
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Assertions for the Tcl Language

Jonathan E. Cook
Department of Computer Science

New Mexico State University
Las Cruces, NM

Assertions for the Tcl Language

Jonathan E. Cook

Department of Computer Science

New Mexico State University

Las Cruces, NM 88003

jcook@cs.nmsu.edu

http://www.cs.nmsu.edu/�jcook

Abstract

Assertions, even as simple as the C assert macro,

o�er important self-checking properties to programs, and

improve the robustness of software when they are used.

This paper describes AsserTcl, an assertion package

for the Tcl programming language. Our assertions take

the form of commands in the program text, and cover

point assertions about the computation state, assertions

about procedure input values and the return value, and

assertions about the values that variables may take on

over their whole lifetime. In addition, universal and

existential quanti�ers are provided for both lists and ar-

rays, not only for individual elements, but for sequences

of elements as well.

1 Introduction

Assertions|declarative annotations to a program

that describe some property about the program and

its state|are useful tools in producing robust software.
Most programming languages are not designed to in-

clude assertions, with the notable exception being Eif-

fel [3], but e�orts have produced annotation languages
for Ada [2], C [5], Awk [1], and others. This paper de-

scribes assertions for the Tcl programming language [4].

Tcl is a popular, interpreted, \scripting" language.
It is now being used to build large (tens and hundreds

of KLOCs) systems, many of which are being used in

the commercial sector. Unfortunately, few tools exist
that help one build robust Tcl applications.

This is where assertions �t in. Assertions help de-

velopers write robust code by o�ering dynamic check-
ing of program properties, and enhancing the program's

testability. Our AsserTcl package provides assertions

for the Tcl programming language. The assertions take
the form of commands in the program text, and cover

point assertions about the computation state, assertions

about procedure input values and the return value, and
assertions about the values that variables may take on

over their whole lifetime, singly or in relation to other

variables.
In addition, many desirable assertions in Tcl will be

over an aggregate data structure, which in Tcl is a list
or array. For this, we provide universal and existential

quanti�ers for both lists and arrays, not only for indi-

vidual elements but for sequences of elements as well.
Section 2 describes our assertion commands and

their meaning and use, and Section 3 describes the

quanti�ers and their use. Section 4 describes the in-
terface for controlling the evaluation of assertions. Sec-

tion 5 presents some pragmatic issues in adding asser-
tions to the Tcl language, and describes the methods we

used to implement assertions. Section 6 presents some

examples in using the assertions and quanti�ers. Sec-
tion 7 evaluates the performance of a Tcl program that

uses assertions. Finally, Section 8 concludes with some

observations about assertions, the Tcl language and its
future, and possible enhancements to the language to

make it easier to develop debugging and analysis tools.

2 Assertion Commands

Our assertions for Tcl are commands that use a nor-

mal Tcl expression as an assertion about some portion

of the program. The four assertion commands that we
have added to Tcl are:

� assert is an assertion about the current state of

computation. It is evaluated at the point it occurs

in the source;

� assume is an assertion about the input values to
a procedure. It is evaluated upon entry to a pro-

cedure;

� assure is an assertion about the output and return

values of a procedure. It is evaluated upon exit

from a procedure;

� always is an assertion about part of the state space

(i.e., variables) of the program. It must always

hold, and is evaluated each time one of the vari-
ables it depends on changes value.

These commands are summarized in Table 1.

The form for each of these assertions is:

General Form of Assertions

assert-cmd expr ?fail-action? ?-default also?

Each assertion evaluates expr at some point or points in the execution of the program. If the
expression evaluates to true (nonzero), no action is taken. If false (0), fail-action is taken if

it is speci�ed, otherwise a general exception occurs. The fail-action can use break, continue,

or return. Specifying the -default also ag will force the general exception to occur after
doing the fail-action.

Speci�c Assertion Commands

assert expr ?fail-action? ?-default also?

Point assertion: evaluates expr at the point of its speci�cation, each time the program reaches
that point.

assume expr ?fail-action? ?-default also?

Procedure entry assertion: evaluates expr at the beginning of a procedure, and should be
an assertion about the input parameters of the procedure (and global variables used). This

command should be placed at the top of the procedure body, just after any global statements,

so that it can be seen as part of the procedure speci�cation.

assure expr ?fail-action? ?-default also?

Procedure exit assertion: evaluates expr just before returning from a procedure, and should

be an assertion about the return value of a procedure, and any side e�ects (global variables
modi�ed) of the procedure. Note that this command does not need to be placed at the end of

the procedure, and should be placed at the top, after any assumes, so it can be seen as part

of the procedure speci�cation. The values of the input parameters at the time of procedure
invocation are available through * in variables, one for each parameter. The return value of

the procedure is available through the return val variable.

always varlist expr ?fail-action? ?-default also?

Program state assertion: evaluates expr every time one of the variables in varlist changes.

The variables in varlist should be (a subset of) the variables in expr, and the expression

should be a statement about the relationships that must hold or values those variables can
take on. The assertion exists for the lifetime of the variables in varlist, and the always

assertion can be used in procedure bodies for local variables, as well as for global variables.

Table 1: The four basic assertion commands for Tcl.

assert-cmd expression [failure-action] [-default also]

where assert-cmd is one of assert , assume, or assure.

The always assertion is:

always varlist expression [failure-action] [-default also]

In both forms, expression is the Tcl expression to be
evaluated. For the assertion to be satis�ed, this expres-

sion must evaluate to true (nonzero). For the always

assertion, varlist is a list of variables to activate the as-
sertion on, such that when any one of them changes, the

expression is evaluated. It does not have to include all

the variables in the always,1 but should not include any
variables not in the expression.

Failure-action is an optional Tcl statement (block)

that, if supplied, will be executed if the assertion fails.
If no failure-action is speci�ed, the default action of pro-

ducing a general exception occurs, printing out the na-

ture of the failed assertion and aborting the program.

-default also is an optional ag that, if speci�ed, will

1For example, there may be transient states for one of the

variables that should be ignored.

execute the default action after executing the failure-

action; this can be used to print out detailed messages

in the failure-action, while still aborting the program.
For assertions about (and in) procedures, the value

of the input parameters at the time of invocation is use-

ful, because the parameters may be changed during ex-
ecution of the procedure, and an assertion would no

longer have access to the original values. For this, we

create variables of the form param in, where param is

the name of each parameter to the procedure. These

* in variables are set with the input value of the pa-

rameter, and do not change over the execution of the

procedure. They can be used in any assertion inside

that procedure.

For assure assertions, the return value of the proce-
dure must also be available. We provide this through

a variable return val. This variable is set in evaluating

an assure, when the procedure is exiting. While it can
potentially clash with an existing variable name (as can

the * in variables), if the variable is local, no harmful

e�ects will occur since the procedure is exiting, though
the original value will not be accessible in the assure.

The only case where a problem will occur is if return val

is a global variable and is declared so in the procedure.

General Form of Quanti�ers

quanti�er-cmd item-varname[s] data-struct expr

A quanti�er command evaluates expr for all items or item sequences in the data structure (list
or array), and returns 1 if the expression is true (nonzero) for the speci�ed quanti�cation over

the data structure. If item-varname is singular, that variable takes on the value of each item

in the list (or index in the array) as the quanti�ed expression is evaluated. If item-varname

is a list, the variable names in the list take on successive values in the data structure, such

that the order of names in the parameter is the order of values in the data structure. If more

item-varname's are speci�ed than there are members in the data structure, the quanti�er
returns 1.

Speci�c Quanti�er Commands

lall item[s] list expr

List universal: evaluates expr for all items or item sequences, and returns 1 if the expression
is true over the whole list, and 0 otherwise.

lexists item[s] list expr

List existential: evaluates expr for all items or item sequences, and returns 1 if the expression
is true for any item (item sequence) in the list, and 0 otherwise.

rall index[es] array-name expr

Array universal: evaluates expr for all indices or index sequences, and returns 1 if the ex-
pression is true over the whole array, and 0 otherwise. The index list can be prepended with

any sorting ags that 'lsort' accepts.

rexists index[es] array-name expr

Array existential: evaluates expr for all indices or index sequences, and returns 1 if the

expression is true for any index (index sequence) in the array, and 0 otherwise. The index

list can be prepended with any sorting ags that 'lsort' accepts.

Table 2: The four quanti�er commands for Tcl.

For this case, we would strongly suggest that return val

is not a very good name for a global variable.2

2.1 Usage Conventions

Assertions in a program become part of the docu-

mentation of the program, its behavior, and its inter-
nal interfaces between modules and procedures. This

suggests that some of the assertion forms should have

standard placements in the program.
The assert assertion is a point assertion. It should

be used at any point in the Tcl program where the

programmer can make a succinct declarative statement
about the state of the program, or where they want to

ensure that a variable or variables contain the proper

data. At the top or bottom of a loop body it can act as

a loop invariant.

For procedure interfaces, the assume and assure as-

sertions should be used. These assertions capture the

assumptions that the procedure makes on its parame-

ters and any global variables used, and the assurances

of its return values or of any global variables changed.
The assertions in e�ect become part of the declaration

2There are safer ways for naming input parameter and return

value variables, such as using an array with named elements, like

assert(return) for the return value. It was felt that a construct

such as this would simply be too cluttering for being able to

succinctly read an assertion expression.

of the procedure interface. As such, they should appear

as the �rst statements in the procedure body, after any

global statements (which are also part of the interface).
The always assertion, when it is used as an assertion

about global state, should appear at the top of the given

Tcl module that has the global state variables. If it is
being used as an assertion about the internal state of a

procedure, it should appear at the top of the procedure

body, after any assume and assure assertions, or after
the variables are created.

3 Quanti�er Commands

The two basic aggregate data types in Tcl are the

list and array. Assertions may often take the form of

describing the properties of a list or an array; for exam-

ple, specifying that a list contains all positive numeric

items. In these cases, universal and existential quanti-

�ers over lists and arrays are useful. Our commands for

these take the general form of:

quanti�er fitemjindex listg farray-namejlistg

expression

Our four quanti�ers are lall and lexists for list universal

and existential quanti�cation, and rall and rexists for

array quanti�cation. These commands are summarized

in Table 2. The �rst parameter to a quanti�er is a list of

item names or index names (dependent on whether a list

Assertion Control Interface

assertcl disable ?alljprocjvar? ?alljproclistjvarlist?

Disables all assertion checking, assertion checking for the given list of procs, or assertion
checking for the given list of variables. The keyword all can be used in place of a procedure

or variable list, indicating all procedures or all variables, respectively.

assertcl enable ?alljprocjvar? ?alljproclistjvarlist?

Enables all assertion checking, assertion checking for the given list of procs, or assertion

checking for the given list of variables. The keyword all can be used in place of a procedure

or variable list, indicating all procedures or all variables, respectively.

Table 3: The control interface for AsserTcl.

or array is used). These names are variables that take

on successive values of the items in a list (indices into an
array). The quanti�ers have their general meaning: the

expressions in lall and rall must hold for all sequences of

items (indices), and the expressions in lexists and rexists

must hold for at least one sequence of items (indices).

A quanti�er returns 0 for false and 1 for true.
For example, to specify that all elements of a nu-

meric list are positive, the quanti�er

lall i $list {$i >= 0}

is used. Here the item list is only one item, i. One item,
however, cannot be used for relations among items, such
as specifying that a list is sorted. For this, a quanti�er
such as

lall {i1 i2} $list {$i1 <= $i2}

is used, where i1 and i2 take on successive values of

items in the list. On a list of �ve items, for example,
there would be four pairs of items to compare in the

quanti�er. If a list is shorter than the number of items

asked for, the quanti�er returns true (1).
Array quanti�ers work the same way, except for

one problem|the order of indices to an array is
unconstrained,3 so quanti�ers over sequences of ele-
ments are less obvious. Still, in many uses of arrays,
programmers do have a sequence of indices in mind, and
it would not be unreasonable to specify that an array is
sorted, like

rall {i1 i2} Arr {$Arr($i1) <= $Arr($i2)}

For this, our quanti�ers process the indices in an lsort'ed
sequence; that is, we use an index sequence returned by
[lsort [array names Arr]], in this example.4 However,
lsort by default is an ASCII string sort, and if the indices
are numeric, this will give the wrong order. For this, our
index list can take any ags that lsort takes, and we pass
these on to lsort. Thus, the above quanti�er would be
changed to

rall {-integer -decreasing i1 i2} Arr \

{$Arr($i1) <= $Arr($i2)}

3In Tcl, arrays are associative, and any string can be an index

into an array.

4Of course, a quanti�er using only one index does not call

lsort, since there is no order needed.

to specify integer indices in a decreasing order. This

syntax is a bit cumbersome and unfortunate, but it is
the best we can do.

4 Controlling Assertion Checking

We recognize that assertion checking can be costly
in some instances, in terms of performance. This can

be especially true with quanti�ers over large data struc-

tures, and the cost can be somewhat hidden at times.
For example, if a procedure is called for each item in

a data structure, and that procedure has an assertion

about the whole data structure, the assertion e�ectively
turns an O(n) computation into one that is O(n2).

We expect that when a program is �nally released

for use, disabling the assertion processing is desirable.
Even during system development, as some portions of

the system become reliable, it may be desirable to turn
o� assertion processing for those portions.

In AsserTcl, assertions are controlled through the

assertcl control interface. Table 3 shows the commands
that are allowed by this interface.

Assertion control is provided at the procedure level,
variable level (for always), and the global level. The
global level simply disables all assertion processing, and
is e�ected by issuing the command

assertcl disable all

for disabling, and with the enable keyword for enabling.
By using the proc keyword and providing a list of

procedure names, assertion disabling can be done per
procedure. The command

assertcl disable proc P1 P2 P3

would disable assertion checking for the three named

procedures. Other assertion processing would still take

place, provided that global assertion checking had not
been disabled. The keyword all in place of a list of

procedure names disables assertion checking for all pro-

cedures.
A similar use of the var keyword disables process-

ing any always assertions for the speci�ed variables; if a

given always assertion still relies on other enabled vari-
ables, however, it will be processed when those variables

change. The keyword all in place of a list indicates all
variables with always assertions.

Even with global-level assertion disabling, an over-
head of checking the control variables is still paid. Thus,

for a situation such as �nal release of the software, a

nullassertcl package that declares empty assertion com-
mands is available. Requiring this package in place of

the regular assertcl package source leaves just the call

of an empty procedure as the only overhead.
Section 7 analyzes the run-time performance of these

various levels of assertion checking.

For removing virtually all overhead of using asser-
tions, our future work is expected to include making a

program processor that will comment and uncomment

assertion commands automatically. This will allow vir-
tually no overhead (except for comment-skipping) to ex-

ist in a released program, while still allowing the asser-

tions to remain as documentation, and to be reactivated
if needed.

5 Implementing Tcl Assertions

The main Tcl command that enables the addition

of assertion commands is the uplevel command, which
evaluates a script in a di�erent context; thus a proce-

dure can be passed an expression or even a block of
statements, and it can evaluate those in the context of

its caller, thus making the procedure look like a com-

mand in its caller's context.
The other main Tcl feature that we use is the ability

to rename an internal command and replace it with our

own procedure. We implement a proc procedure that
acts as a front-end processor to the real proc command.

Our front-end searches the procedure body for assertion

commands, and does the following two things if it �nds
any.

1. The body of the procedure gets prepended with

statements that copy parameter values to a corre-

sponding param in variable. This gives access to
the input values regardless of whether the proce-

dure modi�es the real parameter variables. Only

those param in variables that are used are copied.

2. Each return statement in the procedure gets

replaced with our own assertReturn statement.
Ours takes care of evaluating the assure's for that

procedure, and then returning from the procedure.

After these two operations on the procedure body are

done, we then call the normal proc command, so that

Tcl registers the procedure. The implementation of as-

sure is explained in more detail below.

5.1 Assert, Assume, and Always: The

Easy Ones

The assert command is implemented in the straight-
forward manner of a procedure that acts like a com-

mand, i.e., uplevel'ing the expression to be evaluated

and catching any returned exceptions. If the expression
itself generates an exception (an error or a user-de�ned

exception), assert passes this back to the enclosing con-
text. If the assertion fails, assert by default generates its

own exception using the return command. If the assert

has an associated failure-action, however, that action
will be uplevel'ed rather than generating an exception.

The assume command is really just an alias for the

assert command, implemented as a procedure that up-
level's an assert call. This does not quite �t the def-

inition of an assume being evaluated at the start of a

procedure invocation, since if the assume statement is
not placed at the beginning of the procedure body (like

we suggest), it will not be evaluated at the start. The

alternative would be to preprocess the procedure body
and move the assume's, but this would involve some

serious syntactic analysis. For now, our decision is to

forego this step and rely on conventional placement of
the assume commands.

For implementing the always assertion, the Tcl trace

command is used, which allows registration of a proce-
dure to call each time a variable is written (reads are

also traceable). The always assertion creates a uniquely

named procedure that evaluates the expression in the
assertion and processes any exceptional conditions and

a failure-action, if there is one. This procedure is then

attached to each variable speci�ed in the varlist param-
eter using the trace command.

5.2 Assure: The Hard One

Implementing the assure command is quite a bit dif-
ferent and more involved. For this command, we do

need to modify the procedure body. Due to the return

command being a not-so-general exception generating
mechanism, we do not (and cannot) globally replace the

return command, but we process the procedure's body

and replace each return in a procedure with our own as-

sertReturn procedure, if the procedure being processed

has any assure's. The assertReturn procedure evalu-

ates the assure's, and then e�ects a real return from

the calling procedure.

Replacing the return command can cause some prob-

lems and incompatibilities with existing Tcl behavior,
but only under well-de�ned circumstances. The prob-

lem stems from the fact that return is not simply a

command that returns a value from a procedure, but

rather a mechanism for generating exceptions. The ex-

ception generated by a return is passed by Tcl to the

context of the caller of the procedure that the return

command is in. But when we replace the return with

our own procedure, we add a layer of procedure call,
so that now the context that gets the exception is our

caller, not our caller's caller, as it should be. And return

cannot be uplevel'ed, because of the way the call stack
is processed in Tcl.

Nevertheless, for Tcl code that simply uses return

in the normal fashion of returning a value from a

procedure,5 replacing the command with our own does
not break any Tcl behavior, and allows us to evaluate

any assure's and then e�ect a real return.
The lexical replacement of return with assertReturn

is not done globally or universally. We only do this in

the body of a procedure that is using assures, so that
any other use of return is not a�ected. Furthermore,

we only replace a return call that begins on its own line

(white space excluded). This not only o�ers simple and
quick replacement, avoiding complex syntactic process-

ing, but o�ers an \out" to a programmer who needs to

use return to throw an arbitrary exception in a proce-
dure using assures|they can hide the return from our

processing by using a construct such as

if 1 { return -code $Exception ... }

Since this return does not begin its own line, our re-

placement method will ignore it.
The error command can also be used to return from

a procedure, but since this method is not interceptable

(due to the above-mentioned limitations on the return

command), we make no e�ort to catch this command.

In [4], it is recommended that error not be used except

for true errors, in any case.

6 Examples

This section presents a few simple examples to give
a avor for what assertions in Tcl look like and can do.

A point assertion about variables x and y:

assert {$x>4 && $x<$y+2}

A point assertion that simply prints a warning and does
not abort the program:

assert {$x>4 && $x<$y+2} {

puts "Assert failed: x:$x y:$y"

}

An assertion about some global variables over the life
of the program:

always NumUsers {$NumUsers >= 1 && \

$NumConnected > $NumUsers}

Note that this assertion only gets checked
when NumUsers changes, not when NumConnected

changes.

A simple procedure declaration with interface asser-
tions:

proc square {x} {

assume {$x+1 > $x} ;# tests for numeric value

assure {$return_val == $x_in * $x_in}

set x [expr $x * $x]

return $x

}

5A procedure return \exception" is the only one that can be

passed up one extra level.

A procedure that returns the quotient and remainder of
a divide operation:

#

divmod: returns a two-element list of quotient

and remainder

#

proc divmod {dividend divisor} {

simply test for numeric value

assume {$dividend + 1 > $dividend}

also, make sure non-zero divisor

assume {$divisor + 1 != 1}

must return the correct quotient and remainder

assure {[lindex $return_val 0]*$divisor_in + \

[lindex $return_val 1] == $dividend_in}

procedure body

set quot [expr $dividend / $divisor]

set rem [expr $dividend % $divisor]

return [list $quot $rem]

}

Assert that all list elements are positive:

assert {[lall item $list {$item>=0}]}

Assert that a list contains an element \Jon":

assert {[lexists item $list {"Jon" == $item}]}

Assert that a list is sorted:

assert {[lall {i1 i2} $list {$i1 <= $i2}]}

Assert that an array contains the value 42:

assert {[rexists i Arr {$Arr($i) == 42}]}

Assert that an integer-indexed array is sorted:

assert {[rall {-integer i1 i2} Arr \

{$Arr($i1) <= $Arr($i2)}]}

Of course, an arbitrary Tcl procedure can be called in
an assertion (though it should not have side e�ects!),
so a procedure that checks the consistency of a more
complex data structure can be used, like:

assert {[lall cust $CustomerList \

{[CheckCustRecord $cust]} {

puts "Warning: Customer is malformed -- $cust"

}

which asserts that a list of customer records are all con-

sistent, but only prints a warning if it is not.

7 Performance Evaluation

While assertions serve as unambiguous, written-

down, declarative speci�cations of a program behavior,

their compelling reason of existence is that they can
be evaluated at run-time, providing increased assurance

that a program's behavior is correct.

Run-time evaluation of assertions does not come for
free, of course. They add extra processing to a program

and can add signi�cant increases in program execution

time. For example, in the case of an assertion using lall ,
the expression must be evaluated over the whole list to

evaluate the assertion. If it is in a loop, each iteration

Assertion
Con�guration Tcl 7.6 Tcl 8.0a2

full assertions 97.53 48.16

-P1 79.43 39.32

-P2 78.12 38.64

-P1,P2,P4 62.17 28.51

-P3 35.91 23.63

all disabled 3.69 2.87
-P1-8 2.56 2.29

nullpackage 1.14 0.73

comment-out 0.95 0.66

Table 4: Performance of assertions

on Tcl 7.6 and Tcl 8.0a2

of the loop processes the whole list, potentially making
an O(n) operation become O(n2).

This overhead can be controlled during development

and testing through the judicious enabling and disabling
of assertions in procedures and variables, as explained

in Section 4.

Here we present some performance numbers for a
small Tcl program developed using assertions. The pro-

gram was a non-interactive, stochastic Petri net simu-

lator, and made heavy use of arrays. The program con-
sisted of thirteen procedures, all of which had assertions

in them. Two procedures used the lall quanti�er in their

assertions. The program did not contain any always as-
sertions. The program was 177 source lines, excluding

comments and brace-only lines, and had 16 assertions.

We ran the program using both Tcl 7.6 and Tcl
8.0a2, on an UltraSparc running Solaris. Table 4 shows

the performance of a Tcl program over various con�g-

urations of assertion checking. Each value is the mean
of 5 runs, timed using the Unix time command. Rows

with `-P#' con�gurations have assertion checking dis-

abled for the speci�ed procedures, but enabled for ev-
erything else. The last line in the table was the running

time of the program with all assertion statements hand-

commented out of the program. This represents the
lower bound on running time.

As can be seen, full assertion checking carries a high

price for this particular example. It runs almost 100
times slower on Tcl 7.6, and almost 75 times slower on

Tcl 8.0. Disabling various procedures reduces the time

by considerable amount, with the disabling of assertions
in P3 cutting the execution time by over half on Tcl 8.0,

and almost two-thirds on Tcl 7.6.

The two methods of disabling assertion checking, us-
ing assertcl disable all or using the nullassertcl package

both show good performance relative to the commented-

out performance. The nullassertcl package performance
is within 20% on Tcl 7.6 and within 11% on Tcl 8.0,

indicating that it is deployable technology|with an in-

teractive Tk program, an 11% overhead would not be
noticeable in most instances.

An interesting note is that disabling assertions in

eight of the thirteen procedures results in performance
that is faster than the global assertcl disable all; this

happens because the procedure disabling actually skips
inserting any assertion processing in the body of the

disabled procedure(s). Thus, if the time-critical proce-

dures are disabled in this manner, the other procedures
can still check assertions, and the performance remains

good.

For the list quanti�ers, allowing the commands to
use list names rather than lists would improve their pro-

cessing time immensely.6 However, this usage would not

be consistent with the normal Tcl list commands, so we
chose to leave the calling interface as using a list. How-

ever, we may decide to change this, or support both, in

the future.

8 Conclusion

In this paper we presented AsserTcl, an assertion

package for the Tcl programming language. We feel that
assertions will make the development of robust systems

easier. At the same time, we hope to use this founda-
tion for future research exploring more ideas in asser-

tions for programming languages, and for evaluating the

e�ectiveness of assertions.
Tcl is an evolving language, and the next version

will have namespaces, which will be akin to packages or

modules. Earlier work on Ada packages [2] and Ei�el
objects [3] have shown that modules present interesting

issues in developing e�ective assertions for them. In

addition, object oriented extensions to Tcl exist, and
these can provide a platform for exploring issues about

assertions for classes and objects.

In developing this package, some limitations were
encountered that could be ameliorated by adding some

functionality to the Tcl core language. Our suggestions

are:

1. Extend the exception generating capability of the

return command so that it is possible to throw

an exception to a speci�ed level, rather than al-
ways the caller. This would enable the true re-

placement of the return command (enabling other

debugging packages), and would generalize the ex-
ception mechanism.

2. Extend the info command with access to a proce-

dure's current line number (when executing) and
�le name. This is also a feature that would en-

able more functional debugging packages. The

info level command could be extended to provide

the line number currently being executed in that

level, and a command such as info proc procName

could be added that would return the �le name

and the beginning line number of the procedure

de�nition.

6A simple test with a 20-element list showed an order of mag-

nitude in speed di�erence.

Availability

AsserTcl is, and hopefully will remain, a Tcl-

only package, to ensure the best portability and ease
of installation and use. It is freely available at

http://www.cs.colorado.edu/�jcook/TclTk.

Acknowledgements

I would like to thank Professor Mikhail Auguston

for discussing aspects of assertions for programming lan-

guages, and to Professor David Rosenblum for �rst turn-
ing me on to assertions. Many thanks to the anonymous

reviewers of this paper as well. Their suggestions im-

proved it greatly.

REFERENCES

[1] M. Auguston, S. Banerjee, M. Mamnani, G. Nabi, J. Re-

infelds, U. Sarkans, and I. Strnad. A Debugger and As-

sertion Checker for the Awk Programming Language. In

Proc. International Conference on Software Engineering:

Education and Practice, Dunedin, New Zealand, 1996.

[2] David Luckham. Programming with Speci�cations: An

introduction to Anna, a language for specifying Ada pro-

grams. Texts and Monographs in Computer Science.

Springer-Verlag, New York, 1990.

[3] Bertrand Meyer. Object-Oriented Software Construc-

tion. Prentice Hall, New York, 1988.

[4] John K. Ousterhout. Tcl and the Tk Toolkit. Profes-

sional Computing Series. Addison-Wesley, Reading, MA,

1994.

[5] David S. Rosenblum. A Practical Approach to Program-

ming with Assertions. IEEE Transactions on Software

Engineering, 1995.

