
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

A M U L T I -T H R E A D E D S E R V E R
F O R S H A R E D H A S H TA B L E A C C E S S

Andrej Vckovski and Jason Brazile

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

A Multi-threaded Server for Shared Hash Table Access

AndrejVckovski andJasonBrazile
Netcetera AG�

andrej.vckovski,jason.brazile� @netcetera.ch

Abstract

This paperpresentsa multi-threadedsocket server al-
lowing accessto sharedhashtables. It is implemented
usingTcl 8.1multi-threadingcapabilitiesandrunsmul-
tiple Tcl interpretersto serviceclient requests.Theap-
plication is designedasa pre-threadedserver which al-
lows a singleworking threadto handlemany requests.
Thecentralshareddataobjectis ahashtablewith struc-
turedvalueswhich allows accessby all threads. Syn-
chronizationis basedon a reader/writerlock implemen-
tation usingthe synchronizationprimitivesavailablein
Tcl, i.e., mutexes and conditionvariables. The appli-
cationachievesinsertratesthat aresignificantlyhigher
than what current commercialdatabasemanagement
systemsachieve. Theusageof third-level languagepro-
grammingin C andapplication-specificscriptingin Tcl
allowsadesignbasedonalight-weight,robustkernelon
the onehandandeasilymodifiableapplication-domain
codeon the other. The experienceswith thread-safety
andotherthreadingfeaturesin Tcl 8.1havebeenlargely
positive in this real-world application.

1 Introduction

Therearetwo motivatingfactorsfor presentingthissys-
tem. First, it providesanexampleof theusageof some
of the multi-threadingcapabilitiesintroducedwith Tcl
8.1. Second,it providesa generalsolution to the fre-
quentdesireto haveshared,directaccess,tabulardatain
the context of transaction-orientedapplicationssuchas
programswith anHTML graphicaluserinterface.

The original motivation for this application,however,
differsslightly. Theinitial purposewasto supportadata
feedhandlerto provide a cachefor pseudo-real-timefi-
nancialmarket information. We describethe initial re-
quirementsin a first section,which is followedby adis-
cussionof thesystemarchitecture.

Then,we give anoverview of two centralimplementa-
tion aspects:a pre-threadedsocket server andsynchro-
nizedaccessto Tcl hashtables.In thefinal section,we
discussour experienceswith theTcl threadingAPI and
someperformanceresults.

2 Application background

Several largedatavendorssuchasReuters,Bloomberg,
Bridge andothersprovide numerouskinds of financial
market information,suchasstockquotes,usingvarious
formatsandmechanisms.Also, many stockexchanges
worldwideprovidedirectaccessto theirdatausingvari-
ous formatsandmechanisms.A commoncharacteris-
tic of all thesedataproviding mechanismsis that the
datais deliveredasasequenceof incrementalupdatesto
somebaseinformation. Suchincrementalupdatesusu-
ally containa uniqueID identifying the item beingup-
datedandthenasetof key/valuepairsproviding thenew
attributesof that item. Suchattributesmight be for ex-
amplethe last paid price andits associatedtime stamp
for agivenfinancialinstrument.

Thereare basicallytwo typical accesspatternsto that
sortof information.A usereitherrequestsall or selected
attributesof a financialinstrument(request/response)or
theusersubscribesto a financialinstrumentwith thein-
tentionto receive all further updatesto that item (sub-
scribe/notify).Sincetheupdaterateson datafeedscan
bequitehigh(severalhundredupdatemessagespersec-
ond)it is commonto storeall informationin mainmem-
ory, especiallyas memorycost currently allows main
memorysizesof several gigabytes. Thus, suchmain
memorycachesneedto supportinsertionof incremen-
tal updateson theonehandwhile beingableto answer
userqueriesfor currentdataon theother.

Theapplicationpresentedhereneedsto handlevarious
datafeedsasdescribedabove. Therefore,it wasneces-
saryto provideanenvironmentthatallowsquickchange
cycles. If 6 differentdataformatshave to besupported

andeverydataformatdefinitionchangesonceayear, the
overallchangeratemightbeonechangeevery2 months.
Also, thefeedhandler, beingaserverordaemonprocess,
needsto be very robust becauseit will have very long
run timesandbeaccessedby many clients. For the im-
plementation,therewerebasicallythreeimplementation
alternatives:

� Use a commercial(disk-based)databasemanage-
ment system(DBMS) that can be tunedto cache
tablesentirely in main memory(for performance
reasons)

� Use a commercial main-memory database
(MMDB)

� Developaspecificcachemanager

The first two options had been rejectedbecauseof
price/performanceissues(e.g., an RDBMS that hasto
provide theseupdateratesis very expensive to build
and maintain) as well as robustnessand complexity
(MMDB) issues.

Also, thetypicaldatastructurecannotbeefficiently de-
scribedasrelations.Therearemany possibleattributes
for every item (instrument),but in most cases,only a
few of themactuallyhave values,i.e., most ‘columns’
are ‘null’. In addition, frequent changesto the set
of attributesare made,usually consistingof the addi-
tion of new attributes. Therefore,a relationalapproach
would be either computationallyexpensive if the at-
tributeswould needto be normalizedin a secondta-
ble, or hardto maintainif thedatabasestructurehadto
be permanentlymodified. Basedon thesearguments,
we decidedto build a customfeed handlerand cache
managementsystemusingasmuchexisting technology
aspossibleand focusingon simplicity, robustnessand
maintainability.

3 System architecture

Basedontherequirementsdiscussedabove,wechosean
implementationstrategy consistingof:

� A multi-threadedsocketserver

� UsingTcl’shashtablesfor datastorage

� Using one Tcl interpreterper servicingthreadto
provideeasycustomizationof datamanipulation

Theideawasthattheserverwouldrunathreadfor every
connectedclientandmaintainasetof sharedhashtables.
Every threadwould have its own Tcl interpreterwith
which the clients would communicate,and the inter-
preterwould have specialcommandsthat allow clients
to accessthesharedhashtables,i.e., insert,retrieveand
deletekeys andvalues.Theserver shouldonly provide
very generalfunctionality andlet usersor client appli-
cationsimplementmosthigherlevel functionalityusing
Tcl coderatherthan more error proneC or C++ pro-
gramming.

This applicationneedsto run on Unix platformsandso
we choseC, Tcl 8.1 andPOSIX threadsas the imple-
mentationbasis.C++ wasconsideredsomewhatfragile
becausein multi-threadedapplicationsit is alwaysvery
importantthat one knows exactly what is going on to
prevent raceconditionsanddeadlocks.C++ compilers
and runtime libraries tend to include hiddenoverhead
into the applicationcodethat cannotbe easily tracked.
Also, we wantedto reduceoverall complexity asmuch
aspossible.

Thechoiceof amulti-threadedserverallowsfor aneasy
usageof shareddatastructures,e.g. as in the hashta-
blesmentionedabove. However, unlikea forking server
that spawns off separateprocessesto servicerequests,
a multi-threadedserver is lessrobust in the sensethat
thereis no addressspaceisolationpreventingproblems
in servicinga requestthat can impair overall stability.
Still, we believe that by makinga server asgenericas
possible,we canreducethecomplexity to a level where
it is possibleto design,implementandtestafairly stable
multi-threadedserver.

Thecommunicationwith clientsis basedon TCPusing
Berkeley socketswith a simplemessageformat. A re-
questmessageconsistsof Tcl codethat is evaluatedin
thethread’sTcl interpreter. Themessageresultis either
the resultof the evaluatedTcl codeor the correspond-
ing errormessage.That is, themodelis similar to Tk’s
send command.

Theapplication’smainthreadalsohasa Tcl interpreter.
Thisinterpreteris “connectedto” standardinputandout-
put (i.e., takescommandsfrom standardinput) andhas
a few additionalcommandsthatsupportcreationof the
serversocket,maintainingthenumberof currentthreads
anddoingsignalhandling.Signalhandlingis animpor-
tant requirementfor long-runningprocessesandis dis-
cussedin a separatesectionbelow.

In additionto threadingandhashtableextensions,every
Tcl interpreter(i.e.,theper-clientthreadinterpretersand

main threadinterpreter)have additionalcommandsfor
logging. Similar to signalhandling,usefulloggingwith
severallevelsof verbosityis alsovery importantin long
runningprocessesbecausesuchprogramsusuallyhave
no userinterfaceandthereforerely on log files for their
output. Signalsand log files canbe seenasa kind of
primitiveuserinterfaceto daemonprocesses.

Thearchitecturedescribedabove is shown in figure1.

Thenext sectioncoversa few aspectsof the implemen-
tation.

4 Shared hash tables and locking

Most objectsbeingusedby multiple clientsat thesame
time have a need for some kind of synchronization.
Sometimesthatneedis even thekey motivationfor the
object to be usedby multiple clients. In our case,the
synchronizedobjectsare hash tables that can be ac-
cessedby all threads.Thesynchronizationhasto guar-
anteeconsistency of thehashtableswith parallelinserts,
updates,and querieson the data. The selectionof a
synchronizationmechanismusuallydependsstronglyon
theexpectedaccesspatternswhich cansignificantlyin-
fluencesystemperformanceif, for example,an imple-
mentationvariantis chosenthat leadsto high lock con-
tention. The main synchronizationquestionswe faced
hereweresimilar to typical locking issuesin database
managementsystems:

� Lockinggranularity

� Lock sharing

Locking granularity describesthe trade-off between
fine-grainedlocking, which minimizeslock contention
but needsa largenumberof locks to beacquiredwhen
doingoperationsinvolvingmany dataitems,andcourse-
grained locking, which uses fewer locks at the ex-
penseof performance.For example,mostcommercial
databasemanagementsystemsoffer different levels of
lockinggranularity. Onfull tablescanssingletablelocks
areused,while cursoroperationsrely on a logical row-
level lockingor aphysicalpage-level locking. However,
suchadaptive locking granularitiesalsointroducea lot
of additionalcomplexity which - especiallyin the case
of locking - increasesthe risk of errorsanddeadlock
situations.

Lock sharingdescribesthe situationswherethereis an
accesspatternwhich allows readersand writers to be
distinguished. Readerscan be synchronizedusing a
sharedlock (many readerscansimultaneouslyaccessa
resource)while writersneedexclusive accessto the re-
source.Again, thereis usuallya trade-off betweenus-
ing exclusive locks andsharedlocks. Sharedlocks are
typically moreexpensiveto acquirebut reducelock con-
tention.

In our application,a few estimatesshowedus that asa
first approximation,it would be sensibleto useshared
(reader/writer)locking on theentirehashtable.That is,
a readeralwayslockstheentiretablefor sharedaccess,
anda writer locks the entiretablefor exclusive access.
Thisapproachturnedout to beveryefficient in ourcase
wherethereis typically only oneor a few writers and
many readers.

The (preliminary) Tcl 8.1 threadingAPI offers (simi-
lar to POSIX threads)two synchronizationprimitives:
Mutexes(exclusive locksor semaphores)andcondition
variables.It wasthereforenecessaryto provideourown
implementationof reader/writerlocksbasedonmutexes.
Consideringthe frequentneedfor reader/writerlocks
andtheirsimpleimplementation,it wouldbeworthwhile
to includeanimplementationin theTcl API.

Oursharedhashtableimplementationwasthereforepro-
tectedby a singlereader/writerlock thatis acquiredde-
pendingon the type of operation. The hashtable is
basedon Tcl’s hashtablewith the extensionthat there
is additional structureimposedon the valuesentered
in the hashtable: all values(’rows’) areenteredasat-
tribute/value pairs allowing selective ’columns’ or at-
tributesto bequeriedandupdated.

The accessto sharedhashtablesis implementedusing
two commandprocedures. The first commandcalled
sharedhash is usedto create,deleteandusehashta-
blesin aninterpreter. After having eithercreateda new
hashtableor acquireda handleto an existing hashta-
ble,asecondcommandis createdin thatinterpreterwith
thesamenameasthehashtable.Thehashtableis then
accessedusingthis commandmuchin thesameway as
for exampleTk widgetsor [incr Tcl] instancesareasso-
ciatedwith a command,asthefollowing exampleillus-
trates:

create a shared hash table
with the name ’foo’
sharedhash create foo 20
use the hash table named
’foo’ in this interpreter

client application per-client thread
result

Tcl code

client application per-client thread
result

Tcl code

shared hash

tables

client application per-client thread
result

Tcl code

main thread

signal handler

standard out

standard in

signal

cache manager

per-client thread

per-client thread

(idle)

(idle)

Figure1: Architectureoverview

shared hash use foo
access the shared
hash table
foo set 12345 {

attrA valueA
attrB valueB

}
set an array with the
attributes of the hash value
array set res [foo get 12345]

The following subcommandsfor the sharedhash
commandaresupported:

sharedhash create name ?maxattrs?

Createsa new sharedhash table with the given
namewhich can hold at most maxattrs attributes
perrow.

sharedhash use name

Makesthe sharedhashtablewith the given name
accessiblein thecurrentinterpreterasa command
with thesamename.

sharedhash names

Returnsa list of all definedsharedhashtables

sharedhash forget name

Removesa referenceto thesharedhashtablefrom
this interpreter, i.e., deletesthe associatedcom-
mand. If that was the last reference,deletesthe
hashtable.

Thehashtableis thenaccessedusingthefollowing sub-
commands:

name set key attribute-value-list

Setstheattribute-value-listto thecurrentcontentof
the hashtablesvalueassociatedwith key, deleting
all previouslydefinedattributes.

name get key ?attribute-list?

Getseitherthenamedor all attributesfor thegiven
key.

name update key attribute-value-list

Updatesthecurrentvaluesassociatedwith key with
theattribute-value-list.

name names ?pattern?

Returnsa list of keys matchingthe patternor all
keys

name attributes

Returnsa list of all thecurrentlydefinedattributes

name delete key

Removestheentryfrom thehashtable

name foreach pattern varnames attributes code

Loopsover all entrieswith keys matchingthepat-
ternandassignsthevariablenamesin varnamesthe
valuesof theattributesattributes.

name updateforeach pattern variablename code

Loopsover all matchingentrieswith a write lock
andexecutescodefor everyentry. Thecodecanac-
cessthecurrentelementusingaspecialkey #cur-
rent.

name stats

Returns hash table statistics as returned by
Tcl HashStats.

5 Pre-threaded socket server

As mentionedabove, performancewas a critical is-
sue. Therefore,we decidedto basethe server on a
pre-threadeddesign[1]. This meansthat the servicing
threadsarenot createdfor every requestbut pooledin
advance.Thisapproachhasa few advantages:

� Threadscanbeeasilyre-used.Initializationssuch
asthecreationof a Tcl interpreterneedsonly to be
doneonce.A threadcanservicemany requests,i.e.,
not every new requestneedsthecreationof a new
thread.

� Overall serverdesignis moresymmetricalbecause
there is not a specialthreadthat acceptsconnec-
tionsandspawnsoff new threads.

However, there are also somedrawbackswith a pre-
threadedsolution. As the load changesover time, it
mightbenecessaryto asynchronouslycreateanddestroy
threads.While thecreationis simple,thedestructionof
runningthreadsis nottrivial, especiallyif thedestruction
shouldnotbedeferred.

A servicingthread’smainfunctionis to performthefol-
lowing steps:

1. incrementthethreadcounter

2. createaninterpreter

3. registerall additionalcommands

4. evaluatethreadconstructorTcl code

5. while (terminationnotneeded)

(a) acquireexclusive lock to accepta connection

(b) wait for a incomingrequest(accept)

(c) releaselock

(d) incrementworking threadcounter

(e) while (notend-of-fileof socket)

i. receivea message

ii. evaluatetheTcl code

iii. sendthemessagewith theresultback

(f) decrementworking threadcounter

(g) checkif therearethreadsscheduledto termi-
nate

6. evaluatethreaddestructorTcl code

7. deleteinterpreter

8. decrementthreadcounter

9. terminatethread

6 Main thread

In additionto therequesthandlerthreads,theapplication
alsorunsa mainthreadthatis differentfrom therequest
handlers.ThemainthreadexecutestheTcl Main pro-
cedureand handlesstandardinput. The interpreterin
themainthreadcontainsadditionalcommandsto create
a (listening)server socket andto control thenumberof
workingandfree(notboundto a request)threads.

Longrunningapplicationsin anUNIX environmentusu-
ally needto handlesignalsfor variousreasons.For ex-
ample, it might be necessaryto performcleanupafter
the processhasbeennotified to terminate(SIGTERM
signal),theapplicationmightwantto re-readconfigura-
tion information,dumpinternalinformationto log files
or changelog levels. In multi-threadedapplications,
signal handlingneedsspecialconsiderationas the so-
calledasync-safety(meaningthatasystemcall is safeto
be interruptedby an asynchronoussignaldelivery) and
thread-safety(meaningmultiple threadsmaysimultane-
ouslycall the function)areorthogonalin thesensethat
thread-safecallsarenot necessarilyasyncsafe[2]. For

thatreason,thebestwayto handlesignalsis to blockall
signalsin all threadsandcreatea specialsignalhandler
threadthat only waits for signalsandusesthreadsyn-
chronizationmethods(e.g.,conditionvariables)to no-
tify otherthreadsif necessary.

Therefore,the main threadin this applicationcreatesa
dedicatedsignalhandlerthreadandalsodefinesa new
Tcl commandthat allows the main thread’s Tcl inter-
preterto be notified by new signals. To keepthe en-
tire applicationsimple,wedecidednotto useTcl’sevent
loopandnotificationmechanismfor thispurpose.

In additionto thesharedhashtablefunctionality, thefol-
lowing commandsareavailablein themainthread’sTcl
interpreter:

server port ?nthreads ?constructor-code? ?destructor-code?

This commandcreatesa server socket andoption-
ally nthreadsservicingthreadswaiting for connec-
tions.It alsoallowsconstructoranddestructorcode
blocksto bespecified.Thesecodeblocksareexe-
cutedin theservicingthread’s interpreteraftercre-
ation of the threador before terminationof the
thread,respectively. This canbe used,for exam-
ple, to definevariablesandprocedures,or load li-
brariesor sourcecodemodules.Thiscodedoesnot
useTcl’ssocket function, in orderto have more
controloversocketoptionssuchasaddressreuse.

servercontrol ?minidlethreads? ?maxidlethreads?

If calledwithout arguments,thecurrentnumberof
availableandrunningthreadsis returned.If called
with minidlethreadsandmaxidlethreads, it ensures
thatthereareat leastminthreadsandatmostmaxi-
dlethreads idle, i.e., non-servicingthreadsavail-
able.

waitforsignal ?sec? ?usec?

Waitsthegiventime(or forever)for any signaltobe
deliveredto this applicationandreturnsthe signal
number.

Using this call, a typical codeexamplerunning in the
mainthreadmight look like this:

#!/usr/local/bin/ncm

create a shared hash
sharedhash create foo

create a server socket
and 10 servicing threads
server 6000 10 {
sharedhash use foo

} {
sharedhash forget foo

}

set terminate 0
while {!$terminate} {

wait 2 sec for a signal
set s [waitforsignal 2]
if {$s==15} {
set terminate 1

}
adapt number of idle threads
servercontrol 5 20

}

7 Tcl and multi-threading

Multi-threadingsupporthasbeenon thewish list of the
Tcl community for a long time. This was motivated
mainly by applicationareaswhereTcl wasusedasan
embeddedscripting languagefor somelarge software
system,and where that software systemwas a multi-
threadedapplication.Theproblemwith Tcl wasnot so
muchthatit did notsupportthreadingbut thattheTcl li-
brarywasnot thread-safeitself (i.e.,usingnon-reentrant
functions, unsafesystemcalls etc.). Two extensions
haveemergedin thecommunityto addthread-safetyand
eventuallyalsothreadsupportto Tcl. SteveJankowski’s
MTTcl [3] usedSolaristhreads.Anotherextensionwas
PtTcl or Pthreads-Tclby RichardHipp andMike Cruse
usingPOSIXthreads[4]. Finally, thread-safetymadeits
wayinto theTcl corewith Tcl 8.1.Thisis insofarimpor-
tantasmostof thethreadingissuesdoindeedaffectcore
componentsof Tcl andtherefore,with Tcl 8.1,patching
of theTcl coreisn’t necessaryanymore.

Themulti-threadingrelatedissuesin Tcl 8.1are:

� Tcl core is threadsafe,i.e., the tcl library canbe
usedin multi-threadedapplications

� Someinternaldatastructuresarestoredas thread
specific data. This allows, for example, every
threadto have its own eventqueue.

� Somenew API callswereintroducedto createmu-
texesandconditionvariables.However, it seemsat
thetimeof thiswriting thatthisAPI isn’t yetfinal.

Themostnotablemissingfeaturesareofficial API calls
for threadcreation,schedulingandcancellation.Even
thoughtherearethreadcreationabstractions(e.g.,tocre-
atea notifier thread),therearenoexternallyusable(that
is, declaredin theexternalheadertcl.h) functionsfor
threadcreation,cancellingandscheduling.For thetime
being,this is awisechoicebecauseprovidingaplatform
independentabstractionwouldprobablydisarmmany of
the neededfeaturesof the platform-specificthreadim-
plementation.For example,POSIXthreadsallow a rich
set of attributes for every threadthat are not directly
matchedby WindowsNT’s differentthreadmodel.The
decisionto stick with a leastcommondenominatoris
notaproblemif thetherearewell-definedinterfacesand
transparentdatastructuresto theunderlyingOSspecific
threadingsystem.For example,it waseasyto provide
reader/writer-locks(basedon Sun’sSPLITpackage[5])
usingmutexesandconditionvariablesonceit wasclear
that the restof Tcl did not usethreadcancellationany-
where.

Our experienceswith Tcl 8.1 and its multi-threading
supportshowed that it is a safechoiceto useTcl 8.1
in multi-threadedapplications. Even if noneof Tcl’s
threadingAPI is used(i.e., not even mutexes or con-
dition variables),the thread-safetyandusageof thread
specificdatafor certaininternaldatastructuresis very
useful if not mandatorywithin multi-threadedapplica-
tions.However, it will benecessaryin thefutureto pro-
vide detailedand precisedocumentationof thosefea-
tures. Whenwriting multi-threadedapplications,engi-
neersareverymuchinterestedin knowingrelevant“side
effects” suchasthecreationof backgroundthreadsand
the like. Debuggingmulti-threadedapplicationsis not
trivial andtherefore,oneexpectspreciseinformationon
whatshould/will happenin API calls.

8 Conclusion and future work

The work presentedhereshows a successfulexample
of using Tcl’s new multi-threadingfeaturesin a real-
world application.Moreover, it provesagainthata de-
sign approachusinga small, reliablekernelwritten in
a third-generationlanguageanddelegatingmostof the
overall applicationcomplexity to a scripting language
is a promisingengineeringapproach. And, especially
when developing multi-threadedapplications,fighting
complexity is the main objective of a systemdesignin
orderto avoid deadlocks, raceconditionsandthe like.
Theentirecachemanagerandsharedhashtableimple-
mentationasdescribedin hereis lessthan3000linesof

C code(not includingtheTcl library, of course).

The lightweight implementationis also a positive in-
fluenceon performance. On a Sun 270 MHz Ultra-
SPARC II processor, up to 1000insertspersecondcan
beachievedwith simultaneousqueries.Theapplication
wentinto productionin lateSummer1999in continuous
(7x24hour)operationandhasnotposedany majorprob-
lem since.Theapplicationhandlesmorethan1 million
updatesperday with peakratesof severalhundredup-
datespersecond.Thebuilt-in Tcl hashfunctionin Tcl’s
hashtable implementationproved to be very effective,
maintaininga shortsearchdistanceandoverall balance
evenin tableswith morethan100,000entries.

Our future plans with the cachemanagerare to pro-
vide bettercheckpointing(currently, thehashtablesare
periodicallywritten to disk by a specialclient process
thoughno consistency is enforced)andmoresynchro-
nizedelementsamongtheservicingthreads,e.g.,named
messagequeues.Eventually, weplanto releasethecode
into thepublicdomain.

9 References

1. Stevens,W. Richard. Unix NetworkProgramming
(Vol 1). PrenticeHall, 2nded.,1997.

2. Lewis, Bill, and Berg, Daniel J. ThreadsPrimer.
PrenticeHall, 1995.

3. MTtcl - Multi-threading for Tcl <http:
//www.activesw.com/people/steve/
mttcl.html>

4. AnIntroductionTo Pthreads-Tcl<http://www.
hwaci.com/sw/pttcl/pttcl.html>

5. Solaris to POSIX Interface Layer for
Threads (thread.c, thread.h and synch.h)
<http://www.sun.com/workshop/
threads/apps.html>

