
The following paper was originally presented at the
Third Annual Tcl/Tk Workshop

sponsored by Unisys, Inc. and USENIX Association
Toronto, Ontario, Canada, July 1995.

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Two Years with TkMan: Lessons and Innovations
Or, Everything I Needed to Know about Tcl/Tk I Learned from TkMan

Thomas A. Phelps
Computer Science Division

University of California, Berkeley

Throughout development, a key goal was to reduce time
spent dealing with individual problems, which trans-
lated into a focus on simplifying installation and making
the code more robust and dynamically adaptable to the
variety of UNIX environments. If we judge by the sub-
sequent great reduction in bug- and feature-related e-
mail, this work produced code that is robust, portable,
and feature-rich.

This paper shares lessons learned and solutions devised
during the implementation of TkMan. The following
sections describe general solutions and various low-
level tricks that address various categories of problems.
The restriction to Tcl-only provoked a variety of strate-
gies to achieve acceptable speed in the face of a consid-
erable amount of string processing. But the interpreted
aspect of Tcl paid off in other ways, as Tcl could be used
as its own scripting language, which in one case sup-
plied a nice solution to a portability crisis.

As mentioned, the large user population promoted work
on simplifying installation and making the code robust.
A significant percentage of this user population used
another graphical man page browser, xman, whereas the
rest used a variety of text-based viewers. Satisfying the
expectations of both groups of users led to new insights
into the requirements for the interoperability of text with
graphical, and graphical with graphical tools.

2. Speeding Up Scripts

With earlier generations of compiler technology, if the C
code was too slow and more efficient algorithms were
not obvious, one considered coding the time-critical
pieces in assembly language. Similarly today, if the
interpreted Tcl code is too slow, the standard advice is to
code that portion in C and expose an interface back to
the Tcl level.

For reasons already described, this option was resisted
in TkMan. Moreover, sometimes the backdoor to C
does not relieve the bottleneck. One such case arises
when there is considerable state to communicate from
Tcl to C and then back to Tcl: in moving to C there may
be a great deal of string copying and type conversion;
and in returning to Tcl, there are the inverse data conver-
sions and possibly numerous variable settings.

Herewith are suggestions for speeding up scripts, princi-
ples made concrete with specific references to experi-
ences in building TkMan.

2.1 Exploit External Processes

Character-by-character processing

Usually manual pages are distributed as [tn]roff
source code and formatted by nroff for viewing on the
screen. Since formatting takes a noticable amount of
time, even on current workstations, formatted versions
are cached on disk. Betraying the days when man pages
were printed on line printers, formatted man pages sim-
ulate boldfacing with character-backspace-char-
acter overstriking and italics with character-
backspace-underscore. Clearly this format is
unsuitable for modern documentation systems, which
must step through the text character by character to
reconstruct bold and italics passages. In addition, most
man page macros still format the page for printing as
pages, inserting page headers and footers that are
unwanted when the information is viewed online.

In the initial development of TkMan, Tcl code was writ-
ten to perform this character-level analysis of the text.
Deadly slow. With all the string copying that string
index needed for every character, even pages that
occupied only a screenful or two took minutes to format.

The solution? Code page analysis in C, call as an exter-
nal process, and make it produce valid Tcl commands
that can simply be eval’ed. The control over filtering
parameters TkMan wants to exercise is passed along in
command line options.

If dividing code between the Tcl level and the C level
promotes discipline in architecture design, dividing it
between a script and an external process enforces abso-
lute hygiene. This paid off when the filter was extended
to also generate other types of text source markups
(including HTML, LaTeX and even [tn]roff source), as
there was no need to extract the relevant code from a
tangle of TkMan support: The filter was already isolated
and hence immediately available for use in a variety of
other environments.

Large-scale string searching and filtering

The other chief performance concern involved search-
ing for requested manual page names from those avail-
able in the system. Most text-based man pagers
dynamically scour the contents of the directory hierar-
chies along every component of the user’s MANPATH
search path, a process which can involve several hun-
dred directories and many thousands of file names. This
causes a noticable delay, especially over remotely-
mounted file systems.

TkMan has always built a database of valid manual page
names to speed the search. There are two potential bot-
tlenecks in using the database: in its construction and in
its use during searches. A number of database designs
were implemented before arriving at one that performs
acceptably at both points.

Until the current version, the database was constructed
at startup time and stored in memory (as list variables)
where it was thought searching would be fast. This
design suffered a number of maladies. Startup took a
nontrivial amount of time, minutes on slower machines.
Although the total size in characters of the text names
was typically in the low 100K’s bytes, the memory
image ballooned to more than a megabyte—on top of a
megabyte for wish and more for the application code
(on a 32-bit RISC machine). And searching was not all
that quick. The built-in list search command was not
suitable because it returns only the first match, whereas
a correct result may include multiple elements from a
given list, all of which are desireable. Thus each list had
to be iterated through and examined element by ele-
ment. One could use Tcl’s associative arrays as a hash
table keyed on the page name for instantaneous search,
but the list representation was needed to search by pat-
terns and to construct lists of all pages in various “vol-
umes” like User Commands and File Formats.

In an attempt to reduce startup time, the database was
cached on disk and only rebuilt when invalidated due to
changes in the man page directories. Compressed, this
file consumed only 50K bytes. However, this strategy
saved almost no time at startup. The time needed to
read directory contents paled next to the time needed by
Tcl to parse the results, allocate memory, and store the
information. Since the cached database improved noth-
ing and cost disk space, it was abandoned for the origi-
nal approach.

The current version of TkMan, 1.7, is successful in giv-
ing both quick startup and quick searches. It caches the
database on disk as described immediately above, but
spawns the standard UNIX searching and filtering utili-
ties grep and sed to search for man page names. It
was surprising to discover that it is faster to read the
data from disk and spawn three processes to decom-
press, filter and search it, than it is to loop through the
equivalent lists in Tcl.

In short, the lesson of this section is that if a Tcl script
runs too slowly at some point, an alternative to imple-
menting that portion as a C funtion in the executable is
to spawn processes that do run fast for the heavy pro-

cessing, and then collect the results in Tcl. That is, Tcl
is a good glue languages for processes as well.

2.2 Process fewer characters
Tcl is interpreted, not compiled to native code or even to
a “byte code” that in effect translates the human-read-
able text into an efficient machine-manipulable form.
That is, in Tcl every character in the human-readable
source text is seen by the interpreter during dynamic
execution every time that line is executed—even code
that was “commented out” must be reparsed. Until Tcl
compilers relieve this situation, a pair of Tcl-specific
tricks can maximize performance within these bounds.

Postprocess to reduce code size

Unlike comments in compiled programs, comments in
Tcl and even the whitespace used to format the code
reduce performance, especially if included within loops.
Rather than move all comments outside of loops and
start all lines at the left margin, one can postprocess the
code with sed or awk as part of a Makefile to remove
lines starting with the comment character (“#”) and strip
initial spaces. In certain cases this can introduce errors
into the program, but in my experience these cases
almost never arise, and in fact rather than imposing a
mental overhead to avoid these cases, it makes program-
ming more straightforward for one accustomed to the C
preprocessor, for when one knows that lines starting
with a pound sign are comments, not possibly elements
of a list. If one does not with to change Tcl semantics in
this way, it is preferable to use the semantics-preserving
tcl_cruncher [Dema], which strips comments and
reduces whitespace (wherever it appears) to a minimum.

Reduce input size and command count

 TkMan’s external manual page filter (written in C) pro-
duces Tcl commands that insert the text, set tags for
fonts and other presentation attributes, and set marks at
page section heads. Changes in the Tcl generated by C,
by the Tcl that executed this code and by a change in Tk
4.0’s text widget syntax all contributed to reducing the
time needed to read in a page by about 40% from ver-
sion 1.5 to 1.6. Most changes were appeared trivially
small at first glance, but they produced disproportion-
ately large impact.

The filter formerly generated Tcl command strings like
the following, at least one for each line:
$w.show insert end “NAME\n”
$w.show mark set m1 1.0
$w.show insert end “ls \[-aAbR\]\n”
$w.show tag add b 3.2 3.4

To read in this code and eval it, TkMan used the fol-
lowing code:
while {[gets $fid line]!=-1} {eval
$line}

The simple change of not setting a variable yielded a
significant speed up:
while {![eof $fid]} {eval [gets $fid]}

The fastest version, however, read in the entire file at
once:
while {![eof $fid]} {eval [read $fid]}
But this had the unfortunate side effect ballooning the
memory image when long pages were viewed. Tcl
would correctly free the memory but UNIX would not
shrink its allocation.

Since it is repeated for every line—over 400 times for
the Perl 4 manual page—a trivial abbreviation of
$w.show to $t significantly reduced input size.

Most importantly, however, was a change in Tk 4.0 text
widget insert syntax that led to man page translations
that required about 35% fewer characters and 98%
fewer function dispatches through eval. The new syn-
tax (the extended version of which was suggested by
this author to enable this very optimization), adds tags to
the text in the same command and can process multiple
(text, tag) tuples. The text widget can then step
through longer passages of text in the same function call
and can to an extent cache internal position markers
used in setting tags and marks. Thus the four lines
above needed to process two lines of the ls manual page
can be reduced to these two:
$t insert end “NAME\n” h2 “\n “ {}
“ls” b “ - Lists and generates statis-
tics for files\n\n”
$t mark set m1 1.0

Together, these changes noticably reduced the time
needed to process man page input text.

3. Exploiting Tcl as its Own Scripting Lan-
guage

Well known are many advantages of working in an
interpreted scripting language, such as rapid edit-com-
pile-test cycles and high level control of functionality
that is implemented more efficiently in a lower-level
language. In the three cases described below, Tcl served
as its own scripting language. Although the extension
code was executed in the same environment as the
implementation code and could directly access impor-
tant data structures, it was important to operate through

an interface layer in every case in order to make exten-
sion code portable across changes to the main applica-
tion code and to provide a higher level, tailored
interface to the application.

3.1 tkmandesc commands
It is occasionally desirable to see a list of manual page
names in a particular category either to see what’s avail-
able or to choose a name from a set of options rather
than typing it in from memory. The man page directory
hierarchy categorizes pages into 11 major groupings,
and a browser could present lists of all pages in a partic-
ular grouping, but most groupings contain 100s and
some groupings (“User Commands and “Subroutines”)
1000s of pages, thus mitigating the meaningfulness of
the categories.

With xman one can create “pseudosections” and
(re)group directories of pages into arbitrary sections.
For instance, one could collect together all Tcl/Tk- or
TeX-related pages in their own volume. Unfortunately,
besides being verbose, the specifications file that
describes the regroupings is mandatorily shared by all
who share the same man pages. One user cannot
regroup without forcing all users to see the same rear-
rangements.

In contrast, TkMan’s set of tkmandesc commands read
the specifications from a user’s individual startup file.
Control of volume reorganizations can be changed on a
user-by-user basis. (Actually, since tkmandesc com-
mands are ordinary Tcl code, one could source a com-
mon file of tkmandesc commands to share regroupings.)
Also, some combination of shared and individual com-
mands is possible.

Although user code can directly manipulate internal
data structures, it is better to operate through the tkman-
desc abstraction layer. The commands map better to
objects in the application ontology, and the implementa-
tion of the intensional tkmandesc commands can change
without affecting existing customization code.

The tkmandesc layer made possible a user-transparent
solution to a problem introduced with the full-text
searching package Glimpse [Manb94]. Usually pages
are indexed in their hierarchy so that Glimpse indexes,
though small, can be shared and thereby ammortized
across users. The question was where to index isolated
directories not part of any hierarchy. For performance
reasons, it would be better to index them as a group.
Because these isolated directories are added with
tkmandesc commands, it was trivial to amass a list of all

such isolated directories for Glimpse without any
changes required of existing tkmandesc code.

Manual page organization is slightly different on every
flavor of UNIX. Some vendors, for instance, ship only
preformatted versions of pages, and HP-UX stores the
pages in compressed files, but it is not the files that are
named with a compression suffix, it is the directory. In
most cases, it was possible to accomodate these varia-
tions without excessive stress on the code.

The exception was UNIX System V’s organization,
most prominently SGI’s IRIX, which uses the common
organization for user added manual pages, but stores
built-in pages under one and sometimes two levels of
indirection. To give one illustration, the audio-related
subroutines, which in usual organizations would be
placed in the directory /usr/man/man3 and mixed
with other subroutines, were placed in /usr/cat-
man/p_man/cat3/audio. Supporting this required
fairly extensive patching and led to a separate code path
maintained by the author of the patches, Paul Raines.
Unfortunately, now each new release of the software
meant adjustment of and reapplication of the patches
and a delay for SGI users.

With the introduction of tkmandesc customization com-
mands, however, Paul could make a one-time translation
of the patches into tkmandesc extension code. With its
well defined and supported interface to TkMan entry
points, this same extension code has, without modifica-
tion, served to customize TkMan for SGI machines on
all subsequent releases. Using Tcl as its own extension
language solved this portability crisis.

3.2 Saving state
By now it is common practice to save application state
as a sequence of Tcl commands (most of them set state-
ments, probably) that can be source’d back in to
restore this state. TkMan has refined this method in sev-
eral ways.

It is also common practice to introduce a namespace
into Tcl, though it relies on programmer discipline, by
adding a unique prefix to all global variables and proce-
dures in a module. TkMan entends this convention by
placing all persistent globals in an array named by the
prefix and the others in an array named prefixx (“x” for
“expire” or “extinguish”). Now, rather than maintaining
a list of variables to save, persistent variables are saved
by simply querying Tcl for the names of elements in the
persistent array and writing them out. There is no list of
persistent variables to maintain; a naming convention

and Tcl’s capacity for introspection generate the correct
results, guaranteed.

A similar trick calls each module’s save state command.
Because not all state is captured in variables, every
module that needs to save state contains a proc named
prefixSaveConfig. At application shutdown and at
checkpoints, the Tcl interpreter is dynamically queried
for all procs matching the pattern *SaveConfig
(using the info proc command), and each match is
executed with eval. Again, there is no list to maintain.

TkMan divides the startup file into a program-controlled
section that is rewritten at every save and a user-con-
trolled section that is copied verbatim each time. This
small, aesthetic improvement avoids cluttering the
user’s home directory, the traditional location location
for startup files, with two more files when one will do.

A final refinement concerns propagation of default val-
ues. Although the latest release of TkMan sports a
graphical Preferences editor for most options, not all
important state that the user might want to change is
available through it. For this reason, we write out every
interesting setting, each suggestively named as to its
function. This could cause problems with new releases
that change default values, as those changes would be
overridden by the settings in the startup file. The solu-
tion is to comment out all values that are identical to the
default values, reasoning that it is only those intension-
ally changed are evidence of user preference. The
mechanics are straightforward: after the application’s
default values have been set in the persistent array, a
loop through them sets parallel values in a “defaults”
array; at save time, the two values are compared and any
not changed by the user, either by the startup file or
interactively in Preferences, are preceded by a “#”.
Now changes in the default values propagate nicely.

3.3 tkchrom, a scriptable clock
TkMan is a sizable application, one significant enough
to justify an extension language by historical standards.
Now, any application written in Tcl has available a free
extension language, since Tcl can serve this purpose for
itself. This section describes how a tiny application
benefitted from this.

Olaf Heimburger’s xchrom graphical clock displays
time by a circular disc with a wedge that rotates at the
center of a sunburst pattern with twelve rays. At the
hour the wedge exactly outlines one ray; the closer the
next hour, the more of its wedge is outlined and the less
of the current hour. As an exercise, the current author

rewrote this Xt/Xmu-based clock in Tcl/Tk. It took a
mere 10% of the number of lines. On the other hand,
the new clock, called tkchrom [Phel], required one
megabyte of supporting libraries to run! For small
applications like this, shared libraries would be a great
relief.

If you’re going to pay for it, you may as well use it.
What can one do with a general purpose programing
language in a clock? Reminders, unrestricted remind-
ers. The user can place a set of pattern-action triggers in
a startup file. Once per minute tkchrom will step through
them trying to match the date and time, and for success-
ful matches, execute the action code—which is arbitrary
Tcl code. Certain “convenience variables” give access
to the clock’s internal state so that, for instance, the disc
can be yellow during the day, black at night, orange on
Halloween; or the clock can be erased in favor of a
reminder message. Of course, this unrestricted Tcl can
pop up dialog boxes, exec sound players, or send man
page requests to TkMan....

4. Application Configuration

The UNIX memory allocation command malloc
returns an error code because, as unlikely as it may
seem, it is possible for a program’s request for a 10K
block of memory to be unfulfillable by a system with
64MB of main memory and 100s of megabytes of vir-
tual memory. The advice below may seem to be asking
for guards against conditions that never happen in prac-
tice. In fact, every one of them has happened to me per-
sonally, and I think that it is advice useful in writing
programs that will be used by someone other than its
author.

4.1 Installation
If users never read the manual, installers never read the
Makefile. Especially if it requires specific knowledge of
the system, take this setting out of the Makefile and
instead determine the correct value at application runt-
ime if possible. This can also makes scripts portable
across architectures. Better still, write a graphical
installation tool such as found in exmh [Welc], which
can interrogate the environment at installation time. It
still may be wise to defer some checks to application
runtime, however, in order to dynamically customize the
script for different machines and to catch changes in the
environment since installation.

In particular, check for minimum required versions of
Tcl and Tk (mismatched versions do get linked
together), and since new major versions introduce
incompatibilities, check against maximum compatibile

versions. Check for the existence and executability of
all supporting binaries and scripts, which requires loop-
ing through the PATH environment variable. Assume
no software outside of the traditional core UNIX com-
mands, not even the most popular such as Perl. In fact,
not even traditional core binaries can be assumed: as a
case in point, OSF/1 discards troff. For software under
my control, I’ve found it useful to give each executable
a -v command line option that reports its version num-
ber. That way the dependent code can check that it has
sufficiently up to date supporting code, and that those
programs are actually executable (compiled for the right
machine architecture, et cetera). Although the popular
GNU software seems to have adopted a -V convention,
most standard UNIX utilities do not have version report-
ing option, unfortunately.

During runtime, do follow the old advice to check for an
error wherever one can occur. In my experience, errors
have occurred in trying to write a file to the user’s home
directory (no write permission!), and in another case,
after writing the file successfully, an error occurred
when trying to compress it (the disk filled up during
compression when both the original and the growing
partially-compressed version existed simultaneously).
Finally, if the script relies on environment variables,
check their validity. The one most important to TkMan,
MANPATH, which list all man directories to search for
pages, is typically built up piecemeal in the user’s login
scripts, and pieces are often empty, invalid (i.e., they
refer to a non-existent directory), or syntactically ill-
formed (e.g., a directory ends with a trailing slash, “/”).

To paraphrase Ben Bederson at the Tcl/Tk ’94 Work-
shop, “I’ll give you one minute to download the soft-
ware and one minute to install it. If it doesn’t work I’m
not interested.”

4.2 User preferences
Once the software has been installed, configuration is
not finished. The user will want to change the fonts,
colors, window sizes, icon, scrollbar side, and more. If
an author is serious about making this level of customi-
zation available to the user, he must write a graphical
Preferences editor. Experience shows that X resources
are simply too obscure to figure out by non-program-
mers, and even programmers will only pursue the most
annoying settings. Furthermore, X font names virtually
require a reference manual to specify. If nothing else,
an easy means to change the font size is invaluable for
demos.

After the changes are made, dynamically show the new
look by taking advantages of Tk’s introspective nature
to step through widget tree resetting fonts and colors,
and to repack widgets as necessary. Use these settings
with Tk’s option command during the startup
sequence to avoid an unnecessary widget traversal just
to set the correct values. Lastly ask Tk (wm geome-
try) for the window size and position and restore these
settings at the next application invocation.

5. Interoperating Tools

5.1 GUI-ifying existing text-based tools
TkMan aims to replace the system’s text-based man
command, to ignore man’s existence. This replacement
is required to provide some functionality, like tkman-
desc commands, and eliminates reliance on any particu-
lar OS variant of man, in effect bringing them all up to
the same level (adding automatic page text decompres-
sion, for example).

One might think that writing at the Tcl level would auto-
matically make the code portable across all platforms
that support the Tcl interpreter. But environment differ-
ences thwart this ideal. In writing Expect [Libe94a], its
author lamented that he had to implement “over 20
interfaces to handle ptys” [Libe94b] to accomodate the
differences among flavors of UNIX.

Although TkMan was largely successful in replacing
man, in two cases it had to rely on man to search for or
obtain the text of manual pages: when pages are stored
in a proprietary encoding and are therefore available
only through the supplied man; and when the MAN-
PATH changes frequently after TkMan startup, as when
packages are added and removed, thereby invalidating
the database. To support these two cases, TkMan drops
down to use the system man, at the cost of some func-
tionality.

Expect was designed to manage communication with
text-based processes, but in some cases if the other tool
was not designed for potential use by another program,
it is impossible to obtain satisfactory results. In the case
of man, some implementations provide a command line
option (-w) that lists the pathnames of all matching
names. TkMan can use this to provide a choice among
them in a pulldown list. Not considered by other man
implementations is the fact that not just the page text but
also this meta information may of use to other programs.
If man only supplies page text, TkMan does show that,
at the unavoidable loss of the choice among matches.

In short, some text-based tools—which were perhaps
implemented before the widespread use of graphical
interfaces—impose unnecessary limitations on authors
who wish to build on their work for the simple, easily
avoided reason that they do not expose essential infor-
mation with well defined interfaces.

5.2 Hypertools, step two
One should not make the same mistake with graphical
tools. If Tk’s send command is the first step toward
interoperating graphical tools, or “hypertools” [Oust93],
step two is a set of well defined and abstracted interface
functions for use by other programs. Do not assume that
the ultimate user of an application with a graphical
application is a human.

TkMan publishes interfaces for searching for and show-
ing a man page given its name specification (e.g.,
“text.t” means search for the page named “text” in sec-
tion “t”); for showing a page given its complete path-
name; and for the search proc itself (so that it can be
replaced by a call to man). These entry points are used
by Neil Smithline’s small, screen real estate conserving
type-in box (which is included in TkMan’s contrib
directory), and interoperability is planned for tkinfo
[Whit] and the jhelp/jdoc module of jstools [Seko].

These well defined entry points are useful internally as
well. Each of the many ways to specify a manual
page—type-in box, double click in text, double click in
volumes list, entry in history menu, entry in links menu,
entry in multiple matches choice list—calls the main
seach-and-show function. In addition, in order to show
freshly-added pages or pages not in the MANPATH, the
user can type in the full pathname, which of course sim-
ply invokes the corresponding public interface point.

More and more commercial software is published with
an application programming interface (API). One might
be tempted to think that because send can execute arbi-
trary Tcl code in the remote tool, “official” entry points
are less important. However, if hypertools are to con-
tinue their cooperation across code revisions, semanti-
cally meaningful interfaces to all important system
information are important.

6. Conclusions

Sometimes reading a list of coding do’s and don’ts
seems like reading a list of tautologies: “Structure your
code. Guard for errors wherever they can happen.” I
hope that my war stories with one Tcl application bring
them to life while sparing the pain of acquiring them
firsthand. Furthermore, I hope that solutions I devised

within the limitation Tcl as well as the opportunities I
exploited given the potentialities of Tcl can be put to use
by other Tcl/Tk authors in the production of higher qual-
ity software.

7. Acknowledgements

Comments from Michael Schiff, Adam Sah, and David
Berger materially improved this paper. I thank them.

In the development of the software, I acknowledge Paul
Raines for the SGI port, Rei Shinozuka for witty icon
shown above, and the legions from the net whose inter-
est in the software roused me to improve it for the bene-
fit of all, with the side dividend of a rich set of
interesting design problems for the author.

8. Availability

The code for TkMan is available from URL ftp://
ftp.cs.berkeley.edu/ucb/people/
phelps/tcltk/tkman.tar.Z. It requires the
manual page filter RosettaMan, available from ftp://
ftp.cs.berkeley.edu/ucb/people/
phelps/tcltk/rman.tar.Z. Releases of these
two programs are numbered; the addresses above link to
the latest stable versions. Also at that location is a tech-
nical report describing TkMan [Phel94a], which is an
earlier version of an X Resource article [Phel94b].

9. References

[Dema] Laurent Demailly. tcl_cruncher. Available
from ftp://ftp.aud.alcatel.com/tcl/code.

[Libe94a] Don Libes. Exploring Expect: A Tcl-based
Toolkit for Automating Interactive Pro-
grams. O’Reilly & Associates, Inc., Decem-
ber 1994.

[Libe94b] Don Libes. Private communication, Sep-
tember 1994.

[Manb94] U. Manber and S. Wu. Glimpse: A tool to
search through entire file systems. In Pro-
ceedings of the Usenix Winter 1994 Techni-
cal Conference, pages 23–32, January 1994.

[Phel] Thomas A. Phelps. tkchrom, a graphical
clock. Available at ftp://ftp.cs.berkeley.edu/
ucb/people/phelps/tcltk/tkchrom.

[Phel94a] Thomas A. Phelps. Domain-specific infor-
mation browsers for man page, file, and
font. Technical Report UCB/CSD 94-802,
University of California, Berkeley, 1994.

[Phel94b] Thomas A. Phelps. TkMan: A man born
again. The X Resource, 1(10):33–46, 1994.

[Seko] Jay Sekora. jstools. Available from ftp://
ftp.aud.alcatel.com/tcl/code.

[Shei] Barry Shein and Chris Peterson. xman. In-
cluded with the X Window System distribu-
tion.

[Welc] Brent Welch. exmh. Available at ftp://
ftp.parc.xerox.com/pub/exmh.

[Whit] Kennard White. tkinfo. Available at ftp://
ftp.aud.alcatel.com/tcl/code/tkinfo-
0.6.tar.gz.

