflects the toolkit lagging
behind the applications (there are more application
engineers than toolkit engineers) which is made up
in lots of Tcl code. With a little luck, this number
might actually start to decrease in future releases as
we continue to fine-tune the toolkit.

.RELEASE # FILES LINES

1.0 8 6,700

1.0A 8 17,104

2.0 30 48,398

2.0A 34 56,773

3.0 114 97,591

Latest Design Elements

The design presented thus far served the first two
major releases of the AltaVista Forum product quite
well, but suffered from a performance problem that
limited the scalability of the product. In our third
release we were allowed to attack this problem rather
aggressively. The resulting design utilized the Tcl
core to an even higher degree.

Tcl Package Libraries

The first change was to replace the Embedded-Tk
mechanism with a new facility called Tcl Package
Libraries (TPL). All of the toolkit Tcl code is now
placed in a single archive which is read in by the
various executables - bringing in the particular mod-
ules they require. The TPL mechanism serves a
number of purposes:

• It reduces our kit size because the Tcl code isn’t
replicated between 3+ programs.

• It provides a vehicle for extensive customization
by resellers – an attractive feature for our prod-
uct.

• It could potentially be encrypted to hide sensi-
tive code (we don’t do this in our product).

• We anticipate that Tcl source modules could be
replaced by Tcl8 bytecodes [Lewis], with com-
mensurate performance improvements by
avoiding the on-the-fly compilation phase.

The TPL archive is created by a Tcl script which
reads in the designated Tcl modules, compresses the
comments out, and arranges them in a single file
with an index structure in the header area. The ar-
chive script can also write out a “bootstrap” script
into the archive which is a small script that locates
and reads in the more robust package_load facility.
This keeps the amount of Tcl code that needs to be
embedded in the C programs to just a few lines.

TPLs are not connected in any way with “packages”
as implmented in the Tcl core. The main benefit of
TPLs is that all of our Tcl code in the toolkit is now
bound into a single, platform-independent file which
is easily distributable over the Web (for patches or
incremental extensions).

The diagram below depicts the on-disk layout of the
Tcl Package Library:

Struc ture of the A ltaV is ta F orum Tc l Packa ge L ibrary

ve rs ion

header s ize

libra ry index (linea rized a rray)

"boo tstrap" Tc l sc rip t

H eader

C om pressed
Tcl

M odu le

C om pressed
Tcl

M odu le

C om pressed
Tcl

M odu le

C om pressed
Tcl

M odu le

C om pressed
Tcl

M odu le
. . .

AltaVista Forum ships with a TPL containing all of
the toolkit. Through configuration files the software
can be instructed to load in different modules and/or
additional TPLs.

Persistent Server Design

From the earliest prototypes of AltaVista Forum we
knew that the high-level design of the dispatcher was

nowhere near optimal for high-performance or large-
scale deployment. Each transaction required a large
amount of processing to occur, sometimes to do
relatively little “real” work. The initial focus in re-
lease 3.0 was to quantify and then reduce this over-
head before pursuing other tuning opportunities.

The first task was to instrument the dispatcher with
simple probes that recorded the [clock
clicks] at each point. A particularly slow CPU
was used so that the clock resolution would not mask
the results (the actual numbers used in this paper
aren’t nearly as important as the ratios). Here is a
summarized sample of the instrumentation probes
that we used as our reference transaction:

Acc. µsecs Function

44,797 Tcl Core Initialized

52,098 AVF Toolkit (C language) Com-
mands Installed

3,226,111 AVF Toolkit (Tcl language) Pro-
cedures Installed

4,742,309 Dispatcher Configuration and
Transaction Initialization

12,370,021 Application Class Loaded

12,645,428 Transaction Preparation Com-
plete

15,999,848 Transaction Complete

The timings show that for this 16 second transaction,
about 5 seconds was engaged in fixed transaction
setup, 7.6 seconds was spent loading the application
into the interpreter, with the application spending
less than 3.5 seconds actually doing the work (in this
case the application was one of our smaller ones and
the actual task was extremely simple).

This relatively simple analysis, combined with our
knowledge about the growth of AltaVista Forum
application sizes indicated that a major performance
gain could be achieved if we reduced the time to
setup for a transaction. The bulk of the application
code, however, also created a constraint: whatever
changes were made could not introduce the need for
many modifications to the applications (the goal was
zero changes required).

After prototyping our own protocol and proving the
concept of a persistant server, we elected to use the
FastCGI [Brown] interface as the means of inter-
acting with the hypertext server (assuming our now
familiar role of being the first to port it to Windows
NT). Using FastCGI meant that we could have a
process resident in memory waiting for a transaction,
process it, and then set up for the next one – avoid-
ing the fixed overhead of toolkit initialization on
each CGI transaction. Referring back to our refer-
ence transaction, that gets rid of about 4.7 seconds
per transaction. Because of the limited deployment
of FastCGI we opted to use a CGI to FastCGI bridge
program which preserved nearly all of the benefits of
FastCGI while permitting us to integrate with a large
range of hypertext servers.

The Interpreter Triad

A single interpreter processing these transactions
was the first approach prototyped. Routines were
created that would save and restore global state be-
tween transactions – however we were concerned
that applications manipulating various global vari-
ables would eventually affect each other as their state
was retained in memory.

The final design incorporated the use of multiple
interpreters configured in a unique way:

• The “master” interpreter holds the initialization
state of the dispatcher. This interpreter accepts
transactions from the hypertext server via the
FastCGI interface.

• The “transaction” interpreter (txInterp) is a
transient slave interpreter created by the master
interpreter for each transaction. Ideally an ap-
plication executing in this interpreter thinks it is
in the same environment as the earlier releases
of AltaVista Forum.

• A set of “pristine” slave interpreters are main-
tained by the master interpreter: one for each
application class. The application is loaded into
this interpreter, essentially “compiling” the ap-
plication into its global state variables and pro-
cedures.

The job of txInterp is to perform the work of the
transaction and then disappear - taking any excess
global state changes with it. In the reference model
it cost 8,700 microseconds for Tcl to create a slave
interpreter (with teardown costing about the same) -
so this overhead is pretty much lost in the noise.

The pristine interpreters exist to amortize the cost of
loading the application classes (7.6 seconds in our
reference transaction, and typically much, much
higher) across a large number of transactions by
loading it once and then keeping it in memory for
the life of the process. A typical installation of Alta-
Vista Forum has less than a dozen classes to contend
with, so maintaining an interpreter per application
class incurs a moderate, but reasonable memory pen-
alty.

Commands were then written to redefine toolkit
commands (C extensions) in the slave interpreters,
and to quickly copy global variables from one inter-
preter to another. The typical cost of copying the
pristine global variables to the transaction interpreter
was approximately 20,000 microseconds.

 M aste r
In te rp re te r

h
t
t
p
d

unknown

S lave pe r
c lass:
"P ris tine "

Transaction
In te rp re te r

(C opy G loba l S ta te)

(Tc l p rocs
on-dem and)

"txInterp"

Tcl In terpreters inside the A ltaV ista Fo ru m "D isp atcher"

Procedure “Faulting”

Tclsh’s autoloading facility provided the inspiration
for the final piece of the new design. Because a
transaction typically only uses a fraction of the ap-
plication procedures (and the toolkit), we knew that
avoiding defining all of the procedures for each
transaction would save even more time. We used the
unknown command as a “procedure faulting”
mechanism and registered it as an alias in the slave
interpreters. When a transaction needs a procedure
that doesn’t exist, the unknown alias intercepts it
and checks the pristine and master interpreters for
the procedure. If located, the procedure is trans-
ferred to the slave interpreter and executed. The
original implementation of this faulter cost approxi-
mately 122 microseconds to copy a procedure, but
taking advantage of access to Tcl internals this was
reduced to 66 microseconds. This meant that for the
first time small transactions executed much faster
than the more complicated ones.

The procedure faulter is instrumented so that every
procedure that flows through it is recorded in a list.
We will use this information to determine the most
frequently referenced commands which will become
top candidates for re-coding in C.

Transaction Flow and Results

The final transaction sequence conceptually looks
like this (for performance reasons some things are
actually done out of order):

1. Master interpreter accepts the transaction data
from the FastCGI interface and parses the in-
coming message storing relevant information in
master interpreter global variables.

2. Create the txInterp; define the (static) toolkit
commands.

3. Copy the global variables from the appropriate
pristine interpreter. If there is no pristine inter-
preter resident for the application, then create
one and load the class into it.

4. Copy the appropriate global variables from the
master interpreter to the txInterp. These vari-
ables hold the per-transaction state.

5. Rig the procedure faulter to search the appropri-
ate pristine interpreter and master interpreter for
unknown commands.

6. Evaluate the appropriate transaction script in the
txInterp. Send response back to the hypertext
server.

7. Delete the txInterp. Go back and do it all over
again.

This arrangement has proven to be extremely effec-
tive. For simple transactions a performance increase
of 5X was not uncommon. Large applications de-
veloped entirely on the prior version of AltaVista
Forum ran with only a handful of changes in some
areas that did some operations that were probably
better off in the toolkit anyway (most of the changes
were related to CGI/FastCGI implementation differ-
ences and not to the interpreter design changes).

This mechanism has been essentially replicated in
the butler program as well, permitting batch proc-
essing of lots of forums (application instances) rela-
tively efficiently.

Observations

When this paper was submitted we had just com-
pleted the main development phase of AltaVista Fo-
rum 98 (Version 3), so the degree of success of the
new design cannot be completely ascertained. How-
ever we have learned a few things worth noting:

By carefully isolating the developer from the plat-
form with a wide variety of data management facili-
ties the AltaVista Forum scripting language permit-
ted identical execution on Windows NT, Solaris,
and Digital UNIX.

While developers generally liked the power of the
Tcl scripting language, the lack of a syntax checker
and adequate debugging and performance profiling
tools was often a source of distress for those accus-
tomed to the more traditional development environ-
ments and tools. We are actively working to correct
this situation.

The realities of commercial product development
meant that we could not fine-tune the toolkit forever.
Consequently it is not as powerful and expressive as
originally hoped. Tcl’s inherent power and flexibil-
ity essentially worked against us here: what the Al-
taVista Forum Toolkit team couldn’t provide quickly
enough was simply “invented around” by writing
more Tcl code. This increases the size of our appli-
cation code and decreases overall performance.

Our experience with Tcl continues to remain a gen-
eral pleasure. It is stable and generally does what is
documented. We did encounter a few problems
worth noting:

• Tcl’s C-level routines don’t allow access to a lot
of important things: like info command data.
This meant that some our low-level code must
still call Tcl_Eval() to execute small scripts
- partially mitigating performance gains or we
were forced to access Tcl internal data structures
– which will make migration to future versions
of Tcl more expensive.

• Tcl channel I/O and pipe interaction work just
differently enough between Windows NT and
UNIX to keep us on our toes. One major design
feature of the background facility had to be re-
worked when it was discovered that it didn’t
work properly on Windows NT.

• We make only one modification to the Tcl core:
we stub out Tcl_Init() so that slave interpreters
don’t need to read init.tcl.

Because a significant percentage of our product is
written in Tcl, we can take advantage of this to a
great extent in customer support situations. We can
construct tools “on the fly” to deal with new prob-
lems, and because our configuration files are also Tcl
scripts, we can “patch” misbehaving parts of the
toolkit in the field without major rebuilds of the
product. This feature has proved to be so valuable
that we’ve taken pains to assure that many more
parts of the toolkit are now more easily field config-
urable. This will increase both the supportability of
the product and make it more attractive to resellers
who wish to make modifications to the toolkit’s be-
havior without necessarily changing code provided
by our company.

Acknowledgments

The AltaVista Forum product is the handiwork of
more talented engineers at AltaVista Internet Soft-
ware than I can name here. However I’d like to par-
ticularly thank the engineers who were part of my
toolkit teams located both in Littleton and Australia
that developed the Version 1 and Version 2 releases
and laying the foundation for the Version 3 design.
Special thanks to Roy Klein, Bob Travis, and Peter
Hurley who provide constant and invaluable feed-
back on one harebrained idea after another. Finally
I’d like to thank my original partners in crime, Dah-
Ming Chiu and Dave Cecil, who held the early prod-
uct together, and Larry Augustus for keeping the
whole boat afloat.

References

 [Chiu] Chiu, Dah Ming and Griffin, David.
“Building Collaboration Software for the Internet.”
Digital Technical Journal, Vol 8. No. 3 1996
http://www.digital.com/info/dtj

[Hipp] Hipp, Richard. “Embedded Tk”
http://users.vnet.net/drh/ET.html

[Lewis] Lewis, Brian. “An On-the-fly Bytecode
Compiler for Tcl”, The Fourth Annual Tcl/Tk
Workshop Proceedings, Monterey, California, July
10-13, 1996.

[Brown] Brown, Mark. “FastCGI: A High Perform-
ance Gateway Interface”, Fifth International World
Wide Web Conference, 6 May 1996, Paris France.
http://www.fastcgi.com

[Ousterhout] Ousterhout, John. “Tcl and the Tk
Toolkit.” Addison-Wesley 1994

[pob] DataComm Magazine Hot Products Award,
Jan. 1996; PC Week Lab Analyst’s Choice, Feb 25,
1996; PC Magazine Editors’ Choice April 1996; PC
Computing 1996 Finalist MVP

[Trewitt] Trewitt, Glenn. “Using Tcl to Process
HTML Forms”, Unpublished Digital Network Sys-
tems Laboratory Technical Report.

Digital, Digital UNIX, and AltaVista are trademarks of Digital
Equipment Corporation. Windows NT is a trademark of Microsoft
Corporation. Microsoft and Windows are registered trademarks of
Microsoft Corporation. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open
Company, Ltd. Macintosh is a registered trademark of Apple Com-
puter, Inc. Solaris is a registered trademark of Sun Microsystems,
Inc. Netscape and Netscape Navigator are of Netscape Communica-
tions Corporation.

