
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

“Dashboard”: A Knowledge-Based Real-Time Control Panel

De Clarke
UCO / Lick Observatory

Santa Cruz, CA

\Dashboard" : A Knowledge-Based Real-Time Control Panel

De Clarke

UCO / Lick Observatory
Santa Cruz, CA 95064

de@ucolick.org

Abstract

This paper describes the use of Tcl and Tk to imple-

ment a \soft" or generic GUI for real time control

systems. UCO/Lick Observatory is using Tcl/Tk in

conjunction with a relational database to implement

a suite of code for instrument control and observ-

ing at Keck Observatory. One Tcl/Tk application

serves as both the GUI builder and the GUI. It re-

lies on information from an authoritative database

to con�gure its behaviour. The project illustrates the

use of Tcl and Tk as the common language hold-

ing a complex project together, and the particular

suitability of Tcl to database applications. It also

illustrates a software design philosophy in which an

online database engine is an integral part of software

design and deployment, rather than the target of the

application.

1 Background

1.1 How astronomers handle data

The astronomy community uses, for archival and in-
terchange of image and tabular data, a data storage
convention known as FITS. The header of a FITS
�le consists of a number of keyword/value pairs, em-
bedded in a �xed record format. The FITS standard
[FITS] was inspired by Hollerith card images and is
somewhat restrictive. Keywords are limited to eight
uppercase ASCII characters, and records are strictly
constructed by column position. Here is a brief sam-
ple from a typical FITS image header.

SIMPLE = T / FITS type

BITPIX = 16 / bits/pixel

NAXIS = 2 / image axes

NAXIS1 = 2303 / dim in x

NAXIS2 = 1024 / dim in y

TEMPDET = -119.72433472 /

DEWARID = 29 /

TEMPSET = -119.95216370 /

DWRN2LV = 80.87911987 /

RESN2LV = 32.34042740 /

PWRBLOK = 3.17460322 /

UTBTEMP = 6.50000000 /

UTBTMPS = 5.00000000 /

UTBFANS = F /

AUTOSHUT= T /

A few mandatory FITS keywords specify the struc-
ture of the subsequent image or table data. Other,
\reserved" keywords document common character-
istics of data (like DATE, TELESCOPE); the rest
of the keyword namespace is commonly used to
supply institution-speci�c, application-speci�c, or
instrument-speci�c information.

1.1.1 Keywords and values as a control

metaphor

At Keck Observatory [KeckObs] in Hawaii, the
dome, telescope, and instrument control system is
based on the FITS keyword/value model, extended
with numerous status and control keywords. Some
keywords represent telemetry values which can be
read, while others can be written to set instru-
ment operating parameters or to move motors, close
solenoids, etc. The control system metaphor is con-
sistent with the archival data storage format, and
much status information from the control system
is stored in the images acquired there, along with
the standard FITS keywords. The control software
suite is known as KTL (Keck Task Library) and is
described in Keck Software Document Number 28
[KSD28].

UCO/Lick Observatory designed and built the
HIRES instrument [HIRES] at Keck-I, and is cur-
rently building the DEIMOS [DEIMOS] and ESI
[ESI] instruments for use at Keck-II. During early
planning for the DEIMOS instrument, the software
team wanted some means of managing the large
number of new (or slightly variant) keywords the

instrument would need. We constructed a rela-
tional database schema for modelling FITS key-
words, storing keyword attributes such as datatype,
format, read/write access, semantics, etc. The
schema rapidly grew in complexity, incorporating
new concepts such as interkeyword syntactic and se-
mantic relationships, internal/external representa-
tion and unit/format conversions, hierarchical key-
word grouping, etc.

When nearly complete, the \keyword database"
stored in this schema became a powerful resource
from which we could generate documentation, sam-
ple FITS headers, and certain repetitive sections of
source code; we were also able to extend the ap-
plication of the schema to model database tables
(groups of �elds, whose attributes are nearly iden-
tical to FITS keyword attributes), and to facilitate
the automatic conversion of FITS �les into database
records or tables and vice versa. More information
about this project is available at the project Web
page [Memes] and in a forthcoming ADASS paper
[ADASS].

We used Tcl exclusively for the application lan-
guage (basically, sophisticated report generation)
and Tcl/Tk for the generic forms-based GUI to
Sybase which provides our interactive access to the
data. We hope to generate a signi�cant portion of
the paper documentation for the DEIMOS critical
design review, as well as online documentation and
substantial chunks of source code for the �nished
system, by means of these Tcl applications.

2 The \Dashboard" application: a

soft realtime GUI

2.1 Functional requirements

Another challenge facing us was our need for a
good GUI (or several) for this very complex in-
strument. We require an engineering interface for
bench tests, development, pre-ship quali�cations,
etc.; and we require a �nished, friendly, highly docu-
mented GUI for the end-user (astronomer) who will
use the instrument at Keck-II. In the past we have
hand-crafted GUIs using C and the Xt toolkit, and
some personnel at CARA have used the commercial
DataViews [DV] product extensively to design cus-
tom interface panels for instruments or instrument
subsystems.

Our approach to the generation of documentation,
code, etc., convinced us of the signi�cant bene�ts
of maintaining one authoritative source of keyword
(i.e., design and speci�cation) information to be
used by many applications. It was my personal con-
viction that the UI should not be a speci�c, hand-
crafted product tailored for DEIMOS, but a generic
\soft" application capable of reading the keyword
database and con�guring its behaviour accordingly.

The GUI should provide the user with a body of
knowledge about keywords and their legitimate use,
and with a \toolbox" of graphical and text widgets
which could be associated with these keywords. The
end result would be a control GUI for any KTL
control system (really, for any keyword/value con-
trol system). It should not rely on any commercial
or license-restricted software; although we started
this project using the Sybase RDBMS, one could
use the free PostgreSQL RDBMS [PgSQL] with the
pgtcl extension). It should be portable to any Unix
platform (including Linux on laptops).

In sum, the �nished product should be a dashboard
builder, not just a dashboard. The UI that ships
with DEIMOS should be merely one frozen layout
created by an inherently dynamic tool. If we could
apply the same tool to any KTL system, then the UI
for ESI and for DEIMOS would share development
costs, and it should be cheap and easy to design sup-
plemental or improved GUI for instruments already
deployed. It should be absolutely trivial to change
the surface appearance of the GUI at any time, in
response to user requests or operational/procedural
changes.

2.2 Implementation: how it works

The \Dashboard" application is a fairly slender
body of code relying heavily on a large infrastruc-
ture (FIGURE 1). It requires a set of Tcl extensions
as well as KTL shareable object libraries, and access
to the keyword database.

Mr. William Lupton of CARA wrote the \ktcl" ex-
tension [KSD98] which adds the KTL API to Tcl.
Through this API the application can open a KTL
\service", register interest in automatic broadcast
updates of KTL keywords, and read/write individ-
ual keyword values. \Dashboard" also relies on
TclX [TclX], and can use the VU widgets [VUW],
the BLT plot widget [BLT], and the LLNL Turn-
Dial widget [TurnDial]. It is fairly trivial to add

VU meters .so
BLT .so
turndial .so

DATABASE

Keyword Information

KTL Control System

(cache)

Keyword Information File
Layout File

DASHBOARD

Instrument-specific shareable library

ktcl shareable library loads...
KTL API shareable library loads...

KTCL commands:

ktl write <globalvar>
ktl read <globalvar>

ktl monitor <globalvar> ?tcl_code?
ktl link <service> <keyword> <globalvar>

ktl open <service>

"Dashboard" (TclX with sybtcl) loads

Figure 1: Dashboard Function Diagram

new \meter" types to the dashboard. We used the
Sybtcl [SybTcl] extension for access to the keyword
database.

The application reads from the database (or from
an ASCII save �le of information originally read
from the database) the complete descriptions of a
set of keywords corresponding to a KTL \service",
i.e. the keywords relevant to a particular instru-

ment or subsystem. It creates a canvas on which
the user/designer can deploy \meters" and \graph-
ics". Meters are associated directly with keywords,
and display the keyword values. Some meters can
also be used to set keyword values. Graphics can
decorate and annotate the dashboard, and change
their state to ag various conditions (more on this
later).

How is this done? The KTL API extension imple-
ments a ktl link command which associates any
given keyword with a global Tcl variable; the global
variable can then be used as the argument to a ktl

read or ktl monitor command. If the keyword is
being monitored, the KTL control system sends out
broadcast messages on each value change, to all pro-
cesses which have registered an interest in that key-
word. The ktcl extension responds to these broad-

casts by automatically updating the global variable
with the new value (and optionally, by executing
a user-de�ned Tcl code section). The application
can explicitly read the value at any time; however,
network tra�c is reduced by permitting the KTL
control system to broadcast values only when they
change.

A detailed description of how KTL and the tele-

scope/dome/instrument control mechanism really
work is beyond the scope of this present paper.
However, for those who are interested in realtime
control systems, the Keck Software Documents pre-
viously cited plus a Lick Observatory Technical Re-
port [Music] should provide an overview of the in-
frastructure of which \Dashboard" is the topmost
layer.

When the dashboard user creates (e.g.) a
\TextBox" meter using the Tk entry widget, the ap-
plication simply uses the global variable created by
ktl link as the textvariable for the entry widget,
and the display is automatically updated on each
KTL broadcast. For widgets which do not have the
\associated textvariable" feature, the optional Tcl
callback code is used to execute an update proce-
dure for that meter type. In addition to the global

Figure 2: Prototype dashboard for HIRES instrument

variable created by ktl link, the application main-
tains for each keyword a \desired value" variable,
which the user can adjust; a Commit operation is
supported in which the user's \desired values" are
written back to the KTL system.

In detail, the application maintains for each key-
word a list of Tcl commands to be executed each
time that keyword changes. The callback code uses
the keyword name as an index into an array of these
lists of commands, retrieves the list, then evaluates
each command. Thus any number of meters depen-
dent on one keyword can be be updated when that
keyword value changes; each command is eval'd,
so any number of meters dependent on one key-
word value are all updated by the one procedure
call. (In the �rst draft of the code, I used the Tcl
trace mechanism; but using the callback code op-
tion of the ktl monitor command reduced the lines
of code slightly and looked cleaner.)

2.3 Implementation: features

Using a canvas as the dashboard surface, it was easy
to set up bindings for positioning meters by drag-
ging, and bindings for editing meter con�gurations
interactively. Only slightly more challenging was
the \detachable" feature, which permits the user to
detach a meter entirely from the dashboard into a
separate toplevel, then replace it in its correct loca-
tion at will.

For end-user convenience, the dashboard supports
\pseudokeywords": the user/designer can de�ne a

pseudokeyword whose value is an evaluable expres-
sion involving numeric constants, global variables,
and one or more other keyword names (thus a
pseudokeyword REMTIME can be de�ned as EXPTIME
- ELAPTIME so that the user can easily make a
count-down meter measuring remaining exposure
seconds). The expressions are entered in a simpli-
�ed form which is expanded and sanity-checked by
the application before being evaluated. Expressions
are stored in both simple (for user editing) and ex-
panded form.

Graphics are used to decorate the canvas, providing
text labels, lines to delimit groups of related wid-
gets, and geometric shapes symbolizing, e.g. hard-
ware or software subsystems with which the user
can interact. Bindings for positioning and editing

graphical objects are consistent with those for me-
ters.

The ability to evaluate expressions (for pseudokey-
words) is also used to implement \conditions",
boolean expressions involving keywords and global
variables, whose evaluated result can be used to de-
termine the con�guration of dashboard elements.
Each meter or graphical object (including the can-
vas itself) can be associated with not just one set of
attributes, but an array of attribute sets. Each at-
tribute set is associated with a condition controlling
the application of those attributes; the base set is
associated with a null or \Normal" condition. The
user/designer can easily and quickly add more at-
tribute sets and conditions, to make objects on the
dashboard surface change their appearance (such as

content, size, background/foreground colour, etc.)
in response to KTL events. The designer/user ed-
its meter and graphic attributes, establishes condi-
tions, de�nes pseudokeywords, etc. using GUI forms
invoked interactively from the dashboard. The re-
sults of these changes are immediately visible.

The application can be con�gured to display a
\transparent" graphic for an open shutter (value of
keyword SHUTTER is \open"), and a black (or larger,
or both) graphic when the shutter is closed; a large
red warning message can appear on the dashboard
surface in response to an undesirable condition. Me-
ters can \turn red" when the value they represent
exceeds a certain limit; buttons can become in-
operable when the instrument condition prohibits
their associated action. The attribute set of dash-
board objects is the list of their native Tk attributes,
plus a small superset for the designer's convenience
(visible is one such convenient attribute).

In Figure 2, for example, the HATCH rectangle will
be solid black when the hatch is closed, but hollow
(as shown) when the hatch is open. The horizon-
tal arrows will appear when light is passing between
the stages of the instrument at the points indicated,
and will disappear when no light is present at those
points. The Image Rotator object will turn gray and
fade almost into the background when the rotator is
out of the light path. Bitmaps representing glowing
light bulbs will appear when comparison lamps are
turned on . . . and so forth. The chain of \photon
arrows" is probably the most challenging of these
animation problems, and requires a chain of pseu-
dokeywords with de�nitions as follows:

HATLIGHT

"HATOPEN == 'open'"

ROTLIGHT

"((HATLIGHT) && ((IROTOUT ==

'out of light path') ||

(IROTCVOP == 'opened')))"

LAMLIGHT

"LAMPNAME != 'none' "

DSLIGHT

"(ROTLIGHT || LAMLIGHT) && (SLITWID > 0)"

SHUTLIGHT

"(DSLIGHT) && (SHUTCLOS != 'closed')"

COLLIGHT

"(SHUTLIGHT) &&

(((COLLBLUE == 'blue') &&

(BCCVOPEN == 'opened')) ||

((COLLRED == 'red') &&

(RCCVOPEN == 'opened')))"

...

The application can now use those pseudokeywords
for conditional con�guration of graphics. The ar-
row between the Rotator and the Decker/Slit mod-
ules has two conditions: invisible (normal) and \lit".
The \lit" condition is contingent on either a lamp
being on or light getting through the rotator:

LAMLIGHT || ROTLIGHT

The GUI designer needs more exibility in respond-
ing to conditions than merely the alteration of the
GUI appearance. Evaluable conditions are also used
in a simple error/warning message system with pop-
ups, mailed or displayed messages, and optional Tcl
code to execute on any condition. The UI designer
can easily cause any arbitrary action to take place
(including execs of shell commands, delivery of mail
messages, etc.) upon keyword-related conditions.
In this case the object is an Alarm, and has an asso-
ciated array of conditions and actions much like the
condition/attribute arrays for visible objects. Fig-
ure 3 shows the Alarm Editor.

Figure 3: Pop-up editor for de�ning Alarms

Here is a sample alarm condition in simpli�ed and
expanded notation. The simpli�ed notation is what

the designer entered into the Condition box in the
Alarm Editor.

(LAMPNAME == 'none') &&

(LMIRRIN == 'in light path')

(\$hires(LAMPNAME) == 'none') &&

(\$hires(LMIRRIN) == 'in light path')

As you can see, the expansion process consists
of converting keyword names and pseudokeyword
names to Tcl global variable references. After this,
the expression can be evaluated at uplevel #0 (eval-
uation in this case takes place on any change to the
value of either LAMPNAME or LMIRRIN). If this expres-
sion is true when evaluated, a message will appear
in a popup alert box:
No lamps, yet lamp mirror in.

Occultation?

Upwards of 400 keywords are needed to control and
monitor the DEIMOS instrument; obviously there
is not enough screen real estate on even the largest
standard monitors to display this much information
at any reasonable size, nor can the average user per-
ceive and understand that much information at one
time. Therefore the dashboard needs hierarchy; it
can invoke and dismiss sub-dashboards o�ering de-
tailed control, while presenting an overview of the
system at the topmost, introductory screen. The
mechanism for invoking sub-dashboards is the famil-
iar and intuitive \double-click" used in many win-
dow systems to unfold or invoke windows, bound
to any graphical object; however, the user/designer
can attach any Tcl code to the double-click binding,
as well as or instead of the procedure call to invoke
a subdashboard.

Figure 4: Sub-dashboard invoked from HIRES main
dashboard

Figure 4 shows a subdashboard which was invoked
from the CCD stage of the main HIRES dashboard
with a double-click. This subdashboard o�ers more
detailed control of the CCD control subsystem. The
\CCD Status" button o�ers a third level of detail
(Figure 5) in which a BLT graph widget is used to
plot detector temperature against the liquid nitro-
gen level in the dewar. The PS button makes a
PostScript �le of the current plot.

Figure 5: Sub-sub-dashboard invoked from CCD
Status button

For design exibility, the dashboard supports three
hybrid screen items: a generic Button, generic
Menu, and generic Entry widget. Unlike a Me-
ter, these items are not bound to any particular
keyword, and unlike a Graphic they are standard
Tk widgets embedded in a canvas, not native can-
vas items. The user/designer can con�gure the
generic menubutton and button's \command" at-
tribute freely, to execute any arbitrary Tcl code;
the generic entry widget can be associated with any
global variable (for example, if the application re-
quires the UI to display Desired as well as Actual
values simultaneously). These generic widgets sup-

port the same conditional attribute mechanism as
the other dashboard components. (Example: sev-
eral of the stage labels in Figure 1 are actually
menus o�ering control of the covers or other ba-
sic functions for the optical stages. The menu items
would be, e.g., \Open Cover," \Close Cover," \Into
Light Path," \Out of Light Path.")

The dashboard operates in several (nonexclusive)
modes. In \engineering" mode, the user can edit
the dashboard freely; each writable Meter has in-
dividual edit and commit buttons, and some ex-
tra function buttons are provided in the frames
around the central canvas. In \observer" mode, the
screen is smaller and less complicated, omitting ex-
tra function buttons and invidual Meter buttons.
In \developer" mode, Meters have large obtrusive
frames which make them easy to reposition and edit,

whereas in \deployment" mode these frames are in-
visible and the user can neither reposition nor edit
items on the screen. In \safety" mode, where any
KTL write command would normally have been ex-
ecuted the application will instead log a message to
stderr. In \fake" mode, the dashboard will not even
try to connect to a KTL service but will use fake
values for all keywords; this permits early design
to be done before the supporting keyword libraries
are compiled, or before a running instrument con-
trol system is available.

Release 1 of the dashboard knows how to use the
VU Dial Gauge, Bar Gauge, and Stripchart meters,
the BLT plot meter, and the TkTurndial meter. It
also provides a TextBox (decorated entry widget),
Odometer (undecorated entry widget), Grid (grid-
ded frame of entry widgets with actual and desired
values), On/O� Light, and Keyword Action but-
ton. It o�ers the Line, Rectangle, Oval, Arc, Poly-
gon, and Bitmap canvas items as graphics, and the
non-keyword Button, Menu, and Entry. It supports
conditional con�guration of all meters and graphics,
and delivery of alarms (or any arbitrary Tcl code
execution) on any condition. A command-line win-
dow and a simple script editor are provided for the
user, for the direct typing of Tcl commands as an
alternative to GUI interaction. Screen layout can
be saved to and reloaded from plain ASCII �les; all
pseudokeyword and condition information is saved
as well as the layout and con�guration of the main
and all sub-dashboards.

3 Positive aspects of the \Dash-

board" approach

3.1 Practical advantages

The immediate appeal of the dashboard is in its ex-
ibility and the speed with which interfaces to KTL-
based instruments can be generated. The interface
shown in Figure 2 was created just as a demo, to
exercise and debug the �rst release of \Dashboard";
it took about 4 hours to create the toplevel screen,
and about another 3 hours to create four subdash-
boards (which pop up on double-clicks from the
main board).

The dashboard is also (usually) \live" during design
and prototyping; there is no compile/link/test cycle.
As soon as the keyword information is absorbed and
a widget is created, that widget is \real", watching

a real keyword value in a running KTL system (un-
less the designer is running in fake mode).

If the engineers change their minds about hard-
ware/software design or function, those changes are
�rst reected in the keyword database. The appli-
cation then e�ectively retools itself to match these
design changes, always provided that the keyword
database is properly maintained. Since the keyword
database is the foundation of a number of appli-
cations, not just one, the likelihood of its proper
maintenance (and of someone's noticing any errors
or inconsistencies) increases with the number of ap-
plications that depend on it. Also, the availabil-
ity of interactive X11 forms (Figure 6) and other
GUI and command-line tools for editing database
information makes it relatively easy for developers
to keep the central knowledge base current and ac-
curate (as opposed to the manual editing of many
distinct copies of the same information in the form
of code, con�g �les, man pages, typeset documents,
etc.)

Figure 6: Typical GUI form used to edit keyword
data

The dashboard is a single application, with one
maintenance cycle and one investment in devel-
opment, which can be used to provide engineer-
ing/diagnostic interfaces, deployed user interfaces,
prototype UI designs, etc., for any number of in-
struments sharing the KTL control protocol. In the
past, we developed individual interfaces per instru-
ment per application, and these interfaces were bur-

densome to improve or repair; as a result, user com-
plaints and feature requests were seldom resolved.
The \softness" of the dashboard means that the ad-
vanced user can tweak its appearance to suit his/her
own tastes, or design entirely original personal dash-
boards for speci�c purposes; the deployment mode
means that it can be given to naive end users as
a \canned" UI. The designer who must support
a deployed version can easily and quickly imple-
ment most user requests, without tedious recoding
and recompilation, by replacing a single platform-
independent layout �le.

Being based entirely on publicly-available code, the
dashboard is free and portable. It runs as well on
our Linux laptop, or my Linux home computer, as
it does on Dec Alpha or Sun Sparc platforms.

3.2 Design philosophy

All of the above features result in cost and time sav-
ings. However, most of them are merely side-e�ects
of what is in my opinion the single really interest-
ing feature of the dashboard, which is its symbiotic
relationship to a knowledge base embodied in an
online database. In most Tcl/Tk applications in-
volving databases, the database is the target of the
application; i.e., the information in the database is
manipulated by the application. In my \fosql" Tk
forms GUI for Sybase, the forms designs themselves
were stored in Sybase tables, and the data in the
primary forms design table could be edited using
the form for that table. However, the target of the
fosql application was still the data in the rest of the
database.

In the \Dashboard" application, the database is not
the target of the app; the telescope, dome, and in-
strument and the data gathered by the instrument
are the target of the app. The database is an in-
trinsic part of the application itself. It contains
\information about information", or \meta-data"
which the application uses to con�gure itself and
to make certain inferences about its own function.
This could be seen as one way of implementing ob-
ject orientation; a database is the ideal way of rep-
resenting objects and their attributes, and the code
is merely the methods which apply to the objects.
We could also regard the database as the equivalent
of hundreds or thousands of C source \structs".

Many other applications, such as mail tools, use re-
source �les of one kind or another to con�gure them-

selves, thus avoiding recompilation across changes
of appearance or function; but in general, each
application has its own resource �le which is not
shared with any other applications. (The X re-
source database is one exception, being a true on-
line database with a known API, but most X clients
have private resource �les applicable only to their
instance or their class.)

In contrast to the \private resource �le" model, a
central authoritative body of knowledge about the
information on which the application operates { im-
plemented as an online database { forms a concep-
tual hub about which many applications (such as
the dashboard) can be constructed with maximum
generality at relatively low cost. The tedious and
repetitive type of tabular information which (in our
older control systems) is replicated many times in
di�erent C sources, vxWorks sources, etc. is here
available in one consistent place, accessible online.
(It can be cached as FITS �les or other ASCII for-
mats in case we lose access temporarily to the live
source.)

I should perhaps note here that as well as keyword
syntax and semantics, overall system design is also
expressed in our database as tables of hardware and
software \agents," which pass \keyword" informa-
tion between them in various formats and media.
Using the digraph tools from Lucent Technologies
[Dot] we can easily generate information owcharts
for the hardware and software subsystems. Thus the
majority of our project design information is online
in a highly standardized, codi�ed, machine-readable
form; this in turn means that 80 percent or more of
our project documents are auto-generable.

The logical conclusion of this conceptual strategy
is that design, documentation, and by inference a
certain percentage of generable source code, are all
manifestations of one body of knowledge, expressed
once and maintainable at one central point.

All the usual reasons for choosing Tcl/Tk ap-
ply: speed of prototyping and development, low
cost of modi�cation and deployment, portability,
lack of commercial restraint on distribution. How-
ever, there were certain project-speci�c reasons as
well. From prior experience I had already be-
come convinced that Tcl(X) was a near-ideal lan-
guage for database applications (largely because of
its typelessness and its solid list processing fea-
tures). Lastly, because of the eval feature combined
with the above, it is remarkably easy to write self-

con�guring multi-purpose applications in Tcl (us-
ing methods which have no equivalent in C or other
compiled languages, such as the dynamic generation
of variable names and on-the-y generation and exe-
cution of code). The \Dashboard" application was a
logical outcome of previous positive experience with
Tcl and its extensions.

So far, we feel that the \Dashboard" application has
been a Tcl success story.

4 Potential applications

Nothing restricts the use of the \Dashboard" ap-
plication to astronomy or to KTL systems. Any
keyword/control system with an API could use the
dashboard code, by writing a di�erent Tcl extension
and altering about 30 of the 12K lines of code in the
dashboard-II application. The \trace" mechanism
could substitute for the monitor/callback mecha-
nism, or polling could be implemented for a control
system with no monitor/broadcast facility. Dash-
board is a shell, in other words, which could be in-
habited by applications other than KTL, just as the
\FITS keyword" database is a shell which could be
inhabited by other kinds of syntactic and semantic
information.

5 Future plans

Since the dashboard code is basically object-
oriented, one might ask why I didn't use extended
[incr Tcl] instead of plain TclX to implement it. An
object-oriented Tcl would have been a more natu-
ral choice; I implemented some OO-like features the
hard way. When itcl becomes a standard extension
requiring no core modi�cations, I'll probably con-
vert \Dashboard" to itcl, and the code will then
become smaller and cleaner.

The code currently saves its layout to an ASCII �le
(Tcl source). I would prefer that it saved this in-
formation to a database schema, like its ancestor
the \fosql" package. However, development was so
rapid during the �rst six months that I decided to
skip the overhead of schema revision and work from
at �les. Storing the layouts in database tables
would o�er far more power and ease of access for
global modi�cations, queries about the tool design,
hunting down particular widgets and bindings, etc.
I am used to this convenience in the \fosql" package

and am already feeling the lack of it.

There is currently no provision for communication
between multiple running copies of the dashboard.
This seems a serious shortcoming, one which must
be remedied before ship date. Since partnered ob-
serving is very common (remote observer on the
mainland or in Waimea, in close communication
with observers on the summit), the ability to share
dashboard con�gurations and information seems es-
sential. This raises all the usual issues of distributed
applications (registry, trust, etc) and rather than
reinventing all those wheels I'll probably evaluate
existing Tcl distributed applictions and copy or
adapt a successful design (with the author's per-
mission).

The code does not yet use KTL features like \call-
back on move complete" which would permit us vi-
sual indication of moves in progress, and also to
detect and visually ag any drift in stage positions.
We are still struggling (on the KTL side) with issues
like \estimated time to completion," \stage position
tolerance," and so forth. However, once we have de-
cided how to encode these concepts in the schema,
or how to implement them as keywords with read-
able values, it will be trivial to \teach" the dash-
board how to use them to construct conditional be-
haviours.

6 Acknowledgments

The application would not be half as successful
without a few very useful features of Tcl/Tk and
the TclX extension. In particular, the grid geome-
try manager is a very welcome new Tk feature which
signi�cantly reduced coding time; arrays of keyed
lists (tclX) are a perfect analogue to database ta-
bles and hence are heavily used in most of my code.
Tcl and TclX list functions, and expression evalua-
tion, were essential. TclX's package/library system
has been very useful and appropriate for code main-
tenance.

Much thanks to Mark Diekhans and Karl Lehen-
bauer (TclX), W. F. Lupton (ktcl), T.Poindexter
(sybtcl), G. Howlett (BLT), P.-L. Bossart (tkTurn-
Dial), and the original authors of the VU widget set
(F. Gardner, L. Miller, R. Dearden of VU Welling-
ton, NZ). Thanks also to Steve Allen (FITS exper-
tise and KTL code porting) and the rest of the
DEIMOS team for their ongoing suggestions and

challenges. And as always, thanks to Per Cederqvist
and friends for CVS!

7 Availability

The dashboard code is freely available. Contact me
if you would like to experiment with it.

References

[ADASS] De Clarke and S. L. Allen, Practical Ap-
plications of a Relational Database of FITS

Keywords, ADASS Conference 1996 (Virginia)

[BLT] The BLT extension
ftp://ftp.neosoft.com/tcl/ftparchive/

sorted/devel/BLT2.1.tar.gz

[DEIMOS] The DEIMOS Instrument Project,
http://www.ucolick.org/~deimos

[Dot] The graphviz package and tcldg extension
ftp://research.att.com/dist/drawdag

[DV] The DataViews Toolkit,
http://www.dvcorp.com

[ESI] The ESI Instrument Project,
http://www.ucolick.org/~loen/ESI/esi.html

[FITS] The FITS Standard,
http://www.gsfc.nasa.gov

/astro/fits/fits home.html

[HIRES] The HIRES Instrument Project,
http://www.ucolick.org/~hires

[KeckObs] Keck Observatory,
http://www.keck.hawaii.edu:8080

[KSD28] W. F. Lupton, KTL Programming Man-
ual (KSD 28)
http://www.ucolick.org/~de/KSD/ksd28.ps

[KSD98] W. F. Lupton, Tcl/Tk/KTL Interface
(KSD 98)
http://www.ucolick.org/~de/KSD/ksd98.ps

[Music] Lick Observatory Technical Reports: Music
http://www.ucolick.org/~de/KSD/music.ps

[Memes] A Database Schema for Representing
Meaning,
http://www.ucolick.org/~de/deimos/Memes

[PgSQL] PostgreSQL,
http://www.postgresql.org

[SybTcl] The Sybtcl extension
ftp://ftp.neosoft.com/tcl/ftparchive/

sorted/databases/sybtcl-2.4

[TclX] The tclX extension
ftp://ftp.neosoft.com/pub/tcl/TclX

[TurnDial] The tkTurndial widget extension
ftp://redhook.llnl.gov/pub/visu/

tkTurndial-2.0b.tar.gz

[VUW] The Victoria University widgets extension
ftp://ftp.ucolick.org/pub/UCODB/

VUtk41.tar.gz

