
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A Tk OpenGL widget

Claudio Esperança
COPPE, Engenharia de Sistemas e Computação

Universidade Federal do Rio de Janeiro

A Tk OpenGL widget

Claudio Esperança
COPPE, Engenharia de Sistemas e Computação

Universidade Federal do Rio de Janeiro
Cidade Universitária, CT, Sala H-319
Rio de Janeiro, RJ 21949-900, Brazil

Abstract

We present TkOGL, a Tk widget that enables the crea-
tion and display of 3D graphics using the OpenGL API.
Our approach features a reasonably complete Tcl
binding to the core OpenGL functionality, as well as a
set of extensions that implement a higher-level interface
to many common utility functions such as those pro-
vided by the OpenGL utility library (GLU).

1. Introduction

OpenGL [1] is becoming a standard Application Pro-
gram Interface (API) for writing portable 3D computer
graphics programs. On the other hand, the Tk toolkit
offers a portable and powerful environment for the de-
velopment of graphical user interfaces. It is to be ex-
pected then, that the merging of both capabilities should
appeal to a wide audience. In fact, many attempts to do
exactly that have been reported. Among these, we cite
the Tiger system [2] and the Togl widget [3]. For vari-
ous reasons, however, these packages did not meet my
expectations. For instance, Tiger mimics the OpenGL
API almost exactly, which makes the creation of simple
3D graphics unnecessarily complicated due to the inex-
istence of higher-level constructs. On the other hand,
Togl, while providing the means to open a window for
displaying OpenGL graphics, does not include Tcl
bindings for any of the OpenGL rendering functions,
thus forcing the user to program in C or C++.

Our primary purpose in writing the Tkogl widget was to
enable both the experienced and novice users to gener-
ate and display 3D models in a concise manner. Moreo-
ver, the widget takes care of low-level tasks related to
the embedding of OpenGL on a given window system,
such as adjusting viewports to reflect window resize
events and buffer swapping for double-buffered visuals.

The package was initially developed on an IBM RS-
6000 workstation running AIX v3.2.5 and tested both
with “real” OpenGL and with a free implementation of

the OpenGL API, namely, the Mesa 3-D graphics li-
brary [4]. It was later ported to PCs running Microsoft’s
OpenGL implementation under Windows95. Currently,
the package is known to work with Tcl 7.5/Tk 4.1 and
Tcl 7.6/Tk 4.2. The distribution contains source code
and Makefiles for some popular architecture/operating
system combinations. In order to facilitate its installa-
tion in PCs, a pre-compiled DLL (dynamically loadable
library) is also provided. The TkOGL home page ad-
dress can be found at [5].

2. Design Issues

OpenGL [1] is a software interface to 3D graphics
which was designed to provide optimum performance
on client/server architectures. Thus, a typical applica-
tion (client) consists of calls to OpenGL functions
which are translated into messages that are sent to the
graphics hardware (server), where they are interpreted
and executed. Since it was designed to be portable to
different architectures, the exact protocol involved in
OpenGL messaging may vary. While this flexibilty is
one of the strong points of OpenGL, in practice a usable
OpenGL implementation must define several interface
details in a non-portable manner. In particular, creating
a window for displaying OpenGL graphics is non-trivial
and eminently architecture-dependent. This task is fur-
ther complicated when we consider that our aim is to
embed such windows in frames managed by Tk. Some
of the issues involved in this task are:

• How to create a child window which can be recog-
nized by Tk.

• How to generate the architecture-dependent
OpenGL runtime data structures (also called con-
texts).

• How to cope with window system-specific events.
For instance, Microsoft’s implementation of
OpenGL only allows contexts to be created in re-
sponse to an event which is not handled by the
system-independent event dispatching mechanism
of Tk.

• How to allocate other window system-specific data
structures such as color maps.

These issues, although important, are not addressed
further in this paper since they are not of interest to the
typical user. The curious reader will be able to find
some solutions to these problems by perusing the source
code included in the Tkogl distribution [5].

Another important aspect concerning the integration of
OpenGL and Tcl/Tk is the design of an appropriate set
of Tcl bindings. Ideally, we would like an OpenGL
widget to provide an interface which is similar to other
Tk widgets. For instance, the canvas widget might
serve as a model, since it provides the funcionality for
generating 2D drawings. Unfortunately, however, 3D
graphics are substantially more involved, and the
overall approach used by canvas (i.e., to provide a
few graphical item types such as rectangles and ovals
which can be created and configured) cannot be em-
ployed in quite the same manner.
The rest of this paper describes our approach to this
problem.

3. A Simple Application Using Tkogl

The integration between OpenGL and Tk is achieved by
a package called Tkogl , which in Unix-based instal-
lations is statically linked in the extended Tcl/Tk win-
dowing shell called glwish . Under Windows95, the
package can be dynamically loaded by executing a cor-
responding package require command. In any
case, a Tcl script which uses the package should include
the following line:

package require Tkogl

Once it is ascertained that the package is loaded, one or
more windows can be created for displaying OpenGL
graphics. Such windows can be created in a similar way
to other Tk widgets by using the OGLwin command,
which has the following format:

OGLwin pathName ? option ... ?

where each option can be one of the following:

-accumsize accumSize specifies that the accu-
mulation buffer should support accumSize bit
planes for each of the red, green and blue
components. If an alpha component for the
color buffer has been requested, the same
number of bit planes is also requested for the
alpha component of the accumulation buffer.
By default, no accumulation buffer is re-
quested.

-alphasize alphaSize specifies that the color
buffer should support alphaSize bit planes for
the alpha component. By default, no alpha bit
planes are requested.

-aspectratio ratio forces the viewport of the
window to the width/height fraction given by
ratio, which should be a positive floating point
number. The viewport is then defined as the
biggest possible rectangle with the specified
aspect ratio centered inside the window. If ra-
tio is 0.0 (the default), no aspect ratio is en-
forced, which means that the viewport will al-
ways take the same shape as the window.

-context pathName2 makes the OpenGL con-
text of pathName share display lists with that
of pathName2, which should also be the name
of an OGLwin widget.

-depthsize depthSize specifies the number of
bit planes for the depth buffer (also called z-
buffer). By default, this number is 16. A
depthSize of 0 means that no depth buffer is
required.

-doublebuffer doubleFlag specifies whether
or not a double buffered visual will be used
(true, by default).

-height height specifies the height of the win-
dow in pixels. Default:300.

-stencilsize stencilSize specifies the number
of bit planes requested for the stencil buffer
(zero, by default).

-width width specifies the width of the window
in pixels. Default:300.

Currently, OGLwin can only be used to create windows
which will use the RGBA color model. By default,
OGLwin creates a double-buffered RGB window with
the biggest number of bitplanes supported by the current
software/hardware environment. The configuration op-
tions described above can be used to allocate additional
buffers, e.g., an accumulation or a stencil buffer. If the
requested buffers cannot be allocated, then OGLwin
fails, producing a standard Tcl error result.

An OpenGL window is typically created for visualizing
a series of graphical objects. In most window systems,
the contents of the window must be redrawn every once
in a while, for instance, when the window is resized or
deiconified. Usually, quite a few OpenGL rendering
commands must be executed in order to reproduce the
contents of the window. Although we aim to be able to
generate any OpenGL command from within a Tcl
script, it would be very time-consuming to interpret a

very long sequence of Tcl commands every time a given
OpenGL window needed to be redrawn. Fortunately,
OpenGL offers a display list capability, whereby several
commands can be pre-compiled and stored in the dis-
play server, ready to be re-executed as needed. Thus, a
sensible management of an OpenGL window (such as
the one created by the OGLwin command) is to reserve
a display list which will contain all rendering commands
that are to be executed whenever the window needs to
be redrawn. In this document, we refer to such a list as
the main list. In addition to calling the main list when-
ever a redraw is needed, the widget issues glFlush
command and takes care of swapping the front and back
buffers (when a double-buffered visual is being used).
The contents of the main display list can be redefined
by means of the main widget command, which has the
following format:

pathName main ? option ... option ?

where

pathName is the name of an OpenGL window.

option is one of the OpenGL commands cur-
rently supported by the package.
These will be described later on.

The program listing in Example 1 below shows a very
minimal script that creates a window to display a trian-
gle. The display produced by that program is shown in
Figure 1.

package require Tkogl
OGLwin .gl
pack .gl
.gl main -clear colorbuffer \
 -begin triangles \
 -vertex -1 -1 \
 -vertex 0 1 \
 -vertex 1 -1 \
 -end

Example 1: A simple script to display a triangle.

Notice that the script above relies on several variables
of the OpenGL state machine having their initial default
values. For instance, the default value of the Color state
is white, while the the default value of the ClearColor
state is black, which means that the triangle will be
drawn in white over a black background.

Instead of using the main display list mechanism for
keeping the window updated, it is also possible set up a
script to be executed every time an Expose event is
caught by Tk. In this case, instead of using the main
widget command to set up the main display list, the

Figure 1: Display produced by the script of Example 1

same OpenGL commands can be issued by means of the
eval widget command, which has the following syn-
tax:

pathName eval ? option ... option ?

where pathName and option have the same meanings
as in the main command.

For instance, it is possible to rewrite our minimal script
to catch Expose events directly. This is shown in Ex-
ample 2 below.

It should be noticed that the default display list mecha-
nism is usually superior to catching events and redis-
playing the picture. This is because in the former case
all OpenGL commands are already stored in a display
list in the server, while in the latter case, all commands
must be reinterpreted and transmitted from the client to
the server every time the window must be redrawn.

package require Tkogl
pack .gl
bind .gl <Expose> {
 .gl eval -clear colorbuffer \
 -begin triangles \
 -vertex -1 -1 \
 -vertex 0 1 \
 -vertex 1 -1 \
 -end
}

Example 2: Displays a diagonal line by catching Ex-
pose events and redrawing the picture with the eval
widget command.

4. OpenGL option commands

Many OGLwin widget commands (e.g., eval , main)
require a list of options that denote OpenGL commands.
The overall format of such options is

glCommandName ? arg ... arg ?

where

glCommandName is a Tcl string that denotes an
equivalent OpenGLcommand. The string cor-
responding to a given OpenGL procedure is
the name of that procedure stripped of its gl
prefix and of eventual data type suffix. Mixed
upper- and lowercase characters can be used.
Thus, for instance, procedure glMatrixMode
corresponds to option -matrixmode (other
lower/uppercase combinations such as -
MatrixMode are also acceptable), proce-
dure glColor3f corresponds to option -
color , and so on.

arg is a Tcl string equivalent to an argument in the
corresponding OpenGL command. The follow-
ing rules are useful to determine how OpenGL
procedure arguments are mapped into equiva-
lent Tcl strings:

• Arguments of type GLenum are mapped
into a string with the same spelling as that
of the equivalent constant, except that the
GL prefix is dropped, as well as any un-
derscore (‘_’) characters. Mixed upper-
and lowercase characters can be used. For
example, constant GL_DEPTH_TEST
may be written either as depthtest or
DepthTest .

• Numeric arguments are represented by
equivalent Tcl strings. Integer types (e.g.
GLint , GLuint) are parsed as integer Tcl
values and floating-point types (e.g.,
GLfloat , GLdouble) are parsed as float-
ing-point values.

• When the same OpenGL function supports
both integer and floating-point variants of
the same function, the floating-point
(GLfloat) variant is implemented. For ex-
ample, command

-color 1 0 0

is the same as

glColor3f (1.0, 0.0, 0.0);

• If an OpenGL procedure requires a vector
argument, this is supported by spelling out
the contents of the vector as discrete arg’s.
For instance, the “C” code fragment

GLfloat ctrlpoints [4][3] = {
 {-4.0, -4.0, 0.0}, {-2.0, 4.0, 0.0},
 {2.0, -4.0, 0.0}, {4.0, 4.0, 0.0}
}

glMap1f (GL_MAP1_VERTEX_3 ,
 0.0, 1.0, 3, 4, &ctrlpoints[0][0]);

would be translated into Tcl as

-map1 map1vertex3 0 1 3 4 \
 -4 -4 0 -2 4 0 \
 2 -4 0 4 4 0

• In the case of procedures such as glClear,

which require bit masks as arguments, the
individual bit mask constants are mapped
to strings in much the same way as GLe-
num constants, except that the _BIT suf-
fix is also dropped. Furthermore, the bit
mask is assumed to be a bitwise “or” ofall
arg’s. For instance,

glClear (GL_COLOR_BUFFER_BIT |
 GL_DEPTH_BUFFER_BIT);

becomes

-clear colorbuffer \
 depthbuffer

Most OpenGL procedures have equivalent option com-
mands. In a few cases, the argument lists of an option
command and its associated OpenGL procedure have
slightly different argument lists, chiefly those that deal
with textures and images. Also, some procedures of the
OpenGL Utility Library (glu) were also implemented as
option commands. The complete list of option com-
mands can be found in the documentation included in
the Tkogl distribution [5].

5. OGLwin widget commands

Although most of OpenGL’s capabilities could be ex-
ercised by using the eval and main widget com-
mands, we felt that certain common tasks might be more
easily programmed if a suitable set of additional com-
mands were provided. For example, the OpenGL Utility
Library (glu) provides several functions that can be
used to render quadric surfaces such as spheres, cones
and cylinders. These functions control many aspects of
the rendering process, such as the dimensions of the

surface, whether texture coordinates should be gener-
ated, etc. This functionality can be captured in a more
natural way within Tcl scripts with a corresponding
widget command corresponding to the surface type to
be rendered. Consider for instance the sphere widget
command described below:

pathName sphere ?-displaylist dlist?
?-normals normals? ?-drawstyle
drawStyle? ?-orientation orientation?
?-texture t exture? radius slices stacks

Renders a sphere using the GLU facilities for
quadrics (refer to the gluCylinder function).
By default, the rendering is compiled into a
new display list whose number is returned as
the result of the widget command. If a display
list number dlist is specified by means of the -
displaylist option, then that list is used.
As a special case, if dlist is specified as none ,
the rendering is performed immediately, and
no display list is generated or overwritten. The
remaining options correspond to rendering
styles as implemented by functions gluQuad-
ricNormals, gluQuadricDrawStyle, glu-
QuadricOrientation and gluQuadricTex-
ture, respectively. The possible option values
are strings derived from corresponding sym-
bolic constants. Thus, for instance, -
normals flat corresponds to calling glu-
QuadricNormals with an argument equal to
GLU_FLAT .

Figure 2: Display produced by the script of Example 3

The sphere command encapsulates all the functional-
ity of the glu library procedures for rendering spheres.
This is illustrated in the script labeled “Example 3” be-
low which renders a shaded, textured sphere (see Figure
2).

package require Tkogl
Create a checkerboard image
image create photo tmp -width 2 \
 -height 2
image create photo img -width 64 \
 -height 64
tmp put {{white red} {black white}
img copy tmp -zoom 4 4 -to 0 0 64 64

Create an OpenGL window
pack [OGLwin .gl]

Configure point of view and texture
.gl eval \
 -matrixmode projection \
 -ortho -2 2 -2 2 -2 2 \
 -matrixmode modelview \
 -rotate 30 1 1 0 \
 -enable lighting \
 -enable light0 \
 -enable depthtest \
 -enable texture2d \
 -texparameter texture2d \
 texturewraps repeat \
 -texparameter texture2d \
 texturewrapt repeat \
 -texparameter texture2d \
 texturemagfilter nearest \
 -texparameter texture2d \
 textureminfilter nearest \
 -texenv textureenv \
 textureenvmode modulate\
 -teximage2d 0 0 img

Create sphere object
set quadric [.gl sphere -texture yes \
 -drawstyle fill -normals smooth \
 1.8 20 20]

.gl main -clear colorbuffer depthbuffer\
 -call $quadric

Example 3: Displays a textured shaded sphere.

Note in Example 3 that the texture image was created
by means of Tk’s photo extensions. The Tkogl pack-
age interacts with images created with Tk in order to
provide a smooth integration with OpenGL capabilities.
Thus, the argument list of OpenGL function glTex-
Image2d was slightly modified in the corresponding
Tkogl option command -teximage2d so that an im-
age name could be used instead of an array of bytes.

The Tkogl package implements several widget com-
mands that encapsulate capabilities usually accessed by
means of the glu library such as the rendering of quad-

ric and NURBS surfaces, polygon tesselation, etc. Ad-
ditional widget commands are also included to imple-
ment other useful rendering and modeling extensions
not supported by the glu library. For example, Tkogl
includes the gencyl command, which supports the
creation of generalized cylinders (i.e., objects obtained
by sweeping a two-dimensional shape along a curve in
3D). Figure 3 depicts one of these objects obtained with
a demo application included in the distribution.

Figure 3: Generalized cylinder object obtained with a

demo application.

6. Input Events

One of the nicest features of Tk is the simple way user-
input events can be handled by means of the bind
command. The OpenGL standard, on the other hand,
offers limited facilities for managing input. These fa-
cilities, however, were included in the Tkogl package
and can be easily put into use within a Tcl script. For
instance, one of the most bothersome difficulty lies in
establishing the correspondence between window co-
ordinates and world coordinates. The GLU library pro-
vides two functions – gluProject and gluUnProject –
for exactly that purpose. While these functions require
a long list of arguments which include the current view-
port and transformation matrices, their Tkogl counter-
parts – the project and unproject widget com-
mands – only require three arguments representing the
three coordinate values of the point to be transformed.
Example 4 below demonstrates the use of the unpro-
ject command in a program for drawing lines. Notice
how points which are input by clicking the mouse but-
ton are captured with a bind command and passed into
procedure newvertex which computes the corre-

sponding world coordinates. A sample output of this
program is shown in Figure 4.

package require Tkogl

pack [OGLwin .gl]

proc newvertex { x y } {
 global vertices
 append vertices -vertex \

" [.gl unproject $x $y 0] "
 eval .gl main -clear colorbuffer\

-begin lines $vertices -end
}

.gl main -clear colorbuffer

bind .gl <Button-1> {newvertex %x %y}

Example 4: A simple line drawing program.

Other OpenGL facilities for handling user input are
similarly supported in Tkogl. In particular, object se-
lection and “picking” can be handled in Tkogl through
the use of the select command. This command takes
care of allocating a hit buffer and processing the list of
hit objects, returning a single Tcl list which can then be
easily parsed within the script.

Figure 4: Sample output of the script “Example 4”.

7. Conclusions

We described our implementation of a Tk widget for
generating and displaying 3D graphics through the use
of the OpenGL API. Our approach, in contrast with
similar ports of OpenGL to the Tcl/Tk environment,
combines the accessibility of most OpenGL functions
through widget commands and options with a repertoire
of extensions that enable users to model several objects
with compact Tcl scripts.

References

1. J. Neider, T. Davis, M. Woo, OpenGL Program-
ming Guide: The Official Guide to Learning
OpenGL, Release 1, Addison-Wesley, Reading,
Massachusetts,1993.

2. Tiger 1.2 ftp site. URL:
ftp://metallica.prakinf.tu-
ilmenau.de/pub/PROJECTS/TIGER1.2

3. Togl home page. URL:
http://www.ssec.wisc.edu/~brianp/T
ogl .

4. Mesa home page. URL:
http://www.ssec.wisc.edu/~brianp/M
esa.html

5. TkOGL home page. URL:
http://aquarius.lcg.ufrj.br/~esper
anc/tkogl.html

6. OpenGL Architecture Review Board, OpenGL Ref-
erence Manual: The Official Reference Docu-
ment for OpenGL, Release 1, Addison-Wesley,
Reading, Massachusetts, 1992.

