
[8] William C. Donelson. Spatial Management of Informa-
tion, Proceedings of 1978 ACM SIGGRAPH Conference,
203-209.

[9] Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner,
Jr, Seesoft - A Tool for Visualizing Line-Oriented Software
Statistics, IEEE Transactions on Software Engineering, 18
(11), 1992, 957-968.

[10] George W. Furnas, Generalized Fisheye Views, Proceed-
ings of 1986 ACM SIGCHI Conference, pp. 16-23.

[11] George W. Furnas and Benjamin B. Bederson, Space-
Scale Diagrams: Understanding Multiscale Interfaces,
Proceedings of ACM SIGCHI’95, in press.

[12] William C. Hill, James D. Hollan, David Wroblewski, and
Tim McCandless, Edit Wear and Read Wear, Proceedings
of ACM SIGCHI’92, pp. 3-9.

[13] William C. Hill and James D. Hollan, History-Enriched
Digital Objects, in press.

[14] James D. Hollan, Elaine Rich, William Hill, David Wrob-
lewski, Wayne Wilner, Kent Wittenburg, Jonathan Gru-
din, and Members of the Human Interface Laboratory. An
Introduction to HITS: Human Interface Tool Suite, in
Intelligent User Interfaces, (Sullivan & Tyler, Eds.), 1991,
pp. 293-337.

[15] James D. Hollan and Scott Stornetta, Beyond Being There,
Proceedings of ACM SIGCHI’92, pp. 119-125. (also
appeared as a chapter in Readings in Groupware and Com-
puter Supported Cooperative Work (Becker, Ed.), 1993,
842-848.

[16] Mackinlay, J.D., Robertson, G.G. and Card, S.K., The per-
spective wall: detail and context smoothly integrated. In
Proceedings of CHI’91 Human Factors in Computing Sys-
tems, ACM press, 173-179.

[17] John K. Ousterhout, Tcl and the Tk Toolkit, Addison Wes-
ley, 1994.

[18] Ken Perlin and David Fox. Pad: An Alternative Approach
to the Computer Interface, Proceedings of 1993 ACM
SIGGRAPH Conference, 57-64.

[19] Maureen C. Stone, Ken Fishkin, and Eric A. Bier. The
Movable Filter as a User Interface Tool, to appear in Pro-
ceedings of ACM SIGCHI’94.

[20] Ivan E. Sutherland. Sketchpad: A man-machine graphical
communications systems, Proceedings of the Spring Joint
Computer Conference, 1963, 329-346, Baltimore, MD:
Spartan Books.

 • Spatial Indexing: Objects are stored internally in a
hierarchy based on bounding boxes which allow fast
indexing to visible objects.

 • Clustering: Pad++ automatically restructure the
hierarchy of objects to maintain a balanced tree
which is necessary for the fastest indexing.

 • Region Management: Only update the portion of
the screen that has been changed. When modifying
objects, this means all places an object is visible (i.e.,
within multiple portals) must be updated. Linked
with refinement, this allows different areas of the
screen to refine separately.

 • Refinement: Render fast while navigating by using
lower resolution, and not drawing very small items.
When the system sits still for a short time, the scene
is successively refined, until it is drawn at maximum
resolution

 • Level-Of-Detail: Render items differently depend-
ing on how large they appear on the screen. If they
are small, render them with lower resolution.

 • Image Caching: Store zoomed images in a special
cache. Since magnifying images is computationally
expensive, we cache them, and then use the cache
when rendering the image if it doesn’t change size.

 • Clipping: Only render the portions of large objects
that are actually visible. This applies to images and
text.

 • Adjustable Frame Rate: Animations and zooming
maintain constant perceptual flow, independent of
processor speed, scene complexity, and window
size. This is accomplished by rendering more or
fewer frames, as time allows.

 • Interruption: Slow tasks, such as animation and
refinement, are interrupted by certain input events
(such as key-presses and mouse-clicks). Animations
are immediately brought to their end state and refine-
ment is interrupted, immediately returning control to
the user.

 • Ephemeral objects: Certain objects that represent
large disk-based datasets (such as the directory
browser) can be tagged ephemeral. They will auto-
matically get removed when they have not been ren-
dered for some time, and then will get reloaded if
they become visible again.

CONCLUSION
We implemented Pad++, a zoomable graphical interface

substrate, focusing on efficiency and extensibility. We are
using Pad++ to explore new interaction mechanisms
made possible by zooming. By implementing several effi-
ciency mechanisms acting in concert, we are able to
maintain high frame-rate interaction with very large data-
bases.

AVAILABILITY
We intend to make Pad++ freely available for non-com-
mercial use. See “http://www.cs.unm.edu/pad++” for cur-
rent information (the Pad++ project home page).

ACKNOWLEDGEMENTS
This work was supported in part by ARPA grant
N660011-94-C-6039 to the University of New Mexico.

We would like to thank several members of the NYU
Media Research Laboratory with whom we are collabo-
rating on this project. This includes Ken Perlin, Jon
Meyer, David Bacon, and David Fox. We also would like
to acknowledge members of the Computer Graphics and
Interactive Media Research Group at Bellcore, including
George Furnas and Kent Wittenburg.

REFERENCES
[1] Benjamin B. Bederson and James D. Hollan, Pad++: A

Zooming Graphical Interface Widget for Tk, in Proceed-
ings of the 1994 TCL/TK Workshop, 73-84.

[2] Benjamin B. Bederson, James D. Hollan, et. al., Pad++: A
Zoomable Graphical Sketchpad for Exploring Alternate
Interface Physics, Journal of Visual Languages and Com-
puting (in Press).

[3] Benjamin B. Bederson, Larry Stead, and James D. Hollan,
Pad++: Advances in Multiscale Interfaces, Proceedings
of ACM SIGCHI Conference (CHI’94), 315-316.

[4] Benjamin B. Bederson and James D. Hollan, Pad++: A
Zooming Graphical Interface for Exploring Alternate
Interface Physics, Proceedings of ACM Symposium on
User Interface Software and Technology (UIST’94), 17-
26.

[5] Eric A. Bier, Maureen C. Stone, Ken Pier, William Bux-
ton, and Tony D. DeRose. Toolglass and Magic Lenses:
The See-Through Interface, Proceedings of ACM SIG-
GRAPH Conference (Sigraph’93), 73-80.

[6] Stuart K. Card, George G. Robertson, and Jock D. Mack-
inlay. The Information Visualizer, an Information Work-
space, Proceedings of ACM Human Factors in Computing
Systems Conference (CHI‘91), 181-188.

[7] Bay-Wei Chang and David Ungar, Animation: From Car-
toons to the User Interface, in Proceedings of 1993 ACM
User Interface and Software Technology Conference
(UIST’93), pp. 45-55.

der, crossing a pre-defined threshold. These are typi-
cally used for creating efficient semantically
zoomable objects. Since many objects do not change
the way they look except when crossing size borders,
it is more efficient to avoid having scripts evaluated
except for when those borders are crossed.

Extensions
Pad++ may be extended entirely with Tcl scripts (i.e., no
C/C++ code). This provides a mechanism to define new
Pad++ commands as well as compound object types that
are treated like first-class Pad++ objects. That is, they can
be created, configured, saved, etc. with the same com-
mands you use to interact with built-in objects, such as
lines or text. These extensions are particularly well-suited
for widgets, but can be used for anything.

Extensions are defined by creating Tcl commands with
specific prefixes. Each extension is defined by three com-
mands which allow creation, configuration, and invoca-
tion of the extension, respectively. Defining the
procedures automatically makes them available to Pad++.
No specific registration is necessary. All three procedure
definitions are necessary for creation of new Pad++
object types, but it is possible to define just the command
procedure for defining new commands without defining
new object types.

While object type extensions may consist of compound
objects, there must be a single control object that is used
to access the others. This is often a portal looking onto the
other objects on an unmapped Pad++ surface. For exam-
ple, standard widgets such as buttons and entries are
defined this way. These are similar to other Tcl/Tk exten-
sions called MegaWidgets except that these act on items
within the Pad++ widget, rather than on standard Tk wid-
gets.

Extensions are defined with the following commands,
where <extension> refers to the name of the extension
(such as ‘button’), and the words inside braces are the
command’s arguments. Note that some of these com-
mands are required to follow certain return argument con-
ventions.

 • padcreate_<extension> {PAD}

This procedure gets called when <extension> is cre-
ated with the create command. It takes a single argu-
ment, PAD which is the name of the Pad++ surface
to create the object on. The only requirement of this
function is that it must return the id of the single
object to be referred to for this extension.

 • padconf_<extension> {PAD id option ?value?}

This procedure gets called with option-value pairs

when <extension> is created and when it is config-
ured with the itemconfigure command. It takes three
or four arguments. PAD is the name of Pad++ sur-
face the object is on. id is the object’s reference id.
option is the option being configured. If value is not
specified, then this function must return the current
value of this option. If value is specified, then this
function should change this option to the specified
value, and return the current value.

The other requirement of this function is that if
option is not specified (i.e., it is called with too few
arguments), it must return an error with a return
value of the list of legal options.

 • padcmd_<extension> {PAD option ?args...?}

This procedure gets called when <extension> is exe-
cuted as a Pad++ command. This allows an exten-
sion object to define arbitrary sub-commands. For
example, executing “pathName <extension> invoke
myWidget” would call this procedure with PAD
bound to “pathName”, option bound to “invoke”,
and the first argument of args bound to “myWidget”.
Note that this command may be defined without cre-
ation and configure commands in order to make
generic command extensions without widgets. This
command has no return requirements.

Animation
Pad++ has several methods for producing animations.
The moveTo command animates the view of the surface
to any new point in a specified time. Individual objects
can be animated with either render or timer callbacks.
Finally, panning and zooming is animated under user-
control, defined by Tcl scripts.

All automatic animations use slow-in-slow-out motion
[7]. This means that the motion starts slowly, goes
quicker in the middle, and ends slowly - resulting in
smoother feeling animations. This does not affect the
time the animation takes because time is effectively sto-
len from the middle to put at the ends. User-controlled
animations are specified precisely by the user, and there is
no distortion of the motion speed.

Efficiency
In order to keep the animation frame-rate up as the
dataspace size and complexity increases, we implemented
several standard efficiency methods, which taken together
create a powerful system. We have successfully loaded
over 600,000 objects (with the directory browser) and
maintained interactive rates of about 10 frames per sec-
ond.

Briefly, the implemented efficiency methods include:

Searching Protocol), and the second is intercepting
the event as it passes through the portal (PortalInter-
cept events).

When an event hits an item and there are no event
handlers defined for that item, there is a well-defined
event searching protocol that specifies which other
items will be searched for event handlers. Every item
has a list of items which catch events for it. This list
of items is known as the list of event catchers. When
an item doesn’t have an event handler, its event
catchers are checked. If none of the event catchers
have an appropriate event handler, and if the event
went through a portal, then the portals and their event
catchers are checked for event handlers. Finally, the
Pad++ surface itself is checked. The portals are
checked from the bottom up, that is, in the reverse
order that event went through the portals. To summa-
rize, the searching order is as follows:

1. Most specific object

2. Objects associated by tag (“all” being last)

3. Event catchers (and associated tag objects)

4. Portals (and associated tag objects and event
catchers)

5. Pad++ surface that object is on

 • PortalIntercept event

Portals can intercept events as the events pass
through them with the PortalIntercept event. Por-
talIntercept is a new event sequence recognized by
the Pad++ bind command. PortalIntercept event han-
dlers get called for every event that passes through a
portal in top down order. They do not replace other
event handlers, but instead get called before those
handlers. A PortalIntercept command may execute
any code, and then it can return a special value that
can modify the event. The modifications include kill-
ing the event, stopping the event at the portal rather
than passing it through, changing the list of active
modes on the surface the event hits for this event,
and changing the coordinates of the event.

 • Passing Events

When an event is fired, it is often useful to pass the
event on to the next most general event handler. This
is most commonly used to have a single event trigger
the event handlers for specific items as well as
classes of items.

Messages
Items can send arbitrary messages to other items or

groups of items. This message sending facility is analo-
gous to the Event mechanism, including the Searching
Protocol and passing mechanism.

When a message is sent within a render callback (see
below), the message is automatically sent through the list
of portals that the current object is being rendered
through. This allows the Event Searching protocol to
apply to messages. This portal list is overridable.

Callbacks
In addition to the event bindings that every item may
have, every Pad++ item can define Tcl scripts associated
with it which will get evaluated at special times. There
are three types of these callbacks:

 • Render Callbacks

A render callback script gets evaluated every time
the item is rendered. The script gets executed when
the object normally would have been rendered. By
default, the object will not get rendered, but the script
may call the renderItem function at any point to ren-
der the object. An example follows where item num-
ber 22 is modified to call the Tcl procedures
beforeMethod and afterMethod surrounding the
object’s rendering.

.pad itemconfig 22 -renderscript {
beforeMethod
.pad renderItem
afterMethod

}

Instead of calling the renderItem command, an object
can render itself. Several rendering routines are
available to render scripts, making it possible to
define an object that has any appearance whatsoever.
We call these procedural objects.

Procedural objects can be used for creating animated
objects (those that change the way they look on
every render) and custom objects. They also can be
used to implement semantically zoomable objects,
since the size of an object is available within the call-
back.

 • Timer Callbacks

A timer callback script gets evaluated at regular
intervals, independent of whether the item is being
rendered, or receiving events.

 • Zooming Callbacks

Zooming callback scripts are evaluated when an item
gets rendered at a different size than its previous ren-

Portals can also be used to create indices. Creating a por-
tal that looks onto a hyperlink allows the hyperlink to be
followed by clicking on it within the portal - which
changes the main view. This however, will probably
move the hyperlink off the screen. We can solve this
problem by making the portal (or any other object for that
matter) sticky, a method of keeping the portal from mov-
ing around as the user pans and zooms. Making an object
sticky effectively lifts it off the Pad++ surface and sticks
it to the monitor glass. Thus, clicking on a hyperlink
through a sticky portal brings you to the link destination,
but you don’t lose the portal index, and thus, it can con-
tinue to be used.

Lenses
Designing user interfaces is typically done at a low level,
deciding on user interface components, rather than on the
task at hand. If the task is to enter a number into the com-
puter, we should be able to place a generic number entry
mechanism in the interface. However, typically, the spe-
cific number entry widget, such as a slider or dial, is
decided on, and it is fixed in the interface.

We can use lenses to design interfaces at the task level.
For example, we’ve designed a set of number entry lenses
for Pad++ that can change a generic number entry mecha-
nism into a slider or dial, as the user prefers. For example,
by default the generic number entry mechanism might
allow entering a number by typing. However, dragging
the “slider” lens over it changes the representation of the
number from text to a slider, and now the mouse can be
used to change the number. Another lens shows the data
as a dial and lets you modify that with a mouse as well.

More generally, lenses are objects that alter the look and
interaction of components seen through them. They can
be dragged around the Pad++ surface examining existing
data. For example, some data might normally be depicted
by some columns of numbers. However, looking at the
same data through a lens could show that data as a scatter
plot, or a bar chart (see Figure 1).

We think this can be a useful teaching aid as it helps to
make the notion that there can be multiple representations
of the same underlying data more intuitive. For example,
if the slider lens only partially covers the text number
entry widget, then modifying the underlying number with
either mechanism (text or mouse), modifies both. So typ-
ing in the text entry moves the slider, and vice versa.

Semantic Zooming
Once we make zooming a standard part of the interface,
many parts of the interface need to be re-evaluated. For
example, we can use semantic zooming to change the
way things look depending on their size. As we men-

tioned, zooming provides a natural mechanism for repre-
senting abstraction of objects. It is natural to see extra
details of an object when zoomed in and viewing it up
close. When zoomed out, instead of simply seeing a
scaled down version of the object, it is potentially more
effective to see a different representation of it.

For example, we implemented a digital clock that at nor-
mal size shows the hours and minutes. When zooming in,
instead of making the text very large, it shows the sec-
onds, and then eventually the date as well. Similarly,
zooming out shows just the hour. An analog clock (we
implemented by dragging a lens over the digital clock) is
similar - it doesn’t show the second hand or the minute
markings when zoomed out.

IMPLEMENTATION
The Tcl interface to Pad++ is designed to be very similar
to the interface to the Tk Canvas widget (which provides
a surface for drawing structured graphics). While Pad++
does not implement everything in the Tk Canvas yet, it
adds many extra features. Some of the significant differ-
ences between Pad++ and the Canvas widget are summa-
rized here.

Events
As with the Canvas, it is possible to attach event handlers
to items on the Pad++ surface so that when a specific
event (such as ButtonPress, KeyPress, etc.) hits an item,
that item’s event handler gets evaluated. This system
operates much as it does with the Tk Canvas widget, but
there are several significant additions:

 • Modes

Every event handler is defined for a specific mode.
The mode is a simple text string and defaults to
all. The Pad++ surface has a set of active event
modes associated with it (that always includes the
all mode). Only those event handlers whose mode
is currently active will be fired. This allows the cre-
ation of many different event handlers that are select-
able by setting the Pad++ mode.

This might be used in a drawing application where
pressing a button on a tool palette causes the left
mouse button to have a different function. With
modes, all the event handlers can be defined once,
and pressing buttons on the tool palette simply
changes the Pad++ surface mode.

 • Event Searching Protocol

There are two mechanisms that allow portals to
change the way users interact with items through
portals. The first is by inheritance of events (Event

Motivation
If interface designers are to move beyond windows,
icons, menus, and pointers to explore a larger space of
interface possibilities, additional ways of thinking about
interfaces that go beyond the desktop metaphor are
required. There are myriad benefits associated with meta-
phor-based approaches, but they also orient designers to
employ computation primarily to mimic mechanisms of
older media. While there are important cognitive, cul-
tural, and engineering reasons to exploit earlier successful
representations, this approach has the potential of
underutilizing the mechanisms of new media.

The exploration of virtual 3D worlds is one alternative. It
follows quite naturally from traditional direct manipula-
tion approaches to interface design and involves similar
underlying metaphors, although they are enriched by the
greater representational possibilities afforded by moving
to richer 3D worlds. We are not pursuing 3D worlds
because we feel that two dimensional interfaces have
much to offer and have not yet been fully tapped. Some
recent work at Xerox Parc [6][16], though, shows some
of the potential of 3D interfaces.

Pad++, based on a spatial information structure, is based
on a long history of related work. Many ideas in this area
are based on work by Sutherland [20], where he demon-
strated the first interactive graphical computer system.
Perhaps the first work to try to tap people’s natural spatial
abilities was Donelson [8], where he developed an inter-
face based on interaction with an entire room linking
voice and gesture to control access to spatially situated
data.

The use of new metaphors to motivate interface research
has directed several researchers. Hill and Hollan have
been exploring the notion of history-enriched digital
objects [12][13][15]. This is the notion that an object’s
representation should be a natural by-product of normal
activity. This is similar to the physics of certain materials
that show wear associated with use. Such wear records a
history of use and at times can influence future use in pos-
itive ways. Used books crack open at often referenced
places. Frequently consulted papers are at the tops of
piles on our desks.

This motivating strategy has lead us to explore new meth-
ods for interacting with graphical data. As part of that
exploration we have formed a research consortium to
design a successor to Pad [18]. This new system, Pad++
[1][2][3][4], serves as a substrate for exploration of novel
interfaces for information visualization and browsing in
complex information-intensive domains. The system is
being designed to operate on platforms ranging from
high-end graphics workstations to PDAs (Personal Digi-
tal Assistants) and interactive set-top cable boxes.

Today there is much more information available than we
can readily and effectively access. The situation is further
complicated by the fact that we are on the threshold of a
vast increase in the availability of information because of
new network and computational technologies. Paradoxi-

cally, while we continuously process massive amounts of
perceptual data as we experience the world, we have per-
ceptual access to very little of the information that resides
within our computing systems or that is reachable via net-
work connections. In addition, this information, unlike the
world around it, is rarely presented in ways that reflect
either its rich structure or dynamic character.

We address the information presentation problem of how
to provide effective access to a large structure of informa-
tion on a much smaller display. Furnas [10] explored
degree of interest functions to determine the information
visible at various distances from a central focal area.
There is much to recommend the general approach of pro-
viding a central focus area of detail surrounded by a
periphery that places the detail in a larger context. More
recent work has shown other approaches to address the
local detail versus global context problem [11][16]. Eick
visualizes large software packages by representing each
line of code with just a few pixels on the display, using
color to represent various kinds of information, such as
author, date of creation, and number of modifications [9].

With Pad++ we have moved beyond the simple binary
choice of presenting or eliding particular information. We
can also determine the scale of the information and, per-
haps most importantly, the details of how it is rendered
can be based on various semantic and task considerations
that we describe below. This provides semantic task-
based filtering of information that is similar to the early
work at MCC on lens-based filtering of a knowledge base
using HITS [14] and the recent work of moveable filters
at Xerox [5][19].

The ability to make it easier and more intuitive to find
specific information in large dataspaces is one of the cen-
tral motivations behind Pad++. The traditional approach
is to filter or recommend a subset of the data, hopefully
producing a small enough dataset for the user to effec-
tively navigate. Pad++ is complementary to these filtering
approaches in that it is a useful substrate to structure
information.

Portals
Portals are special items that allow you to look onto other
areas of the Pad++ surface, or even other surfaces. Each
portal passes events to the place it is looking. Thus, you
can pan and zoom within a portal. In fact, you can per-
form any kind of interaction on the Pad++ surface
through a portal. Portals can filter input events as they
pass through the portal, providing a mechanism for
changing the semantics of interactions with objects when
viewed through a portal. Portals can also change the way
objects look. When used in this fashion, we call them
lenses (see below).

Portals can be used to duplicate information efficiently,
and also provide a method to bring physically separate
data near each other. Portals can be created near each
other, each looking at places far away.

URL: http://www.cs.unm.edu/pad++

KEYWORDS
Interactive user interfaces, multiscale interfaces, zoom-
able interfaces, authoring, information navigation, hyper-
text, information visualization, information physics.

ABSTRACT
We describe Pad++, a zoomable graphical sketchpad that
we are exploring as an alternative to traditional window
and icon-based interfaces. We discuss the motivation for
Pad++, describe the implementation, and present some of
the differences between Pad++ and the standard Tk Can-
vas widget.

INTRODUCTION
Imagine that the computer screen is made of a sheet of a
miraculous new material that is stretchable like rubber,
but continues to display a crisp computer image, no mat-
ter what the sheet’s size. Imagine that this sheet is very
elastic and can stretch orders of magnitude more than
rubber. Further, imagine that vast quantities of informa-
tion are represented on the sheet, organized at different
places and sizes. Everything you do on the computer is on
this sheet. To access a piece of information you just
stretch to the right part, and there it is.

Imagine further that special lenses come with this sheet
that let you look onto one part of the sheet while you have
stretched another part. With these lenses, you can see and
interact with many different pieces of data at the same
time that would ordinarily be quite far apart. In addition,
these lenses can filter the data in any way you would like,
showing different visual representations of the same
underlying data. The lenses can even filter out some of
the data so that only relevant portions of the data appear -
perhaps those satisfying some search criteria.

Imagine also new kinds of stretching that provide alterna-
tives to scaling objects purely geometrically. For exam-
ple, instead of representing a page of text so small that it
is unreadable, it might make more sense to present an
abstraction of the text - perhaps just a title that is readable.
Similarly, when stretching out a spreadsheet, instead of
showing huge numbers, it might make more sense to

show the computations from which the numbers were
derived.

The beginnings of an interface like this sheet exists today
in a program we call Pad++. We don’t really stretch a
huge rubber-like sheet, but we simulate it by zooming into
the data. We use what we call portals to simulate lenses,
and a notion we call semantic zooming to scale data in
non-geometric ways. The user controls where they look
on this vast data surface by panning and zooming. Portals
are objects on the Pad++ data surface that can see any-
where on the surface, as well as filter data to represent it
differently than it normally appears.

Panning and zooming is an approach to navigate through
a large information space via direct manipulation. By tap-
ping into people’s natural spatial abilities, we hope to
increase users’s intuitive access to information. Of course,
traditional computer search techniques are also available,
but they produce an automatic animation to the area with
the desired data - bridging traditional and new interface
metaphors.

Figure 1These lenses shows textual data as scatter plots
and bar charts.

Advances in the Pad++ Zoomable Graphics Widget

Benjamin B. Bederson and James D. Hollan
Computer Science Department

University of New Mexico
Albuquerque, NM 87131

bederson@cs.unm.edu, hollan@cs.unm.edu

The following paper was originally presented at the
Third Annual Tcl/Tk Workshop

sponsored by Unisys, Inc. and USENIX Association
Toronto, Ontario, Canada, July 1995.

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Advances in the Pad++ Zoomable Graphics Widget

Benjamin B. Bederson and James D. Hollan
Computer Science Department

University of New Mexico
Albuquerque, NM 87131

