
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Nsync - A Constraint Based Toolkit for Multimedia

Brian Bailey and Joseph A. Konstan
Department of Computer Science

University of Minnesota

Abstract

Nsync (pronounced ‘in-sync’) is a declarative multime-
dia synchronization toolkit, implemented entirely in Tcl,
designed to ease the complexity of designing innovative,
interactive multimedia applications. Nsync does not rep-
resent a new multimedia synchronization model; rather,
it provides a set of building blocks in the form of tempo-
ral and non-temporal constraints useful for specifying
both the synchronization and interaction properties of an
application. Nsync depends only on the logical time sys-
tem provided by the Berkeley Continuous Media Tool-
kit, thus allowing any application using a similar notion
of time to also benefit from the Nsync constraint mecha-
nism. Nsync presents a new and powerful environment
for rapid development of highly interactive multimedia
applications.

1 Introduction

A multimedia application can be partitioned along three
axes:

• Content. The text, graphics, images, audio, or video
used within the application.

• Synchronization. The temporal ordering of the con-
tent.

• Interaction. The control the user exercises over both
content and synchronization.

As Figure 1 shows, the complexity in building a multi-

media application increases as the desire for content,
synchronization, and interaction increases. Most multi-
media toolkits, such as the Berkeley Continuous Media
Toolkit [10], have primarily focused on providing con-
tent as opposed to synchronization or interaction. Previ-
ous efforts to provide synchronization support for
applications have resulted in the development of numer-
ous synchronization models [6, 9, 12]. These models
can typically be categorized as:

• Timeline.Defines actions such as the starting or
stopping of a media object to occur at a specific
time.

• Hierarchic. Provides two operators, “parallel” and
“serial”, which can be applied to the endpoints of
different media objects.

• Reference point. Synchronization points are defined
within media objects which may inhibit or cause
other media objects to playout.

• Event based. Applications express interest in sys-
tem events, such as the starting or stopping of a
media object, and are notified when those events
occur.

As expected, each of these models has its own strengths
and weaknesses, and none provide a complete set of
synchronization abstractions (see [8] for a good over-
view and comparison of these models). Modeling the
interaction properties of an application has received
attention from a few systems such as [4], but in general
has not been addressed.

2 Background

Because our work primarily focuses on providing sup-
port for the synchronization and interaction aspects of
multimedia applications, we decided to use an existing
media toolkit to provide the necessary content. The
media toolkit chosen was the Continuous Media Toolkit
(CMT) developed at the University of California Berke-
ley by the Plateau project [10]. CMT is a flexible low-

Synchronization

In
te

ra
ct

io
n

Content

Figure 1: The Content, Interaction, and Synchronization axes of a
multimedia application. Complexity is increased by traversing any
of the axes outward.

co
m

pl
ex

ity

Nsync - A Constraint Based Toolkit for Multimedia*

Brian Bailey
Joseph A. Konstan

Department of Computer Science
University of Minnesota

{bailey, konstan}@cs.umn.edu
http://www.cs.umn.edu/Research/GIMME

* Supported by NSF IRI-94-10470 and a grant from DMRC.

level toolkit for building distributed continuous media
(CM) applications. CMT provides support for a variety
of video and audio formats, transport protocols, and
hardware playout devices. Each of the CMT media
objects can be dynamically loaded as a Tcl extension.
These objects then provide an associated Tcl interface
for creating, configuring and removing the object.

CMT also provides a distributed clock object called the
Logical Time System (LTS) for media stream control.
An LTS is shared by all the CM processes that map real
time to “logical” time. Logical time has no start or end
and can be thought of as an infinite timeline in both
directions. An LTS object maintains three attributes:
value, speed andoffset. Value represents the current
value of the clock, which we commonly refer to as
media time, and which can be set to a new value in order
to support random access within a media stream.Speed
represents the ratio of themedia time speed to real time.
For example, a speed of 2.0 indicates that the media is
being played at twice its natural rate and a speed of -1.0
indicates that it is being played in reverse at normal
speed.Offsetis a scalar that is used to complete the
mapping betweenmedia time and real time:

Media-Time = Speed * Real-Time + Offset.

An LTS can be set by setting any two of {media-time,
speed, offset}, and the third will be computed. See Fig-
ure 2 for LTS code examples.

CMT media objects are attached to an LTS which is
used to provide the timing basis for the playout of indi-
vidual media frames. An LTS, which from now on will
be referred to as a clock object, has the following prop-
erties:

• Multiple media objects or streams can be attached
to a single clock to achieve fine-grained synchroni-
zation; i.e., lip-sync quality.

• Multiple clocks can be created and attached to dif-
ferent media streams to support unsynchronized (or
differently synchronized) playback, or to support
other application objects that also need a notion of
time; e.g., animation.

• Speed andoffset do not change during normal play-
out without intervention by either the user or other
system events.

• Clocks can be perfectly synchronized by setting the
speeds and offsets to identical values. Sincemedia
time is computed from real time, two clocks with
the samespeed andoffset will always have the same
media time.

• Clocks always progress in a piecewise linear fash-
ion (see Figure 3 below).

Because of its piecewise linear property, the amount of
time it will take a clock with its currentvalue, speed,
andoffset, to reach a future time instant can be pre-
dicted. However, if any of the three attributes of a clock
change, then this predicted value will no longer hold.
Utilizing the predictable nature of a clock will be shown
later, but for now it suffices to realize that a method for
clock attribute change notification is needed. Together,
the OAT [11] and TclProp [5] systems provide this func-
tionality. OAT, or object attribute trace, provides a pro-
tocol for adding traces on new types of Tcl objects; e.g.
clocks and their attributes. TclProp further builds on
OAT to provide triggers and one-way constraints.

3 The Nsync Toolkit

With CMT providing the basic media stream support for
applications, we focused our efforts on providing sup-
port for both the synchronization and interaction proper-
ties. The goal was to develop a simple methodology for
defining a broad base of useful relationships involving
clock objects (thus controlling the temporal layout of
the media) and user interface events; e.g., button
presses. This methodology has been embodied in the
Nsync (pronounced ‘in-sync’) synchronization toolkit
which has been implemented entirely in Tcl. At the core

(a) set clock [lts ““]

(b) $clock config -speed 1 -value 0

(c) $clock destroy

Figure 2: Tcl code examples for(a) creating,(b) configuring,
and(c) destroying an LTS.

Real time
5 10

5

10

S = 0

S = 0

Figure 3: A graph of the CMT clock object. From real time 0 thru
5, logical time progresses at the same speed as real time, signified
by speed (S) = 1. From real time 5 thru 7, S = 0, and logical time
does not change. At real time 7, random access has been performed
by setting the clock’s value attribute back to logical time 2, and the
speed is also set to 2.5. Logical time now progresses from logical
time 2 at 2.5 times the rate of real time. At real time 9, S = 0, and
logical time continues unchanged.

S =
 1

Lo
gi

ca
l t

im
e

S
 =

 2
.5

of Nsync is a declarative constraint language which sup-
ports each of the following:

• Temporal constraint. A Tcl expression consisting of
constants, scalar variables, arithmetic operators,
equality or inequality relationships, boolean con-
nectives, and at least one clock object. Temporal
constraints are useful for specifying the synchroni-
zation aspects of a multimedia application (see Fig-
ure 4a).

• Non-temporal constraint. A Tcl expression consist-
ing of constants, scalar variables, arithmetic opera-
tors, equality or inequality relationships, and
boolean connectives. Non-temporal constraints are
useful in user interface development and therefore
address the interaction component of multimedia
applications (see Figure 4b).

• Combinations of temporal and non-temporal con-
straints. Both disjunction (| |) and conjunction (&&)
can be applied to any combination of temporal or
non-temporal constraints. These combinations
allow the synchronization and interaction issues to
be simultaneously addressed (see Figure 4c).

• Enforcement action. A user-defined Tcl command
invoked when the constraint expression becomes
true (See Figure 4).

Examples of constraint specification in Nsync are given
in Figure 4. Each of the constraints are specified using
the following syntax:

Whenexpression action

whereWhen is the Tcl procedure name,expression is
the constraint to be maintained, andaction is the
enforcement action. Semantically, the constraint in Fig-
ure 4a states thatwheneverclock1 becomes greater
thanclock2 plus the value in theskew variable OR

wheneverclock2 becomes greater thanclock1 plus
the value in theskew variable, set the value ofclock1
equal to the value ofclock2 . Because the attributes of
either clock may be changed at any time; e.g., through
temporal access controls, the constraint may need to be
enforced (by calling the user-defined enforcement
action) many times.

Several properties about Nsync constraints are notable:

• Declarative. Only the what is specified to the Nsync
system without specifying any of the how. In other
words, the constraints are described to the system
and the system determines when to invoke the cor-
responding enforcement action.

• Dynamic.Nsync constraints can be created,
deleted, or modified at run-time. For example, the
skew variable from Figure 4a can be modified at
run-time which will affect when the enforcement
action is invoked.

• Expressive. Nsync constraints can be used to spec-
ify a wide variety of different constraint relation-
ships.

• Understandable. Nsync constraints are very intui-
tive as they can simply be read from left to right.
The English equivalent of a constraint can be stated
by using the following grammatical template:
“wheneverexpression becomes true, perform this
action.”

With the ability to explicitly combine temporal and non-
temporal constraints, Nsync directly supports both the
synchronization and interaction aspects of multimedia
applications.

set action [list $clock1 config -value \[$clock2 cget -value \]]

When “($clock1 > $clock2 + \$skew) || ($clock2 > $clock1 + \$skew)” $action

(a)

When “(\$skew_desired == 1)” {set skew $current_skew_value}

(b)

set action [list $clock1 config -value \[$clock2 cget -value \]]

When “(\$skew_desired == 1) && (($clock1 > $clock2 + \$skew) || ($clock2 > $clock1 + \$skew))”
$action

(c)

Figure 4: Tcl code examples for (a) Temporal constraint defining skew control(b) Non-temporal constraint to retrieve the skew value when
desired, signaled by clicking a checkbox, and(c) a combination of a temporal and non-temporal constraint to enforce the skew relationship of (a),
to be within the limit obtained from(b), but only when desired by the user. Skew control requires the logical time of two clocks to be within a spec-
ified value from one another.

4 Implementing Nsync with Tcl

The entire Nsync toolkit has been implemented using
the Tcl language. Tcl was chosen as our implementation
language for the following reasons:

• Constraint specification is not time critical. Most
constraints will be specified long before they are
actually enforced. Thus, the specification of the
constraints is not time critical, however we do rec-
ognize that the enforcement of the constraints may
be time critical.

• Dynamic code evaluation. By using thesubst and
eval commands, the Nsync constraint mechanism
is very flexible. For instance, any valid Tcl com-
mand, whether it is a procedure call or the setting of
a variable, can be used as the enforcement action of
a specified constraint.

• Existence of needed tools. Nsync leverages existing
tools such as the Berkeley Continuous Media Tool-
kit for basic stream support, OAT for object
attribute trace support, and TclProp for both object
change notification and non-temporal constraint
specification.

• Timed event queues. Tcl already provides excellent
support for timed event queues through theafter
command.

• User interface components. Nsync also provides an
integrated set of Tk based mega-widgets such as vcr
controls, jog shuttle controls, and random access
bars.

The Nsync toolkit architecture is shown in Figure 5.

5 Nsync Implementation

Looking at the skew constraint shown in Figure 4a, it
may not be obvious why neither the Tcleval mecha-
nism nor TclProp can be used to evaluate the constraint

expression. The key reason is the inclusion ofmedia
time. Media time contains several properties that make
either approach impractical:

• Media time is continuously changing, except when
the clock speed is 0. In TclProp, formulas and trig-
gers would need to be re-evaluated continuously
which is impossible and impractical.

• Media time often should be compared using ine-
qualities (such as whether a particular clock’s
media time is >= another clock’smedia time) which
are not supported by TclProp.

• The truth value of the constraint expression is no
longer just TRUE or FALSE. An additional value of
WILL BECOME TRUE (WBT) is necessary and
will be introduced in section 5.2. Obviously, neither
the Tcleval mechanism nor TclProp can produce
this temporal truth value.

The Nsync implementation consists of four compo-
nents:

• Compiler. Parses the constraint expression and con-
verts it into a postfix expression stack for fast runt-
ime evaluation.

• Evaluator. Determines the truth value of the con-
straint expression. If the expression evaluates to
TRUE or WBT, then the Evaluator calls upon the
Scheduler to invoke the enforcement action imme-
diately (TRUE) or at the predicted time (WBT).

• Change Monitor. Watches the relevant scalar vari-
ables and clock attributes used in the constraint
expression. If any of these change, the Scheduler is
notified.

• Scheduler. Schedules the enforcement action to be
invoked at the requested time.

5.1 Compiler

The Compiler is invoked by calling theWhen command
with two parameters. The first parameter represents the
constraint expression and is treated as a Tcl string. The
second parameter represents the enforcement action and
is simply stored for later use by the Scheduler. Within
the constraint expression, any attribute of a clock may
need to be referenced and some method for clearly iden-
tifying the attribute needed to be developed. To address
this issue, Nsync defines the notion of atyped reference.
A typed reference is a string conforming to the follow-
ing format:

{TYPE object attribute}

When the user requires an LTS attribute in the constraint
expression; e.g.,speed, the string{LTS ltsname speed}

CMTOAT Extensions for CMT

E
Z

-C
M

T

TclProp

Nsync

Advanced Multimedia Applications

Figure 5: The Nsync toolkit architecture. Nsync leverages existing
components such as CMT, OAT, and TclProp to provide synchroniza-
tion and interaction support.

Synchronization
models

is specified*. Alternatively, the user may simply invoke
an Nsync API which takes a clock variable and attribute,
and returns the proper format.

To reduce the need for special quoting, theWhen com-
mand assumes all variable substitutions have been made
prior to procedure invocation. However, if the user
wants to pass in a scalar variable, and not its current
value, thus deferring substitution until the constraint is
evaluated, then a backslash should be placed before the
dollar sign†.

Once theWhen command is invoked, a lexical analyzer
tokenizes the input string (constraint expression) and
passes each token to the parser upon demand. The parser
uses the tokens to build a parse tree according to the
BNF language description‡. The parse tree is built using
a combination of a Tcl array and several Tcl lists. Each
parse tree node contains a value (representing the lexical
token) and a list of elements, each of which is an index
to another parse tree node. Once the constraint expres-
sion is successfully parsed, an equivalent postfix expres-
sion stack, used for efficient run-time evaluation, is
created. Because of Tcl’s built in support for list manip-
ulation, converting the parse tree to an expression stack
was extremely simple. See Figure 6a and 6b for the
parse tree and stack representation of the skew con-

*The clock variables used in Figure 4 are actually typed refer-
ences with the attribute beingvalue, but are not shown for
clarity.

†See the examples in Figure 4.
‡The BNF is available as part of the Nsync distribution avail-

able at http://www.cs.umn.edu/Research/GIMME

straint example in Figure 4a.

5.2 Evaluator

The Evaluator is responsible for determining the truth
value of the constraint expression. With the addition of
temporal variables, constraint expressions now have
three possible values:

• FALSE. The constraint expression is currently
false, and will stay false at least until a clock’s
attribute or scalar variable used within the expres-
sion is changed.

• TRUE. The constraint expression is currently true,
and will stay true at least until a clock’s attribute or
scalar variable used within the expression is
changed.

• WBT. The constraint expression is currently false,
but will become true in a predictable amount of
time given it current state.

We also recognize that WBT also has an inverseWill
Become False (abbreviated WBF). However WBF has
not been implemented for two reasons:

• The semantic meaning of theWhen command
would become ambiguous. Will the enforcement
action be invoked when the constraint expression
becomes true or when it becomes false?

• Any temporal constraint which needs the notion of
WBF can simply invert its relational operator and
use WBT.

In order to evaluate the expression stack, the top element

| |

skew

+

>

.clock1

.clock2

>

skew

+

.clock1

.clock2

Figure 6a: The parse tree representation of the skew constraint
example given in Figure 4a.

Figure 6b: The postfix expression stack for the parse tree
shown in Figure 6a.

| |

>

+

skew

.clock1

.clock2

>

+

skew

.clock2

.clock1

is popped from the stack and each of its operands is
recursively evaluated. Each operand is evaluated accord-
ing to the following rules:

• Constants are promoted to a temporary clock object
with a speed of zero, and with a value set equal to
the constant.

• Scalar variables first have their value retrieved
using the Tclsubst command. The variable value
is then promoted to a temporary clock object in the
same manner as constants.

• Arithmetic operators (+, -, *, /) are evaluated by
applying the operator to thevalue attributes of the
clock objects*. Because of constant and scalar vari-
able promotion, each operand of the arithmetic
operator is guaranteed to be a clock object.

• The inequality and equality operators (>, >=, <, <=,
==) work similar to the arithmetic operators, except
when either of the clock object’s speed is not equal
to zero (each operand will be a clock object due to
previous promotions). When the speed of each
clock is zero, the clock object values are compared
using the appropriate operator and TRUE or FALSE
is returned. However, when one of the speeds is
non-zero, then a prediction algorithm is invoked
which may return TRUE, FALSE, or WBT along
with a predicted time. The following code fragment
represents the computation performed for the >
operator between two clock objects. This code sam-
ple produces the correct result for any combination
of actual media clocks and temporary clocks result-
ing from promotions.

set value1 [$clock1 cget -value]

set speed1 [$clock1 cget -speed]

set value2 [$clock2 cget -value]

set speed2 [$clock2 cget -speed]

*When applied to two clocks with non-zero speed, the result
is undefined.

if {$value1 > $value2} {

#clock1 value is already > clock2 value

return TRUE

} elseif {$speed1 <= $speed2} {

#value1 < value2 and impossible for the
#two clocks to cross

return FALSE

} else {

#value1 < value2, but clocks will cross,
#predict that future time

set prediction [expr (($value2 - $value1)
/ ($speed1 - $speed2))]

return [list WBT $prediction]

}

• The boolean AND (&&) and OR (| |) binary opera-
tors are summarized by the truth tables given in
Tables 1 and 2 above. As Table 1 shows, if both
operands currently have the temporal boolean value
WBT, the AND operator returns WBT along with
the later (max) of the two predicted values because
that is whenboth of the operands will be true. Simi-
larly, as Table 2 shows, the OR operator will return
WBT along with thesooner (min) of the two pre-
dicted values because that is the time when thefirst
of the two operands will be true.

Every time the constraint expression stack is evaluated,
the Evaluator applies the above rules to determine the
status of the constraint expression. If the constraint
expression evaluates to

• FALSE. No action is taken.

• TRUE. The Scheduler is called upon to invoke the
enforcement action immediately.

• WBT. The Scheduler is called upon to invoke the
enforcement action at the predicted time.

5.3 Change Monitor

As shown in Figure 3, logical time progresses at a pre-

Table 1: Truth table for temporal AND

AND TRUE FALSE WBTy

TRUE TRUE FALSE WBTy

FALSE FALSE FALSE FALSE

WBTx WBTx FALSE WBT
max (x,y)

Table 2: Truth table for temporal OR

OR TRUE FALSE WBTy

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE WBTy

WBTx TRUE WBTx WBT
min(x,y)

dictable rate until one of the attributes,value, speed, or
offset is changed. If one these clock attributes or any
other variable used within the constraint expression
changes, then all expression stacks referencing either of
these needs to be re-evaluated. TclProp watches each of
the necessary clock attributes and variables, and notifies
the Scheduler if any changes occur.

5.4 Scheduler

The Scheduler is responsible for invoking the constraint
enforcement action at the future time predicted by the
Evaluator. To perform this function, the Scheduler needs
to maintain a timed event queue. Fortunately, Tcl
already provides the required functionality with the
after command. The Tclafter command arranges
for an arbitrary Tcl command to be executed after a
specified number of milliseconds have elapsed*. The
command returns an identifier which can later be used to
cancel the delayed command. To perform its task, the
Scheduler simply calls theafter command with the
predicted time and enforcement action as parameters.
Once the predicted amount of time has elapsed, the cor-
responding constraint expression will have just changed
from FALSE to TRUE, and the enforcement action
should, and will be invoked. However, if the Change
Monitor notifies the Scheduler that a dependent clock
attribute or variable has changed, then the Scheduler
removes all appropriateafter commands and notifies
the Evaluator. The Evaluator then re-evaluates any
expression stack referencing the changed clock attribute
or variable and the whole process repeats itself.

6 Discussion

Although Tcl is in most respects a very simple language,
it has proven capable of building a complex, yet efficient
application. In summary, Tcl provided several mecha-
nisms useful for the development of the Nsync multime-
dia synchronization toolkit:

• Array and list support. Used to quickly implement
the constraint expression parse tree and equivalent
postfix expression stack.

• Dynamic code evaluation. Provided great flexibility
when specifying the enforcement action of each
constraint.

• Existing tools. Reusing or extending existing tools
such as OAT, TclProp, and CMT greatly increased
our productivity.

• Packages. The Tcl package mechanism facilitated

*Theafter command does not guarantee any deterministic
boundaries on the actual invocation time versus the asked
for time.

good source code modularity.

• Rapid code development. Nsync was originally
implemented in less than 4 weeks of programming
effort.

• Timed event queues. The Tclafter command pro-
vided an excellent interface for invoking delayed
commands.

Nsync has been implemented in about 3,000 lines of Tcl
code. The entire source distribution is available at http://
www.cs.umn.edu/Research/GIMME

7 References

[1] Blakowski, G., J. Huebel, and U. Langrehr. “Tools
for Specifying and Executing Synchronized Multimedia
Presentations,”2nd Int’l Workshop on Network and
Operating System Support for Digital Audio and Video.
1991. Heidelberg, Germany.

[2] Blakowski, G. and R. Steinmetz. “A Media Synchro-
nization Survey: Reference Model, Specification, and
Case Studies,” IEEE J. Select. Areas Commun., Volume
14, no. 1, January 1996.

[3] Borning, A. and R. Duisberg. “Constraint-Based
Tools for Building User Interfaces,”ACM Transactions
on Graphics, 5:4, Oct. 1986, pp. 345-374.

[4] Herlocker, J. and J. Konstan. “Tcl Commands as
Media in a Distributed Multimedia Toolkit,” Proceed-
ings of the 1995 Tcl/Tk Workshop (Usenix Association).

[5] Iyengar, S. and J. Konstan. “TclProp: A Data-Propa-
gation Formula Manager for Tcl and Tk,” Proceedings
of the 1995 Tcl/Tk Workshop (Usenix Association).

[6] Little, T.D.C. and A. Ghafoor. “Interval-Based Con-
ceptual Models for Time-Dependent Multimedia Data,”
IEEE Transactions on Knowledge and Data Engineer-
ing, 1993. 5(4): p. 551-563.

[7] Ousterhout, J.K. “Tcl and the Tk Toolkit,” Addison-
Wesley Publishing Company, 1994.

[8] Pazandack, P., “Multimedia Language Constructs
and Execution Environments for Next-Generation Inter-
active Applications,” PhD Thesis. University of Minne-
sota, 1996.

[9] Rothermel, K. and T. Helbig. “Clock Hierarchies:
An Abstraction for Grouping and Controlling Media
Streams,”IEEE J. Select. Areas Commun., volume 14,
no. 1, January 1996.

[10] Rowe, L. and B. Smith. “A Continuous Media
Player,”Network and Operating Systems Support for
Digital Audio and Video, Third Int’l Workshop Proceed-
ings. 1992.

[11] Safonov, A. “Extending Traces with OAT: an
Object Attribute Trace package for Tcl/Tk,” Proceed-
ings of the 1997 Tcl/Tk Workshop (Usenix Association).

[12] Schnepf, J., J. Konstan, and D. Du. “Doing FLIPS:
FLexible Interactive Presentation Synchronization,”
IEEE J. Select. Areas Commun., volume 14, no. 1, Janu-
ary 1996.

