
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

S U P P O R T I N G I N F O R M AT I O N AWA R E N E S S
U S I N G A N I M AT E D W I D G E T S

D. Scott McCrickard and Q. Alex Zhao

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Supporting Information Awareness

Using Animated Widgets

D. Scott McCrickard Q. Alex Zhao

Graphics, Visualization, and Usability Center

and College of Computing

Georgia Institute of Technology

Atlanta, GA 30332-0280

fmccricks,azhaog@cc.gatech.edu

Abstract

This paper describes a Tcl/Tk widget set
extension that supports three animated be-
haviors: fading, tickering, and rolling. This
extension is targeted for use in informa-
tion awareness applications that monitor and
communicate constantly changing informa-
tion. Described is the programming interface
for the widgets as well as the design deci-
sions made in creating them and programs
that use them. Introduced in the descrip-
tion are two new techniques called automatic
markups and history-based shadowing, high-
lighting techniques used to identify and com-
municate the nature of the changes.

1 Introduction

What is animation? Baecker and Small de-
scribe it as \sequences of static images chang-
ing rapidly enough to create the illusion of
a continuously changing picture" [1]. It has
been used to generate emotion, to provide en-
tertainment, and, of interest in this paper, to
communicate information.

One domain where animation may prove
useful is information awareness, the need to
stay aware of changes to information while
accomplishing other tasks. Consider the ever-
expanding pool of constantly changing infor-
mation that is readily available on the In-
ternet and World Wide Web. Stock prices
climb and fall, news bulletins arrive, email
queues grow, ball teams score points, and the
weather changes. While people care about
this information, their primary focus is gen-

erally on more important tasks: editing doc-
uments, programming code, or other job-
related activities.

We feel that gradual and repetitive anima-
tion can be used to create useful and usable
information awareness applications. By an-
imating large amounts of information in a
small space, the remaining space can be used
for other applications. Changes to the infor-
mation can be integrated gradually into the
display in the next iteration, minimizing the
disturbance to the user. Constantly cycling
through the entire information space lessens
the number of physical interactions required
to obtain the information { rather than hav-
ing to press a series of buttons or keys to get
information, the user need only wait for it to
cycle through.

To provide easy creation and use of ani-
mated e�ects we have integrated animation
support into Tcl/Tk via three widgets. We
focused on three e�ects that seem to meet
the criteria discussed earlier: the fade wid-
get cycles between items of text, bitmaps, or
images, the ticker widget scrolls information
horizontally across the screen, the roll wid-
get scrolls information vertically. Section 2
describes the widgets in more detail.

In creating an animated widget set, numer-
ous design decisions had to be made, not the
least of which is the choice of a language.
The Web-aware nature of Tcl combined with
its powerful string parsing capabilities makes
it a good choice for information monitor-
ing applications. The easily extensible wid-
get set and well-de�ned programming inter-

face of the Tk toolkit provide a good frame-
work for the implementationof animated wid-
gets. Section 3 outlines selected implementa-
tion details made in constructing animated
widgets, including more reasons behind our
choice of Tcl/Tk as the implementation lan-
guage.

While animation has many potential bene-
�ts, it has several drawbacks as well. Anima-
tion is often seen as distracting or annoying
because of its constant motion and rapid vi-
sual changes. Our widget set addresses this
problem by giving both the programmer and
the end-user signi�cant power over the an-
imation. Another problem with animation
speci�c to awareness is that it can be di�-
cult to see where changes occur and what the
previous states of information was. By aug-
menting the display using information from
previous states with techniques we call auto-
matic highlighting and history-based shadow-
ing, we attempt to lessen the e�ects of these
problems. Section 4 describes in detail our
solutions.

Our animated widgets have been available
and in use for over a year. The animated wid-
gets have been used by over �fty programmers
in a variety of information awareness appli-
cations, and some of the programs have been
used by more than a hundred users. Section
5 discusses some guidelines for writing infor-
mation awareness applications based on feed-
back from both programmers and users.

Overall, we believe that animation is an
important technique to have available in a
user interface toolkit, and Tcl/Tk is an ap-
propriate language in which to include ani-
mation. This paper describes the behavior
of the Agentk animated widgets and explores
some of the design decisions made in creating
them.

2 Animated widgets in the
Agentk toolkit

Animation has the potential to enhance the
awareness capabilities of interfaces. Our
Agentk toolkit contains several interface wid-
gets intended to make it easy for program-
mers to design awareness applications and
easy for people to use them in maintaining

awareness of changing information.

Animated widgets are a subclass of mega-
widgets, a collection of widgets that are op-
erated using a single interface. For example,
the LabelText mega-widget in the Tix library
provides a single interface to a label widget
and an entry widget [8]. Just as mega-widgets
augment the power and ease of use of wid-
gets by packaging several of them together as
a single new widget, animated widgets aug-
ment the behavior of a widget by constantly
changing its appearance at regular intervals.

Agentk is a widget toolkit designed to as-
sist in the creation of agent-like programs
such as the information awareness applica-
tions discussed earlier. Agentk contains three
animated widgets: the fade widget, the ticker
widget and the roll widget. The fade wid-
get fades between multiple blocks of text,
bitmaps, or graphical images. It can be used
when the blocks of information have a �xed
height and width. The ticker widget hori-
zontally scrolls or \tickers" a stream of text.
It can be used for variable length streams of
text. The roll widget scrolls text vertically.
It is well suited for ordered lists of items.

The programming interface for the fade,
ticker, and roll widgets is identical to that
for labels, scrollbars, or any other wid-
get: the programmer speci�es the widget
creation command (ex. label, scrollbar,
fade), the position in the display tree
(.fader, .dialog.ok), and possibly some op-
tions (-width 50, -fg red, -shadowhistory

yes). The options include all those of the
standard label widget used to display static
text and images, as well as additional options
that allow a programmer to show the con-
tents of more than one variable and to con-
trol aspects of the animation. In so doing, we
provide a programming interface that can be
easily understood by a Tcl/Tk programmer.

2.1 Fade widget

Rapid changes in the appearance of a wid-
get often attracts the user's attention to the
widget. While this is advantageous in many
situations, it could be detrimental in an in-
terface where the users' attention is primar-
ily focused on other tasks. Instead, we need a

Figure 1: A time-lapse series of the fade widget for two images. Rather than perform compute-
intensive calculations to achieve a fading effect, the original image is broken into pieces, and the
pieces of the original are gradually replaced with pieces of the final.

widget that can change continuously to match
the large and dynamic information space but
will change gradually to avoid interrupting
the everyday tasks of the user.

The fade widget displays multiple blocks
of either text, bitmaps, or graphical images
within a given space by gradually fading be-
tween them. We expect that the gradual
change will be less distracting than a sud-
den switch yet will allow multiple information
blocks to be displayed in a single area. The
speed with which the fade occurs can vary
depending on the nature of the application:
if the widget is designed to attract attention
and can be easily stopped by the user, a quick
fade might be used, while a secondary display
designed to run all the time might call for a
slower, less intrusive fade.

The following lines of code give an example
of the fade widget displayed in Figure 1.

set i1 [image create photo -file buzz.gif]

set i2 [image create photo -file eye.gif]

fade .f -width 100 -height 100 \

-imagevariable [list i1 i2]

pack .f

.f run

The �rst two lines create two images that are
to be faded (actually stippled) in and out. If
the values of the variables are changed later,
the new images will fade in on the next it-
eration. The third line creates the widget
to display the information contained in the
variables i1 and i2. Unlike the textvariable
option for other widgets, the fade widget sup-
ports a list of variables, fading between each
in the list.

2.2 Ticker widget

The ticker widget provides a ticker-tape-style
display that scrolls or \tickers" text across
the screen. As with the fade widget, a gradual

Figure 2: A news agent that incorporates a
fading widget (top right) and tickering wid-
get (bottom right) to alert the user of new
stories.

tickering can be less distracting than a sud-
den switch. The ticker widget has the added
advantage that a stream of text could be any
length since it never needs to be displayed in
its entirety at any given time.

In addition, we take advantage of the natu-
ral reaction to grab and pull the ticker widget
to make it slow down, stop, back up, or move.
When users click and hold down the mouse
button within the widget, they can manipu-
late the information to move in the desired
direction and speed. By providing this func-
tionality, the user has more control over the
way in which the information is displayed.

The following lines of code gives an exam-
ple of the ticker widget.

ticker .t -width 100 \

-textvariable [list u1 u2 u3]

pack .t

.t run

The �rst line creates a 100-character-wide
widget that is con�gured to display the infor-
mation in the variables u1, u2, and u3. The
second line packs the ticker widget just as any
other widget would be packed, and the third
line begins the tickering process.

The ticker widgets have been used in appli-
cations to show article headers which, unlike
sports scores or stock quotes, can vary widely
in length. Figure 2 shows an interface where

the ticker widget has been used.

2.3 Roll widget

The roll widget \rolls" or vertically scrolls
text across the screen. It seems best suited
for a list of items or a columns of information
where the order and position of the informa-
tion is important. The ordering of the list
and the positioning of the columns is more
apparent in the roll widget than in a ticker or
fade widget. As with the ticker widget, the
user can grab, hold, and move the roll widget
to alter the visible information.

Consider the following quick-and-dirty ex-
ample for monitoring a printer queue on a
Unix system.

roll .r -width 60 -height 6 \

-justify left -font fixed

pack .r

.r run

proc checkq {} {

.r configure -text [exec lpq]

after 20000 checkq

}

checkq

The �rst line creates a roll widget that is six
lines high and 60 characters wide. The text
is left justi�ed and the font is �xed to en-
sure that the columns will line up. The sec-
ond and third lines pack the widget and start
it running. The checkq procedure repeatedly
checks the contents of the printer queue using
the Unix lpq command and con�gures the roll
widget to reect the results of this command.
Figure 3 shows the result of this script.

System administrators could use this short
script to keep an eye on buggy printers or to
watch for printer misuse. A user who is print-
ing many documents over a short period of
time could extend the script to watch several
printers at once to know at any time which is
the least busy.

2.4 Options, subcommands, and
bindings

This section describes the subcommands, op-
tions, and bindings for the Agentk animated
widgets.

A subcommand is a command that is avail-
able within a widget command. For example,
all Tcl/Tk widgets (including the animated
widgets) support the configure subcommand
for querying and altering the widget options.
Animated widgets additionally support the
following subcommands:

� run command starts the animation e�ect
for the widget.

� pause command pauses the animation
until the run command is reissued.

� jump (fade only) jumps to the next item
in the fade display list.

A con�guration option alters the behavior
and appearance of a widget. Common op-
tions include -geometry, -font, and -width.
The following are some selected options that
are available with the animated widgets.

� -speed indicates the speed with which
the animation runs.

� -delay (fade only) is the delay in mil-
liseconds before an item that has faded
in begins to fade out.

� -text[variable], -bitmap[variable],
and -image[variable] control the in-
formation that appears in the widget.
When the value is changed, the new in-
formation animates into view as the old
information disappears. For the variable
options (such as -textvariable), the
contents of each variable are animated
on the screen. Only one of these options
can be used for any given widget (the
variable options have highest prece-
dence, and images take precedence over
bitmaps, and bitmaps over text).

� -separator contains a sequence of char-
acters that separate entries in the
ticker and roll widgets. This option
is overridden by -separatorbitmap or
-separatorimage, which can contain a
bitmap or image separator.

� -markupstyle indicates a typeface
markup (either bold, italic, or a color)
used to highlight changes in informa-
tion. Thus, if new text appears and the

Figure 3: A roll widget that displays the contents of a printer queue. The information is rolled
vertically across the screen. The user can grab and move the display if desired and can throw
(drag and release) it to adjust the speed.

markupstyle is set to red, the new text
will be red. To end the highlighting,
-markupcount can be set to a number
of iterations or -markuptimeout can be
set to a length of time after which the
markups will disappear. Section 4.1
talks more about automatic markups.

� -shadowhistory (a boolean) indicates
whether history-based shadowing should
be enabled. If it is, previous states of
the displayed information (text only) are
shown using a shadow e�ect. See Fig-
ure 5 for an example. -shadowcount and
-shadowtimeout can be used to remove
the shadowing after some number of it-
erations or some length of time. Section
4.2 talks more about history-based shad-
owing.

� -throw (a boolean) indicates whether
speed should be adjusted when user
\throws" a ticker or roll widget; that is,
drags and releases it.

� -drive synchronizes widgets of the same
type so that they will run in lock step.
For example, the two fade widgets in Fig-
ure 4 must always run together as one
widget shows images and the other shows
labels for the images. As one drives the
other, each step in the two fades will
be calculated and displayed at the same
time.

Bindings de�ne the behavior when certain
actions are performed by a user on a wid-
get. Below are the default bindings. A pro-
grammer can tailor the bindings based on the
needs of their applications.

� ButtonPress binding stops the animation
e�ect. Users who want to read the text

without being distracted by the anima-
tion can press and hold the mouse but-
ton.

� Motion of the mouse while the mouse but-
ton is being held down drags the ticker
and roll widgets.

� ButtonRelease for the fade widget jumps
to the next block of information. For the
ticker and roll widget, it calculates a new
speed based on the speed at which the
widget was dragged. For all widgets it
restarts the animation e�ect.

2.5 Applications using animated
widgets

Animated widgets have been used in a vari-
ety of programs by over �fty programmers.
The �gures in this paper show some of the
interfaces they have designed. This section
focuses on a few interfaces, all of which are
available from the Agentk home page given
in the Conclusions section.

The NewsAgent interface repeatedly down-
loads and parses a news Web page looking for
new articles (see Figure 2). It alerts users of
new articles by changing the color of an image
and rapidly fading in and out a \New News"
message. The interface contains a ticker wid-
get that continually tickers through the news
headers. If a user sees an article of interest,
by pressing the image a news viewer can be
raised and the user can read the article in its
entirety.

The tkscore interface monitors college bas-
ketball scores and displays them using a user-
selected animated widget or using a stan-
dard label widget. We introduced this tool
during the NCAA Basketball Tournament, a
season ending single-elimination tournament

Figure 4: The fade interface of the CWIC passive Web browser. The display consists of two fade
widgets running in sync using the -drive option. The upper one fades between images and the
lower one fades between text labels for the image. The first frame shows an initial image and
text. The next two frames show how the image and text fade away as the new ones fade in. The
final two frames show how the new image and text appear in their entirety as the old disappear.

that generates signi�cant interest and excite-
ment. We asked the users to complete a ques-
tionnaire on their informational and anima-
tion preferences. The results of this study
(available in [9]) have been used to further
the development of our animated widgets and
have led to the development of the tkwatch
interface, a more general tool for monitoring
stock quotes, news headlines, weather data,
personal information, and sports scores.

The CWIC passive browsing system (see
Figure 4) continually browses selected Web
sites, identifying key images and presenting
them to the user by gradually fading between
images. Note that the URL where each im-
age was found is provided as well so that the
user can visit the page if an image of interest
appears. CWIC is described in detail in [4].

3 Incorporating animation into
Tcl/Tk widgets

The style of programming represented by
scripting languages is well-suited for informa-
tion awareness applications. As noted by Tcl
creator John Ousterhout, scripting languages
are designed to \glue" together existing re-
sources making them easier and more e�cient
to use [13]. As this closely matches the pur-
pose of awareness applications, (to act as an
intermediary to the monitoring of informa-
tion resources that otherwise may be tedious
and time-consuming to do), it seems that
scripting languages are an appropriate choice
for authoring awareness applications. Tcl/Tk
in particular seems to be a good choice for
awareness applications. Tcl is designed to
be a platform-independent scripting language
with an extensible graphical toolkit (Tk) for
interface design [12]. Extending this toolkit
to include animated widgets provides a solid

programming platform for the implementa-
tion of awareness applications.

To maintain consistency and decrease the
learning time for programmers, animated
widgets behave like standard Tk widgets. To
simplify this process, the Agentk animated
widgets use the Tk requirement library for
widget creation, querying, and modi�cation
created by Je�rey Hobbs1. The widget pack-
age provides a framework for selecting com-
ponents, creating subcommands and options,
and integrating related procedures into a sin-
gle namespace. Each of the animated widgets
has as its sole component the canvas widget.
This means that even though the animated
widgets appear to behave like a standard la-
bel widget, they can make full use of the addi-
tional display capabilities of the canvas wid-
get. Initial implementations used a label, but
we found that the canvas was necessary to
provide all of the desired behaviors.

The Agentk widgets are implemented in
Tcl only, meaning that they can be used on
any platform with no compilation. The entire
package consists of about 4000 lines of code
(plus an additional 10000 for the widget pack-
age), and individual widgets can be included
or excluded as needed to further reduce the
overhead. The widgets have been tested on
various Unix platforms as well as Windows 95
and 98. All of the widgets can take advantage
of the additional image formats and capabil-
ities found in Jan Nijtman's Img extension2

but it is not necessary to have the extension
to use Agentk.

The remainder of this section focuses on
two key issues addressed in the creation of

1See http://www.hobbs.wservice.com/tcl/script/widget/
2See http://purl.oclc.org/net/nijtmans/img.html

the animated widgets in Agentk. The �rst
addresses performance across platforms, par-
ticularly important given that slower perfor-
mance for animations results not simply in
longer delays, but in a di�erent appearance.

3.1 Maintaining platform indepen-
dence

The loop that creates the animation e�ect
(similar for each of the widgets) can be sum-
marized as follows:

proc anim {} {

calculate next animation step

...

after $delay anim

}

The after command waits for the period
of time speci�ed in the delay variable before
executing the anim command.

Initial Agentk implementations ignored the
time required to perform the calculations. On
a slower or more heavily-loaded machine, the
calculations may take signi�cantly longer, re-
sulting in an animation that is slower. Thus,
a program may look very di�erent depending
on the platform. To address this problem, we
calculated the time required to complete the
calculations and subtracted it from the de-
lay. If the resulting delay was less than zero,
we adjusted the size of the steps taken by
the algorithm. For example, a ticker might
move two pixels instead of one, or a fading of
text might make larger changes in color over
a smaller number of steps.

In so doing, the animated widgets will
look similar on any platform, regardless of
the processor speed or machine load. The
only perceivable di�erence is that the anima-
tion may be smoother on faster, less-heavily-
loaded machines. By allowing for this auto-
matic adjustment in performance, a program-
mer can write a script using animated widgets
with con�dence that it will appear the same
to users on a variety of platforms.

3.2 Calculating an animation step

In fading between blocks of text or bitmaps
(see the lower portion of Figure 4), the fore-
ground color of the original information is
gradually changed to match the background
color, in essence fading the information away.
At the same time, the new information (origi-
nally \invisible" because it starts as the back-
ground color) changes to match the fore-
ground color. When the new information be-
comes closer (in an RGB-value sense) to the
foreground color than the original informa-
tion, it is raised to the top of the display
stack.

When fading between two images (see Fig-
ures 1 and 4), it is impractical to change
each pixel from the old color to the new {
even a small 100x100-pixel image contains
10,000 pixels to repeatedly fade. Instead, the
fade widget uses a stippling e�ect. Each im-
age is divided into small squares, and the
squares from the original are replaced with
the squares from the new until the e�ect is
complete. The user can specify the size of
the squares or can specify the speed with
which the animation will occur. If the size is
speci�ed, the speed will be dependent on the
speed of the machine. A faster machine will
be able to calculate and update the display
more quickly than a slower one. If the speed
is speci�ed, the size of the squares will depend
on the speed of the machine. Slower machines
divide the images into larger squares, but the
time required to fade from one image to an-
other will be the same.

The tickering (and rolling) e�ects are ac-
complished by moving all of the items on the
canvas horizontally (or vertically). As old
textual and graphical items disappear from
one side of the canvas, new items are added
to the other. The number of pixels by which
the display is shifted depends on the response
time of the machine. Typically the display
is shifted by a single pixel at each step, but
slower machines may not be able to keep up
with the desired speed at that rate. Our im-
plementation regularly monitors the perfor-
mance and increases the number of pixels if
the system is being taxed. Note that this will
result in an animation that is not as smooth,
but it is more important that the appearance

Figure 5: An example of automatic
markups and history-based shadowing in
a ticker widget showing sports scores. The
bold text indicates a score that was recently
updated, while the older score appears in
plain text. The background shadow shows
scores from ten minutes ago.

be similar on all machines.

4 Compensating for animation
drawbacks

This paper has discussed ways that program-
mers can use our toolkit to incorporate an-
imation into their programs in a platform-
independent and resource-friendly manner.
However, in creating a toolkit it is most im-
portant to consider the ability of the user to
obtain the desired information. This section
discusses ways that the Agentk animated wid-
gets deal with three user-related concerns.

4.1 Highlighting changes with au-
tomatic markups

Although animation provides a means to
smoothly show the current state of chang-
ing information, it can be di�cult for a
user to identify when and where a change
has occurred. To address this problem, the
Agentk animated widgets support automatic
markups of text. These markups include
boldface, italics, and coloring and can occur
whenever the information in the widget is up-
dated. For example, Figure 5 shows a wid-
get that displays sports scores that are con-
stantly downloaded from the Web. Recently
changed scores are shown in bold text, while
older scores appear in plain text.

A protocol is needed for removing the
markups from older items. Agentk makes
two options available to programmers: an
automatic markup can be removed after a
given period of time or after a given num-
ber of iterations of the display. In addition,
the programmer can allow the user to re-
set the markups with a button press, mouse
click, or other action. In our sports scores
example, new scores could be highlighted for
�ve minutes, or for ten iterations of the dis-
play. The programmer selects the option that

seems best suited for the application.

Markups have long been established as a
good way to highlight important parts of in-
formation. Systems like HtmlDi� [6] have
used them to draw attention to changed in-
formation. The Agentk toolkit simpli�es the
integration of markups into situations where
it is important to highlight changes. They
are instantiated using command options that
specify the desired style of markup and when
they should be added and removed.

4.2 Showing previous states with
history-based shadowing

Sometimes it is not su�cient to simply relate
to a user that a change has occurred { it is
necessary to communicate information about
the nature of the change. To provide this
capability, the widgets support history-based
shadowing, a technique where a previous state
of text is shown in the shadow of the current
information state (see Figure 5). This tech-
nique captures the spirit of integrating sup-
porting material described in [5] framed with
a familiar shadowmetaphor. In history-based
shadowing, the shadow appears slightly o�set
horizontally and vertically from the original
text and appears in a color that is between
(in the RGB-value sense) the foreground and
background colors. As such, it requires little
extra space and is less obvious on �rst glance
than the (more important) current state.

Similar to the automatic markups, the
history-based shadowing for a given piece of
information appears as soon as changes to the
information are noted and can persist for a
given length of time, a given number of iter-
ations, or until the next change occurs. This
gives the programmer the exibility to choose
a level of persistence that is best suited for the
information.

History-based shadowing seems to be a
good complement to animation and markups
in maintaining awareness of information. The
presence and persistence of the shadows is in-
stantiated using Tcl-style command options.
Shadowing provides a way to show not only
the presence of changes to information, but
also the state of the information prior to the
changes.

5 Programming guidelines for
animated widgets

One of the basic principles of interface design
is to help the user maintain a sense of con-
trol over the actions on the screen. A user
should not have to respond to actions but in-
stead should control the rate at which infor-
mation is assimilated. Yet animation seems
to violate this principle: the ow of infor-
mation typically is not under the direct con-
trol of the user. While our implementation
attempts to empower the user by providing
bindings for ow control, a programmer must
be sensitive to the needs and desires of the
user population. In fact, one criticism of ani-
mation in general is that it can be disruptive.
The \blink" tag in HTML and animated ad-
vertisements on Web pages are often appro-
priately characterized as being annoying and
disruptive. However, people have long used
computer desktop accessories such as clocks
and machine load monitors. What are the
distinctions between these situations?

One distinction is that the burden of toler-
ating the constant changes is outweighed by
the advantages these tools provide. Glanc-
ing at a desktop clock to obtain the time is
far easier than running the date command
or even looking at a wristwatch, and looking
at a load monitor while running a compute-
intensive program is far easier than running
commands to determine the system load. A
programmer should target application do-
mains where the potential for knowledge is
signi�cant and the ability to start and stop
the application is easy and apparent.

Another distinction is that the changes
to the display are small, subtle, and pre-
dictable, allowing the user to adapt to the
changing display to the point where it is
barely noticeable. We hope that by pro-
viding smooth animations (many with user-
controllable speeds), the applications will be
less distracting. The programmer can as-
sist in this by choosing appropriate sizes and
speeds for the application. Users are more
likely to use an application if it does not con-
sume much desktop space and if it is not
overly distracting.

Our experiences indicate that users are

willing to use applications that employ ani-
mated widgets, though they generally do not
use them continually. We regularly receive
comments from users who started up an infor-
mation awareness application for a few hours,
whether it be to keep track of the score of a
game in the heat of the playo�s or to watch
for new news about the JFK Jr crash, but
to our knowledge no one leaves the appli-
cations running continually. Programmers
should not write applications that employ an-
imation with the expectation that they will
be used continually, but rather for short, well-
de�ned periods of time, perhaps to monitor
the tra�c 5 and 6 pm every weekday, or to
keep an eye on the scores of selected baseball
games during the pennant drive and playo�s.
If programmers do anticipate that it will be
necessary to run the application at all times,
alternate (non-animated) information deliv-
ery mechanims should be made available.

6 Related work

Animation has been used in various infor-
mation visualization situations. Baecker and
Small list several uses for animation, includ-
ing among others identi�cation, transition,
demonstration, history, guidance, and feed-
back [1]. Some examples include the percent-
done indicators for providing feedback [10]
and animated icons for demonstrating use [2].
One use that has not been explored to the
fullest is the application of animation to bet-
ter utilize screen space. Cone trees [15] are
an example of a visualization in which ani-
mation is used to show more information (in
this case about hierarchies) than would oth-
erwise be possible in a given space. We feel
that this is a distinct advantage in informa-
tion awareness applications.

Animation has been used to show dynamic
information as well. Algorithm animation
systems demonstrate how the dynamic pro-
cesses of algorithms work [16]. The Tick-
ertape interface scrolls text messages from
email and other resources across the screen
[14]. Bartram suggested the use of animation
as an additional display dimension in the de-
sign of interfaces as well [3]. Yet, little work
has been done on continuous, long-term an-
imation for secondary awareness tasks. An-
imation has been dismissed as too intrusive,

but here we argue that it can be used in some
situations to maintain awareness without be-
ing too distracting.

Several other widget sets have been devel-
oped that allow the programmer to include
animation in the interface. The Artkit toolkit
allows programmers to create transition ob-
jects that describe how an object will move
[7]. A reference to the transition object is
then added to a graphical object to create the
animation. Another toolkit, Amulet, was ex-
tended to include support for animation [11].
Animation can be attached to any value of
any object, including position, color, or vis-
ibility. These and similar toolkits provide a
great deal of power, yet they often can re-
quire signi�cant e�ort by the programmer
to achieve a desired result. The widgets in
Agentk do not require the user to specify the
details of the animation. In only a few lines
of code, a programmer can specify variables,
de�ne animation behavior, and start a cyclic,
repetitive animation that automatically up-
dates when variables are changed by the pro-
gram. This same behavior would be much
more di�cult with most other toolkits. At
the same time, the Agentk animated widgets
are structured such that new animated wid-
gets can be added with signi�cant code reuse.

7 Conclusions and future work

This paper has discussed the integration of
animation into the Tcl/Tk toolkit. Incorpo-
rating animation and related techniques into
a user interface toolkit makes it possible for
programmers to include it in their applica-
tions using a familiar programming interface
and makes it easier for users to keep a sense
of control while maintaining a desired level of
information awareness.

Our future work will concentrate on three
areas. First, we plan to extend widget set
to include other behaviors such as shrinking
and growing, swiping, and others. Second, we
are considering adding other optional tech-
niques such as motion trails and slow-in/slow-
out that may lessen the distraction caused
by the animations. Third, we hope to make
the execution more e�cient, by making use
of simpli�ed calculation methods, improve-
ments in machine speed calculations, and per-

haps threading of the widget commands.

Programmer and user reaction to an-
imated widgets has been encouraging,
and we expect that the use will con-
tinue as the widget capabilities increase.
The Agentk toolkit, including the ani-
mated widgets and most of the programs
described in this document, is available at
http://www.cc.gatech.edu/~mccricks/agentk.

Acknowledgments

The authors would like to thank the USENIX
Association for providing several grants that
made this work possible. We would also like
to thank the GVU Center and the College of
Computing at Georgia Tech for their support
via grants, lab space, and machines. Finally,
we would like to thank John Stasko and the
Information Interfaces Group for their helpful
comments on the Agentk toolkit and on this
document.

References

[1] Ronald M. Baecker and Ian Small. An-
imation at the interface. In Brenda
Laurel, editor, The Art of Human-
Computer Interface Design, pages 251{
267. Addison-Wesley, 1990.

[2] Ronald M. Baecker, Ian Small, and
Richard Mander. Bringing icons to life.
In Proceedings of the ACM SIGCHI '91
Conference on Human Factors in Com-
puting Systems, pages 1{6, New Orleans,
LA, May 1991.

[3] Lyn Bartram. Enhancing visualizations
with motion. In Proceedings of the IEEE
Symposium on Information Visualiza-
tion (InfoVis '98), pages 13{16, Raleigh,
NC, 1998.

[4] Quasedra Y. Brown and D. Scott Mc-
Crickard. Cwic: Using images to pas-
sively browse the web. Technical Report
99-48, Georgia Tech GVU Center, At-
lanta, GA, 1999.

[5] Bay-Wei Chang, Jock D. Mackinlay,
Polle T. Zellweger, and Takeo Igarashi.
A negotiation architecture for uid docu-
ments. In Proceedings of the ACM Sym-
posium on User Interface Software and

Technology (UIST '98), San Francisco,
CA, November 1998.

[6] Fred Douglis, Thomas Ball, Yih-Farn
Chen, and Eleftherios Koutso�os. The
AT&T internet di�erence engine: Track-
ing and viewing changes on the web.
World Wide Web, 1(1):27{44, January
1998.

[7] Scott E. Hudson and John T. Stasko.
Animation support in a user interface
toolkit: Flexible, robust, and reusable
abstractions. In Proceedings of the ACM
Symposium on User Interface Software
and Technology (UIST '93), pages 57{
67, Atlanta, GA, November 1993.

[8] Ioi K. Lam. Designing mega widgets in
the Tix library. In Proceedings of the 3rd
USENIX Tcl/Tk Workshop, Toronto,
CA, July 1995.

[9] D. Scott McCrickard, John T. Stasko,
and Q. Alex Zhao. Exploring animation
as a presentation technique for dynamic
information sources. Technical Report
99-47, Georgia Tech GVU Center, At-
lanta, GA, 1999.

[10] Brad A. Myers. The importance
of percent-done progress indicators for
computer-human interfaces. In Proceed-
ings of the ACM Conference on Human
Factors in Computing Systems (SIGCHI
'85), pages 11{17, April 1985.

[11] Brad A. Myers, Robert C. Miller, Rich
McDaniel, and Alan Ferrency. Eas-
ily adding animations to interfaces us-
ing constraints. In Proceedings of the
ACM Symposium on User Interface Soft-
ware and Technology (UIST '96), Seat-
tle, WA, November 1996.

[12] John K. Ousterhout. Tcl and the Tk
Toolkit. Addison-Wesley, Reading, MA,
1994.

[13] John K. Ousterhout. Scripting: Higher
level programming for the 21st century.
IEEE Computer, March 1998.

[14] Sara Parsowith, Geraldine Fitzpatrick,
Bill Segall, and Simon Kaplan. Ticker-
tape: Noti�cation and communication in
a single line. In Asia Paci�c Computer

Human Interaction 1998 (APCHI '98),
Kangawa, Japan, July 1998.

[15] George G. Robertson, Stuart K. Card,
and Jock D. Mackinlay. Information
visualization using 3d interactive ani-
mation. Communications of the ACM,
36(4):57{71, April 1993.

[16] John T. Stasko. The path-transition
paradigm: A practical methodology for
adding animation to program interfaces.
Journal of Visual Languages and Com-
puting, 1:213{236, 1990.

