
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

S C R I P T E D D O C U M E N T S

Jean-Claude Wippler

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Scripted Documents
Jean-Claude Wippler

Equi4 Software
jcw@equi4.com

ABSTRACT

Software used to be written as source code, which was then compiled and linked into a single machine-specific
application program. With scripting languages, editable scripts are now executable without intermediate steps, but
the dependency on lots of script files complicates robust deployment. A range of “wrapping” schemes are in use
today to package scripts and extensions into a single file. The “Scripted Document” approach presented here goes
further by offering a database-centric solution for packaging, installation, configuration, upgrades, as well as all
application-specific data. An implementation for Tcl is described — using MetaKit as embedded database — with a
summary of the experiences gathered so far.

Introduction
Scripting languages introduce the notion of quickly
“gluing” together existing application and libraries, as
well as custom-made extensions, in flexible ways. This
paper takes a generalized look at the issues involved in
deploying, maintaining, and evolving Tcl/Tk-based
solutions. It shows how a more flexible solution, using
an embedded database, can solve problems not
addressed by current wrapping technologies.

One of the effects of moving away from monolithic
compiled applications and towards scripted packages, is
that the convenient single-executable packaging of the
final “link step” is lost, and that many script files and
extensions may need to be included in the installation
process of the application. This is compounded by the
fact that the script language implementation itself also
needs to be installed, which also consists of many files
and directories. As multiple scripted applications are
installed, each with its own — often conflicting —
requirements, as more platforms need to be supported,
and when some of the files reside on shared file servers,
installation all too often ends up becoming unwieldy.

The concept of “Scripted Documents” presented here
offers a way to implement quick and conflict-free
packaged deployment, while at the same time greatly
simplifying upgrades and evolution of scripted
applications. After a review of current approaches to
packaging, the motivation and design of this new
approach will be presented. Following are details of a
Tcl/Tk implementation, examples of actual use,
experience gained so far, and ideas for further refining
and extending this concept. It will be shown that
Scripted Documents are simple to implement, and solve

a wide range of packaging problems encountered
during and after deployment of scripted applications.

Why Package?
Packaged distribution is useful in a number of
situations. It makes it possible to deliver software as a
black box, to end users who want to use it without
going into the underlying technology.

This is the case when a software product is sold as a
user-installable system, or when it is intended to be
used as a tool that should simply work “out of the box”.
In these situations, the software is expected to change
very infrequently. The more convenient and robust such
a packaging scheme is, the more likely it is to work
without adding support overhead for the developer /
vendor.

These end-user situations make it attractive to fully
encapsulate the scripting language, in a way that it does
not depend on, nor interfere with, anything else on the
end-user's system. Robustness also means that the
packaged application should not break when users
install further applications later - even if some of these
packages are not as careful to avoid interference with
the rest of the system. This is a reason why including all
shared libraries and script files inside the packaged
application can be an advantage, despite the increased
disk space requirements.

Note that in other situations, particularly when system
integrators are available to maintain and customize a
variety of software applications on a large system used
by many users, packaged distribution may not be
desirable, as it prevents the integrator from making
changes they feel necessary in their environment.

However, for the majority of cases, particularly with
users running on Windows, Macintosh or personal Unix
workstations, packaged distribution is the preferred
solution.

Current Packaging Approaches
In this section we look at a number of current
technologies used for packaging applications. Each of
these must consider the following mix of components
that comprise scripted applications:

1. A platform-specific script language engine, the
“main interpreter”, e.g. the Tcl binaries

2. Required platform-specific language
implementation libraries (DLLs), e.g. libc.so

3. A standardized set of portable library scripts, the
“runtime support”, e.g. lib/init.tcl

4. A set of popular core extensions, either scripted or
compiled, e.g. lib/Tk8.2/

5. Domain-specific vendor-supplied compiled
extensions, e.g. lib/Mk4tcl/

6. In-house extensions to simplify common domain-
specific tasks

7. Custom compiled extensions for performance
and/or interfacing

8. The custom scripts representing the main
application itself

Note that all but the last few items consists of generic
code, which tends to be used in many different
applications. It is code that tends to be stable, reliable
and changes infrequently.

An important dimension is platform-independence.
Scripts are portable: many files in the above list are
identical for all platforms. When disk space was sparse,
this used to be an argument to separate the scripts from
the rest to allow sharing them (note that a fine-grained
structure can also complicate maintenance).

There are several approaches today which simplify the
process of packaging. All of them focus on initial
deployment, not upgrading. Some act like an installer
and unpack a large set of files on the target system;
others “wrap” up everything into one file.

InstallShield / Wise

These represent the classical binary installers for
Windows (RPM could be considered similar for
Linux/Unix systems). They deliver their payload by
creating a large number of files. This approach works
well for a one-shot installation, and when subsystems
are not shared. Once information is copied to central
areas like the “c:\windows” directory and the registry,

this approach can break down. It is not uncommon for
Windows users to resort to a full machine re-installation
after several months of active use.

tar x / configure / make install

This is the Unix-based source code install model (made
popular by GNU Autoconf) for deploying applications
on a variety of (mostly Unix-based) systems. It is
potentially the most flexible approach, since it allows
making changes at any level, but it has a flaw: it is
oriented towards source-code deployment, which in
turn depends on a compiler installation before it can be
used. For scripted applications, installation of the
proper compilation environment can become a major
stumbling block. For end-users, this approach doesn't
solve anything — it pushes the issues to another level.

Hybrid installation

Scripting languages like Tcl have long ago adopted a
hybrid form, with the core implementation of the
language being deployed through one of the two above
means. They have been very successful by paying
attention to detail and resolving issues to deal with
many platforms and configurations. Tcl can be
configured with static or shared libraries, on over two
dozen different Unix systems, Windows, Macintosh,
and more. Tk attempts to share as many configuration
options with Tcl as it can (yet it cannot avoid
introducing new ones, like where to find the X libraries
on Unix). New releases and upgrades are simple to
install — if you have the appropriate C compiler. This
approach can still lead to conflicts when multiple
versions of Tcl/Tk need to coexist on a machine.

All in all, the Tcl/Tk core is easy to deploy. The trouble
starts with deployment of items 5-8 in the list given
earlier. Extensions need to be told where Tcl/Tk has
been installed, and they in turn need to be installed in a
certain way for Tcl to find them. Given that these
extensions usually come from different sources, the
inevitable differences creep in. Getting a full set of
packages, such as BLT, Expect, Itcl, Itk, and TclX
installed is cumbersome. Upgrading one of the
components to a new release can range from annoying
to nearly impossible, if the extension does not properly
address platform differences. Throw in a couple of
useful (but not as widely ported) extensions, add
support for both Windows and Unix, and all of a
sudden you need to be an expert administrator. Not to
mention the time it takes to install all this.

The following solutions are currently being used to
package Tcl/Tk applications.

Stick with pure Tcl

This is a popular approach: install the Tcl/Tk core, and
stay away from anything “non-standard”. Write scripts,

with perhaps a simple installation script to help users
get started. This works well: no compiler dependencies,
well-understood platform dependencies, and can be
packaged as a few text files with a simple instruction on
how to get started. Excellent examples are TkCon [8],
and BWidgets [9].

Tcl2c

A refinement is to embed all scripts as C strings, and to
rebuild Tcl/Tk as a standalone shell, which is easy to
do with the Plus Patches [1]. This leads to a single
executable combining all scripts, script libraries, and
Tcl/Tk itself. This approach has several properties:

• For each platform to be deployed on, the packager
needs a compiler and needs to repeat the entire
wrapping process, even if the application itself
consists only of scripts. A new “Wrap” mechanism
is being developed, a refinement using a ZIP-
compatible archive appended to the executable, to
remove the need for re-compilation.

• It can lead to large executables, since every
scripted application includes the complete Tcl/Tk
core and all runtime scripts.

• It makes it possible to include binary extensions,
by linking them in statically - though this again
increases file size.

ProWrap and FreeWrap

ProWrap [3] (which is part of the TclPro product) and
FreeWrap [4] collect all scripts and append them to a
specially prepared standalone build of Tcl/Tk, i.e. at the
end of the executable. On startup, the executable figures
out how to get at those scripts and then reads and
evaluates them as needed. According to ProWrap's web
page documentation, it can pack and compress scripts
as well as embed other files (but not shared libraries).

MkAppTcl

Richard Hipp's MkAppTcl [5] (and its predecessor ET)
take a somewhat different approach, in that the
perspective is shifted to having a main C/C++
application, which facilitates easily switching to Tcl/Tk
requests. In a way, MkAppTcl maintains the model of
embedding Tcl/Tk in C/C++, whereas the other
approaches extend a scripted application with compiled
extensions. The result is similar, with MkTclApp
including a lot of support to ease the process of
generating a standalone executable containing scripts,
compiled extensions, and custom compiled code.

Application Logic vs. Application Data

Each of these approaches maintains a strict separation
between application logic (scripted and compiled) and
application data, which includes data files (textual or

binary), database storage, and configuration files. In a
way this is very useful, as the application is usually
what the developer provides, and the data is what the
user provides.

Yet this separation of code and data is at the heart of a
range of some deployment and maintenance problems.
New software releases no longer work with some
documents, configuration parameters get detached from
the application they apply to, documents can't be
opened, applications don't know where their data is, and
different application modules cause incompatibilities.
These issues can be complex to deal with, requiring
elaborate “environment settings” (Unix) and “registry
settings” (Windows).

Let's face it: real-world software deployment and
maintenance is often a mess. Installation introduces
many problems, and leads to systems that are brittle.

A Different Perspective
As just described, wrapping consists of combining
application logic (scripts) and application runtime
support (language implementation) into a single
executable, while application data remains separate.

Scripted documents choose a different separation,
combining application logic and data into a single file,
while separating out application runtime support.

The single application-specific portion combines all
application logic plus data into a single database / file.
It contains everything needed by the application,
including all data that the application must manage after
installation. This reflects a task-oriented and
“document-centric” view, which is strengthened by the
fact that scripted documents are executable.

Scripted documents represent just the application side
of things. The scripting language implementation and
all its support files are implemented as a separate and
generic “runtime”. The next section describes such a
runtime for Tcl, called “TclKit”.

Other systems exist where application logic is separated
from a generic runtime, each as a single file. A popular
example of these is in Java, where the runtime (i.e. the
Java Virtual Machine) can read any number of “JAR”
(Java Archive) files. Scripted documents differ from
such solutions because the application specific piece
contains both the application logic and modifiable
application data.

This choice of separation into two components has
several implications:

• Scripted documents are portable, allowing the
vendor to deploy to users on any platform, simply

by transferring the single file.

• Scripted documents store information reliably,
when based on a transacted database package.

• Scripted documents have executable content, and
look very much like a normal application to those
who work with them. A scripted document
represents the stored state of an application, as well
as the active task while it is running.

• Scripted documents depend on only one other file,
the runtime. This creates one new (very clear)
dependency not present in wrapped applications,
but removes the data file dependencies of wrapped
applications.

• Runtimes are platform-specific, but have no
application-specific content. There is exactly one
runtime for each platform.

• A runtime requires no installation — it can reside
in any directory on the execution search path.

• Un-installation is straightforward: remove the
scripted document and the runtime.

• There is no need to install a scripting language,
because the runtime is a self-contained system.

• Simple applications lead to tiny scripted
documents. Scripted documents benefit from
generic code shared through the use of a common
runtime.

Effectively, the scripting language core and its entire
support system define an infrastructure, which scripted
documents rely on in a well-defined way.

Additional Uses for Scripted Documents

In the normal case, a scripted document will contain the
logic for a single application, and all its data. However,
it is possible to develop more powerful scripted
documents, for use in a wider variety of situations.
There are various ways to extend scripted documents:

• They can provide several user interfaces for the
same application, for example a Tk based GUI
version and a text based version, chosen at runtime
depending on whether the user is able to run a GUI.
The different versions of the interface manipulate
the same data, stored within the scripted document.

• They can be used to package a number of related
applications, with a simple file link or copy-and-
rename causing them to behave differently. An
example described later deploys a client/server
system as a single file, making it easy to maintain
consistent software.

• They can contain boilerplate utility code, activated
from the command-line by specifying additional

arguments. A generic startup script has been
implemented for this, which also allows viewing
and adjusting configuration parameters from the
command line.

• They can take advantage of the transacted script
storage to reliably update them selves through the
network. Failure, or “rollback”, will cause the
system to revert to its prior state.

• They can be as general-purpose or as application-
specific as you need them to be. Creating a scripted
document that manages other scripted documents is
one way to introduce configuration, customization,
and/or upgrade management.

• Writing a scripted document which acts as design
tool / IDE for itself or for other scripted documents
would be a powerful way to simplify their
development. Taken one step further, a large
application could consist of one file which
combines the final application (and therefore all its
scripts), as well as an embedded development
environment for it - a fascinating option for long-
term maintenance. Scripted documents are the
natural equivalent of “executables” in traditional
compiled software.

Scripted documents retain the installation advantages
of conventional wrapping technologies, but also solve
the nightmares associated with configuration conflicts
and upgrades, while greatly simplifying multi-platform
deployment for the application vendor.

Upgrades and Evolution
When scripts are stored in a database, you can do things
with them, which have traditionally been done only
with application data. One of the most interesting is
upgrading or evolving the application code itself.

Scripts can be altered while the application is running,
and by the application itself. As a result, software
upgrades cease to be a special issue; it's just a matter of
storing new data over the old and committing the
changes. This is just as safe as for changes to
application data, when the underlying database uses a
transaction/commit model to apply all changes.

Consistent and fail-safe updating is a critical feature for
fundamental changes such as script upgrades. This
mechanism is actually more robust that ordinary
software development: if an installer, compilation, link
step, or even a simple editor save over an existing script
fails, there is a slight chance that the result will be
corrupted or left in a inconsistent - and inoperable -
state. This cannot happen with scripted documents, as
implemented here. The worst that can happen is the
introduction of a logic error: upgrading to a new release
which does not work. From a technical perspective,

there is nothing which can guard against such errors,
but scripted documents do offer a way to minimize their
impact: make a quick copy of the scripted document,
which is a single file, to create a backup.

An interesting way to deploy and manage the
application-logic of scripted documents is through
upgrades over the net. The TclDist [12] example
described later on is a generic (and portable) scripted
document, which just asks for the URL of a web server
to obtain the application, and which knows how to
synchronize its scripts to that server. Such automatic
upgrading has proven to be a popular feature for end
users (e.g. as demonstrated by such technology in
recent versions of Windows).

One of the reasons why scripted documents can be so
flexible is because the underlying MetaKit [11]
database used in this implementation supports dynamic
schema evolution - adding and altering data structures
of a scripted document is instant, and relies on the same
transaction security as every other change. When an
upgrade of the application logic is stored, the
application can quickly extend or otherwise alter the
application data stored in that scripted document, and
thus support added functionality of any kind.

Updating the Runtime

The discussion so far has only covered changes to
scripted documents. The assumption is that changes to
the TclKit runtime are far more infrequent, since it
contains only stable and generic code. If backward
compatible, TclKit can be simply replaced as the need
arises. Scripting languages in general have a track
record of remaining extremely compatible over the
years, even as very fundamental additions and
improvements get added-in. Tcl is no exception.

If new releases of Tcl/Tk or MetaKit come out which
are incompatible in a critical way, a new runtime will
be created with a different name. This will lead to a
new generation of scripted documents using that
runtime (TclKit2?). As with all scripted documents
today, there is no interference between such different
versions. TclKit intentionally has no version number
information in its name. It is intended to be a stable
component in the world of scripted documents, and
should go through extreme lengths to maintain
backward compatibility. The primary way to achieve
this goal, is to let TclKit err on the conservative side by
lagging new Tcl/Tk and MetaKit releases (other than
bug fixes).

Implementation Details
Implementing scripted documents in Tcl is relatively
straightforward. Several issues need to be dealt with:

Database storage

Scripted documents store all scripts and data in a single
file, are portable across platforms, and must be failsafe
to protect a scripted document even after a system
crash. The MetaKit database library meets these
requirements. The fact that it is a good fit for scripted
documents is not surprising, since it is the result of
several years of development by the author — with
many related design goals.

Executable content

Scripted documents are executable, by using platform-
specific tricks to create the illusion that they are
applications. In reality they are documents, which
invoke the runtime as part of the startup process. On
Unix, this is done in the same way as for shell scripts:
making the first line “#!/bin/sh” and setting the execute-
permission bit. On Windows, scripted documents must
use a “.tkd” (TclKit Document) file extension or a small
batch file. On Macintosh, the “file creator” must be set
to a specific code.

Mixed script/data evaluation

The final step is to prefix all data stored as an
embedded database with a special bootstrap header
script to launch scripted documents correctly. For this
to work, Tcl has been slightly modified to “source” a
script(ed document) without getting confused if there is
additional data tagged onto the end of the script. The
first part of a file is scanned for a zero byte - if found,
script reading stops there. If not, the file is assumed to
be a normal script and is read in as usual.

Runtime package

The counterpart of a scripted document is its runtime,
i.e. TclKit. Based on the Plus Patch [1] version of
Tcl/Tk, a standalone executable has been created which
consists of the Tcl and Tk core, all necessary supporting
scripts, as well as the Tcl-aware version of MetaKit,
called Mk4tcl. The Trf [6] extension is also included, to
give access to zlib [7], which is very useful for
packaging.

Let's examine in detail what happens when a scripted
document is launched (using an imaginary
“example.tkd” document on Windows as case study):

1. User double-clicks the “example.tkd” scripted
document

2. Windows users should associate “.tkd” files to the
tclkit.exe file, so that the runtime starts up upon
double-click

3. TclKit opens the example.tkd file, reads everything
up to the zero byte, and starts evaluating that data
as a Tcl script.

4. Here is a basic version (without script compression
or error handling) of the bootstrap header script:

#!/bin/sh
\
exec tclkit "$0" ${1+"$@"}
package require Mk4tcl
mk::file open doc $argv0 -nocommit
eval [mk::get doc.scripts!0 text]
return

 The first three lines are the standard Tcl'ish way of
launching a script. These lines are only used under
Unix, and skipped otherwise. The remaining lines
initialize the MetaKit database in TclKit, reopen
the scripted document as a database, fetch the
“text” field of the first record in “scripts” as a
string, and evaluate that string. If the script returns
then break off (this is plus-patch specific; without
it Tk enters an idle loop).

5. That's it, as far as the basic bootstrap into scripted
document in Tcl is concerned! The first script
stored in the database determines the rest.

Some comments:

• Scripted documents rely on a very simple
mechanism. It's not much more than a single file /
database storing one or more scripts, as well as any
other type of data which needs to be stored. What
makes them special is the way everything is
packaged.

• The bootstrap process described so far is all there is
to it. But the fact that all data now resides in a
database, including the scripts needed to work with
that data, and that this file is modifiable by these
same scripts is what causes this to be an open-
ended approach. You can make things as
sophisticated as you like, by creating and including
the appropriate scripts.

• All scripts in a scripted document can build on all
of Tcl, all of Tk, and all of MetaKit - because all of
these are always present. This means that as with
any plain Tcl/Tk installation you have the power of
scripting, networking, a cross-platform GUI, as
well as a robust database, at your disposal. That's a
lot of infrastructure!

• All changes to a scripted document are transacted,
because this is how MetaKit works. Each scripted
document can be used for large-scale and efficient
demand-loaded data storage.

• On Unix, scripted documents can be used as
command-line Tclsh-like applications, or as visual
Wish-like applications. This is possible because the
plus-patch version used in TclKit includes Tk as a
run-time facility. A CGI application for web-server
use need not activate Tk (and will not require X

Windows) for example, while the same application
can be also be used to run in fully GUI-oriented
mode in other situations. Note that Windows
cannot mix console and GUI modes, and that the
Mac has no system console mode.

Startup Script

The first script in the database is what gets executed as
the last step of the above bootstrap. Although one could
store the main application script, normally a command
line interface script (CLI) is stored there. This script
examines command line arguments to offer a basic
level of support for scripted documents. Among the
functions it performs are:

• Adding or replacing database scripts using files or
directories specified as argument

• Basic listing- and extraction facilities for scripts
and other text-based information

• The ability to start up an alternate script by giving
its name on the command line

• Defining a default startup script if no arguments
are specified, or ignoring them

• Viewing and altering configuration options, which
are also stored in the database

• A few utility procedures for scripts to easily access
those configuration options

With no command line arguments, and if not
specifically configured otherwise, the CLI simply looks
for a script with the base name of the scripted document
and executes it (if the scripted document is
“example.tkd”, the CLI would expect to find a database
script entry called “example.tcl”).

The CLI acts as an important safety net, in case a
scripted document fails to start up properly (perhaps
because a vital script was altered or deleted). As long as
the first script is the CLI, one can examine the contents,
restore scripts through the command line, launch scripts
which validate or repair other parts of the database, and
so on. In a way the CLI is like the BIOS of PC's, or the
bootstrap monitor of embedded systems: rarely
changed, but crucial during startup and recovery.

Note that scripted documents can only be “damaged”
by scripts making improper changes and then actually
committing those changes - system faults, crashes, even
premature exits, will automatically revert the contents
of a scripted document to the last committed state.
Damage to scripted documents due to bypassing the
database code is currently not detected, there are plans
to implement checksums for some key data structures in
MetaKit.

Using Extensions
With scripted documents, everything is fine... until you
need to use dynamically loaded compiled extensions.
These may be unavoidable to interface to existing code
or to achieve acceptable performance for CPU-intensive
tasks. Now, the ugly issue of platform dependence
comes back — conflicting with the simple distinction
used so far: a portable but application-specific scripted
document and a platform-specific but generic runtime.
The question is: where do you put these platform-
specific extensions, in the context of scripted
documents? There are a number of options:

Store the shared library on disk and remember path

This is the standard mechanism provided by Tcl. It can
be streamlined by setting up pkgIndex and auto_path to
automatically find and load extensions. The main
problems of this approach are that different extension
builds needs to be used on each platform, and that the
cost of deployment and maintenance can be high.

Include the shared library in the scripted document

From a deployment standpoint, this is the preferred
way. To be able to load such extensions, the package
mechanism must be told how to extract the shared
library to the disk, and then launch it. This solves the
deployment and maintenance issue, but runs only on the
platform corresponding to the library included in the
scripted document.

Include several platform builds of the shared library

A refinement is to include several shared library builds,
and to select the proper one for extraction at runtime.
This extends the portability to all builds that have been
prepared in this way, at the cost of increasing the size of
the scripted document. Yet another refinement is to also
include a Tcl-only version of the extension, which is
used if no other build is suitable. The Tcl-only version
could be a slower or more limited implementation, or a
script that presents a clear explanation of why this
functionality is not available.

Store shared libraries on an HTTP or FTP server

Given that the potential number of builds for compiled
extensions can be very large, it is tempting to create a
central place, where new builds get added over time.
The package load mechanism can be similar to the
above one, but instead of checking the scripted
document, it would attempt to fetch the appropriate
shared library from a remote server. This requires a
trusted network environment.

Create “vendor-specific” scripted documents

For popular extensions, scripted documents could also
be used to create a special “deployment package” for an

extension such as Itcl/Itk/Iwidgets. It would have as
only task to deploy those extensions, and to easily
manage and upgrade them. Tcl scripts and other data
are stored in this scripted document. In a way, this is an
installer for that vendor's extension, which could take
advantage of scripted documents to provide out-of-the
box execution on any platform, demo's, documentation,
an installation verifier, test suites, a cleanup facility,
and perhaps net-based upgrades.

One last remark: TclKit supports “stubs”, this is
essential on some platforms to be able to load compiled
extensions dynamically.

Practical Experience
The best way to summarize the experience with scripted
documents so far, is: they make deployment fun!

CGI Applications

CGI applications are a great use for scripted documents.
A typical Tcl-based CGI application consists of a
variety of CGI scripts which must be installed. Of
course, a Tcl interpreter needs to be installed. If it needs
to store data in a database, a separate database
extension must be compiled and installed. Finally, if the
application contains pre-loaded data, all of those data
files must be installed. That’s a lot of separate pieces a
webmaster needs to worry about to run your CGI
application, particularly if they are not already using
Tcl for their web site.

A simple example illustrates the scripted document
solution. A CGI application implementing a simple
bug-tracking system (written by Mark Roseman of
TeamWave) started out having all the separate pieces
identified above. It was turned into a scripted document
with just a few simple changes:

• All scripts were added to a fresh scripted document
with just the CLI code in it.

• The database access was altered to use the scripted
document itself for storage, rather than an external
MetaKit data file.

• A few configuration parameters were defined for
easy customization.

• The system was extended to list some help text
when not called as CGI process.

The whole process took perhaps half an hour. The result
is a bug tracking system scripted in Tcl, consisting of
just one file which runs on any system for which there
is a corresponding TclKit executable (Windows,
Macintosh, and several Unix'es). See the reference link
to “BugCGI” [12] at the end to access / customize / use
this system yourself.

WiKit

WiKit [12] is an implementation of a so-called “wiki-
wiki web” — a tool which lets people enter and edit
hyper-linked textual information over the net using
nothing more than a web-browser. WiKit adds things
like a search engine and a Tk user interface when used
locally, and uses MetaKit to store all pages and the
change history. WiKit includes about 2,500 lines of
custom Tcl scripts. Several WiKit based systems have
been in constant use since early 1999 (such as the
Tcl'ers Wiki [14]); their biggest “drawback” being that
it has become too easy to set up lots of them — not a
good idea, in term of content management. Note how
software deployment has become so simple and
effortless, that it no longer matters...

TclHttpd

Matt Newman has created a scripted document
containing Brent Welch's powerful tclhttpd server, thus
creating what must be the most easy to deploy scripted
HTTP server ever. Some additional scripting was
introduced to make the scripted document behave as a
normal file system for the server, and to allow merging
contents from an external path with the files stored
internally. There are a wide range of potential uses for
this system, ranging from deploying a portable
standalone documentation server to full HTTP-based
client/server applications.

TclDist

As a first experiment in automatic script maintenance, a
small generic bootstrap utility called TclDist [12] has
been created as scripted document, which fetches a list
of applications from the web. It then uses the httpsync
[10] protocol to fetch the selected set of files that get
inserted into the scripted document itself. The
application that is created in this way is not only ready
for use — it also knows how to check for new versions
and how to update itself. This net-based mechanism
turns out to be the easiest way by far to deploy scripted
documents. It requires a trusted HTTP server and can
perform efficient differential updates.

Large Scale Deployment

The first commercial project using scripted documents
has been another excellent source of experience. For
confidentiality reasons, this system will only be
described here in general terms. It is a distributed
application with two long-running processes used for
unattended testing of specialized equipment, combined
with two different user interfaces: a management
interface used remotely by administrators to monitor
correct operation and present reports and statistics, and
a test-set interface to let a group of field engineers
schedule ad-hoc and periodic tests to verify/stress
certain parts of the system.

The whole application was built in pure Tcl/Tk plus
MetaKit, and consists of two non-stop server processes
(called STORE and CONTROL) and the two types of
client applications, one of which is installed on about a
hundred workstations (mostly Solaris and Windows
NT). Due to the large number of machines on which the
client packages needed to be present, and the fact that
this project was at the start of a much more ambitious
system with more modules and client application types
to be added later, the project was an ideal context for
deploying software as scripted documents.

The end result: a single scripted document of under 250
Kb, plus one TclKit runtime for each platform is all that
is needed to deploy this elaborate client/server system.
It consists of some 550 KB of Tcl scripts (roughly
14,000 lines of code, stored in compressed form), and it
runs out of the box. The field engineers do not see Tcl,
they simply see a single application, which they can
store and use wherever they like.

The scripted document contains all application logic for
all server and client processes, and adjusts its behavior
based on the name under which it is stored. Copying the
distribution file to a file called “STORE” sets up the
database server. Copying it under the name
“CONTROL” sets up the non-stop scheduler and
equipment interface of this system. The same applies to
both types of client applications in this project.

One further refinement makes this scheme complete:
before the distribution is copied in this way, it is
configured (through the standard scripted document
command-line interface) with parameters which specify
the central server host name and the port to use. As a
result: all clients are pre-configured and know how to
communicate with the main server. Since they are
consistent, there is far less chance of mixing up
incompatible versions of the different applications.
Note also that all this “deployment” is portable, and that
the only platform dependency is a check that the
appropriate build of TclKit is present on the platform.

Upgrades and long-term evolution of this system is
done by upgrading the STORE server, and then having
all other processes synchronize their scripts to the
server. This is automatically done whenever a client
starts up, over the network, but it has so far only been
carried out as an experiment. The goal is to make
upgrades user-initiated but fully automatic, distributed
by the STORE server, and to do this without bringing
the system down, except when a few core components
need to be changed. Further details still need to be
worked out, but it looks like the current design will
support this mechanism.

If you have ever deployed a system of such complexity,
you will understand just how much administrative

effort has been avoided, and why scripted documents
are effective. Several features stand out in the above
example:

Installation is a non-issue. Unless you call copying
and renaming of one or two files "installation", it is
clear that this aspect of deployment no longer matters.

Self-consistency. The combination of all application
logic into a single file greatly reduces the chance of
mixing up revisions and releases.

Net-borne upgrades. Whether on Intranet or Internet,
the fact that scripted documents can safely update
themselves from a central server makes upgrading easy,
and can be automated as far as needed.

Data storage is implicit. The STORE server stores all
application logic and data. Users of the system do not
see this database as a separate entity in the system, it is
simply “part of the server”. The embedded database can
be fully inspected and altered through the general-
purpose Mk4tcl scripting interface.

Self-diagnosis. Since everything now happens inside
scripted documents, a range of deployment-related
tasks can be handled in a more generalized way, by
including some diagnostic scripts as part of the scripted
document. An example of this is a simple “dump.tcl”
script, which has been written to inspect the contents of
a scripted document — any scripted document.

Long term backups. A backup of a scripted document
is more useful than a traditional database or file/tree
backup, because it is more complete: it includes the
essential data, but also the application that manages that
data. Since they are also MetaKit data files, and since
MetaKit has maintained backward file format
compatibility since its first release in 1996 and will
continue to do so, the data remains accessible. If
needed, a utility script could be added to export all data
in XML format. This export potential is permanently
tied to the scripted document, even when transported to
another system or stowed away for a long time.

Scripted documents fulfill the promise mentioned in the
introduction: they solve “a wide range of problems
encountered during and after deployment”.

Future Work
The concept of scripted documents is simple. It took
less than a week of work to make all the essential
pieces play together. But what has been described so far
only scratches the surface of how they could be put to
use. Here are some ways in which scripted documents
could be extended:

Generic self-development and self-management tools

This is the most obvious area of further development:
tools to create, inspect, and alter scripted documents.
As well as far more ambitious ones: an embedded IDE
which lets you develop a scripted document with itself,
a built-in visual design editor, generalized update-over-
the-net tools, hooks for revision control, customer
support embedded in an application, documentation
viewers, an embedded debugger, and so on.

Getting rid of the compiler

The Achilles' heel of scripted documents is the shared
libraries that need to be deployed as part of an
application. A project by the author, called “Minotaur”
[13], explores the usefulness of combining a high-
performance portable Forth engine with scripting
languages. One of the benefits is that tight loops and
low-level functionality can then be written in Forth
instead of C, maintaining the portability which makes
scripting so attractive. Forth can also be used as glue to
shared libraries at run time, removing one of the main
reasons to create C interfaces.

It should be noted that scripted documents are not Tcl-
specific, even though the current implementation is.
There is no reason why the same concept could not be
applied to Python, even shell scripts.

Conclusion
It takes more than just developing software to make
software-based solutions work. This paper has
presented a new concept for packaging and deploying
scripting-based applications which changes the
landscape of software installation, configuration
management, but especially software upgrading and
evolution.

The idea is to use a modular and component-based
approach during development — an approach that
matches the “gluing” nature of scripting well — and
then to combine the pieces in easily deployed and out-
of-the-box runnable “scripted documents” when
delivering complete solutions. The redundancy of
including some modules repeatedly in each software
package is easily offset by the total clarity this
mechanism introduces in the later stages of system
evolution: deployment, maintenance, and upgrading.

The key difference between scripted documents and
wrapping approaches are that scripted documents use a
database to merge application logic and application data
into a single file, while separating out the runtime. A
sharp distinction is thereby made between the platform-
specific infrastructure (the “runtime”) and the platform-
independent application logic plus data (the “scripted
document”).

Scripted documents solve the fragility problems
inherent in separating application code and data. They
greatly simplify multi-platform deployment for the
application vendor, and introduce new opportunities for
software upgrades.

This paper has shown how a simple mechanism can be
implemented as a “TclKit” runtime for Tcl based on
Tcl/Tk and the MetaKit embedded database, and how
effective it ends up being in actual use. Refinements
and future plans have been covered to highlight the
current status and the potential of this approach.

Scripting languages are a major step forwards in
programmer productivity because of their rapid
application development style. Yet they fall short when
it comes to the task of getting a software solution out
into the hands of its users and walking away from it in a
“problem solved, case closed” fashion. Scripted
documents add that final step needed to make scripting
not just effective to build with, but also very effective
to deploy lasting turnkey solutions.

Acknowledgements
This paper originated from a suggestion by Matt
Newman. It would not have been readable without the
patience, feedback, and detailed input from especially
Mark Roseman, as well as Matt Newman, Larry
Virden, and Christian Tismer. I am grateful to each of
them for their valuable advice and suggestions, and to
Jan Nijtmans for extending his Plus patches to make
Tcl work with scripted documents.

References

[1] The Plus patches, Tcl2c, and the new Wrap
extension, by Jan Nijtmans
http://purl.oclc.org/net/nijtmans/plus.html

[2] Tcl Extension Architecture (TEA) by Scriptics
http://www.scriptics.com/products/tcltk/tea/

[3] ProWrap commercial wrapper, by Scriptics
http://www.scriptics.com/products/tclpro/wrapper.html

[4] FreeWrap, a Tcl/Tk standalone, by Dennis LaBelle
http://www.albany.net/~dlabelle/freewrap/freewrap.html

[5] MkTclApp embedding wrapper, by Richard Hipp
http://www.hwaci.com/

[6] Trf transformation framework, by Andreas Kupries
http://www.oche.de/~akupries/soft/trf/

[7] Zlib library, by Jean-Loup Gailly and Mark Adler
http://www.cdrom.com/pub/infozip/zlib/

[8] TkCon console interface for Tk, by Jeffrey Hobbs

http://www.purl.org/net/hobbs/tcl/script/tkcon/

[9] BWidgets user-interface widgets for Tk, by Unifix
http://www.unifix-online.com/BWidget/

[10] Httpsync protocol, by Forrest J. Cavalier
http://www.mibsoftware.com/httpsync/

[11] MetaKit database, by Jean-Claude Wippler
http://www.equi4.com/metakit/

[12] TclKit runtime and the sample BugCGI, TclDist,
WiKit scripted documents by Jean-Claude Wippler
http://www.equi4.com/tclkit/

[13] Minotaur project, connecting Tcl, Python, and
Perl, by Jean-Claude Wippler
http://mini.net/pub/ts2/minotaur.html

[14] Tcl'ers Wiki, a collaborative web site for the Tcl
community, maintained by Jean-Claude Wippler
http://purl.org/thecliff/tcl/wiki/

© 1999 Jean-Claude Wippler <jcw@equi4.com>
[http://www.equi4.com/jcw/scripdoc.html]

