
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

P R O X Y T K : A J AVA AP P L E T
U S E R I N T E R F A C E T O O L K I T F O R T C L

Mark Roseman

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Proxy Tk: A Java applet user interface toolkit for Tcl

Mark Roseman
TeamWave Software Ltd.
roseman@teamwave.com

ABSTRACT

Proxy Tk allows a Tcl program to provide a highly interactive web-browser user interface, without requiring the end
user to download additional software. It uses a thin client design, where a server-side Tcl application communicates
with a very small generic Java applet running in the browser, sending it commands to create and modify widgets,
and receiving events from the user. A Tk-like layer encapsulates the communication protocols to provide a familiar
programming paradigm, and allow easy porting of existing code.

Introduction
For some applications, running in a user’s web browser
rather than as a conventional workstation application is
important. Existing Tcl solutions support building a
wide range of web-based applications, but do not
address interactive user interfaces in situations where
downloading extra software may be problematic.

This paper describes Proxy Tk, an architecture that
allows very interactive user interfaces to be developed
in Tcl and run within a web browser, without the need
for the end user to download additional software.

It uses a thin client design, where the main Tcl
application, rather than running on the user’s
workstation, runs on the server. It directs a small Java
applet running in the user’s web browser to provide its
user interface. Because this applet is generic, it supports
a range of different applications, and can be extended
for specific cases. This approach leverages the high-
level, rapid development, and easy extension
capabilities of Tcl, while still delivering a web user
interface through the Java applet.

We begin the paper by examining the demand for web
based software, using our own TeamWave Workplace
application as an example. After considering several
alternative Tcl development approaches, we provide an
overview of our solution, and then proceed to detail its
two key features, the communication protocols and the
Tcl interface. We then examine how we used Proxy Tk
to migrate our own software from a standalone to a web
based application, and discuss issues that can arise
using this approach in various other applications.

Though not a panacea, Proxy Tk solves an important
part of the problem of delivering web applications using
Tcl.

Web-Based Software
For many application areas, there is a strong preference
for software that is delivered to users via their web
browser, rather than as a traditional application installed
on their own workstation. Arguments for web-based
software vary, grounded both in reality and perception.

For example, one-time or sporadic tasks may not justify
the time, effort, resources and security checks needed to
install new software. Downloading new applications or
installing system add-ons may be too complicated for
novice users [4]. Many people (wrongly!) argue since
users already know how to use browsers, web-based
applications will have no learning curve. These various
concerns often end up encoded in organizational
policies, making it even more difficult to adopt
software that is not web-based.

While HTML or Javascript solutions are alternatives for
many form based applications, programs requiring
greater richness or interactivity must rely on either Java
or a browser plugin approach. Unfortunately, we hear
many of the same sentiments about downloading new
applications expressed about plugins (except of course
those bundled with the browsers).

TeamWave Workplace

As one example of the demand for web-based software,
consider our own TeamWave Workplace application.
One or more users running a client application connect
to a server, where they share data and communicate
with each other, using chat, whiteboards, and other
tools. The user interface is shown in Figure 1.

Both the client and server are large programs, written in
a mix of C/C++ and Tcl/Tk. The client is particularly
complex, containing several different Tcl interpreters,
one for each of the tools. The architecture of an earlier
prototype of the system is described in [6].

While many users were fine with downloading and
installing our client (completely “wrapped” and a
simple install), we continued to receive requests for a
web version. Groups running “virtual communities”
needed to lower the barriers for new users to join and to
use the community frequently. In practice, users would
not make the extra effort to download the software
unless they had a very pressing need. In some situations
(e.g. Internet cafes, labs), installing software to use the
community was impractical. For some of our key
markets, a web-browser version was essential.

A Java version seemed the right thing to do, but would
involve developing an entirely new code base in
parallel with the existing code base of our standalone
version. The prospect of abandoning scripting
languages for our application in favor of a systems
language like Java was also not appealing. We had also
just released a Tcl SDK for developers to extend the
application, and could see no way to allow this from the
Java side.

Finally, we were not thrilled by the prospect of trying to
develop a large Java applet, when so many who had
attempted such projects had failed. What we really
needed was a solution that would preserve our code
base as well as the robustness and rapid, higher-level
development we were accustomed to with Tcl, yet still
run as a Java applet.

Existing Approaches

Tcl developers have several excellent options to them
for developing web-based applications, each suited to
different types of applications.

Microscripting. Using tclHttpd or another Tcl-savvy
web server, small Tcl scripts can be executed on the fly
and their results embedded in the HTML page [7]. This
solution is restricted by what is possible to deliver in
HTML, and therefore cannot be used to deliver a
sufficiently rich and interactive user interface.

CGI. Using a library such as cgi.tcl, running against any
web server, Tcl developers can easily write CGI scripts
to do a variety of forms processing [3]. Again, the user
interface presented by CGI scripts is limited to what
can be provided by HTML.

Jacl. By providing an implementation of Tcl written
entirely in Java, this approach has promise for
delivering more interactive user interfaces [1].
However, the current version is both incomplete and
cannot run as an applet within a web browser.

VNC. This program [5] (and similar software) takes a
Unix X11 desktop and sends it to a remote viewer,
similar to how the X11 protocol can work over a
network. While a Java applet viewer is available, this
solution works with only the entire desktop, not a single
window. Multiple instances of the application cannot be
run off the same machine; multiple users all share the
same desktop display. Further, because it operates at a
very low level, high bandwidth and low latency
networks are essential.

Tcl/Tk Plugin. The Sun Tcl/Tk Plugin allows running
full Tcl/Tk scripts safely in a web browser [2]. Based
on the standard Tcl/Tk code base, the plugin is capable
of very sophisticated user interfaces. However, because
the plugin is not bundled as a standard part of existing
browsers, it requires an extra download and install step,
which as we have seen may be an obstacle for some
applications. Even if the plugin were bundled with
existing browsers, a custom plugin would be needed for
applications requiring any C extensions.

In this paper, we consider a new approach, capable of
delivering very interactive web-based interfaces, yet not
requiring users to download additional software.

Architecture Overview
We are basing our approach on a “thin client” design.
In a conventional application architecture, the code for
the application runs entirely on the user’s workstation,
using the workstation’s own windowing system to
present its user interface. This is known as a “thick
client” design.

Figure 1. TeamWave Workplace user interface.

In the “thin client” design we are presenting here, rather
than a single component running on the user’s
workstation, the system consists of two software
components, the “thick” server and the “thin” client.
The server is a Tcl program running on a network
server, and implements the bulk of the application. This
is the same code that would normally run on the user’s
workstation in a thick client design — we are now
migrating this code to instead run on a network server.
This Tcl application communicates with a thin client,
which is a generic Java applet, running in the end user’s
web browser. This thin client provides the user
interface for the application.

Though our application is inherently network oriented,
in any situation where web browser solutions are called
for, servers must exist, making this architecture viable.
We’ll consider in our case study later in the paper how
to apply this architecture to applications that in their
original form use a client-server architecture, where the
main application running on the user’s workstation
talks to a server program on a remote machine. But
again, in the normal case, we’re talking about web-
enabling applications that used to run entirely on the
user’s workstation, with no server component.

The applet doesn’t know about our specific application,
but is able to respond to simple commands sent from
the Tcl server program. These commands direct the
applet to create its user interface, and to communicate
user interactions back to the server. The Java applet
then consists solely of a general purpose “widget

server” used by the server-side Tcl program to build the
complete user interface at run-time.

As an illustration, consider an application that asks a
series of questions of the user, the next question based
on the answer to previous ones. Using our architecture,
the Tcl server application will know about the different
questions and the logic to chose between them. All our
Java thin client needs to know is how to ask a question
of a user and send the response back to the server. A
simple exchange is illustrated in Figure 2.

This dialog example is still fairly high level; the thin
client needs considerable knowledge about how to ask a
question of the user, even if it doesn’t know about the
specific questions to ask. What we’ll need to make the
thin client more general is to work at a lower level,
more akin to individual Tk widgets.

Consider what could be built if your Tcl program could
communicate to the Java thin client using something
like a Tk canvas widget. It could instruct the applet to
create various line, shapes, text and other items. The
thin client could respond to mouse events by sending
messages back to your Tcl program, which you handle
in a way specific to your application. It is at this level
of granularity that we’ve actually constructed this
architecture.

Design Goals

When designing this system, we had several goals in
mind, both reflecting our particular requirements and
also what we perceived as the potentially wide-ranging
uses of this thin client approach.

Run in current browsers. Because we actually wanted
to deploy this software, we needed to balance our desire
to use the latest and greatest Java features in the applet
against what people were actually running. We chose to
target browsers supporting JDK 1.1.

Simplify the thin client. We wanted to design the
system, including the network protocol, to make the
Java thin client side as simple as possible. Keeping less
code in the applet not only makes for a faster download,
but allows us to leverage C code extensions on the
server for performance and more functionality.

Don’t assume Java. Where possible, we wanted to
design the protocol so that it was more generic, and
didn’t assume Java on the thin client end. This would
let us consider other implementations, such as e.g.
ActiveX on Windows, or design thin clients for
platforms that may not support Java well, or at all, e.g.
PalmPilot. As such, not only should the protocol syntax
not rely on Java-specific tricks (e.g. serialized objects),
but the message contents should minimize assumptions
about how the Java client would be implemented.

Server (Tcl) Thin Client
(Java)

Dig up question
from database…

DIALOG YESNO “Is
Red your favorite
color?”

Respond to
message by putting
up dialog, wait for
user to press button

DIALOG RESPONSE yes

Based on response, dig up
next question from
database…

Figure 2. Example of thin client interaction.

Easy Tcl interface. We didn’t want developers to have
to interact with communication protocols directly, at
least not unless they were adding new capabilities to the
toolkit (analogous to coding a new widget in C). The
natural choice is a Tk-like interface, where a “proxy
widget” on the server interacts with the thin client using
the communication protocols. In keeping with the goal
of simplifying the thin client, advanced features (e.g.
canvas tags) would normally be implemented strictly in
these server-side proxies; the thin client would know
only about object ids.

Extensible. The protocol should be extensible, so that
new functionality can be added if required for particular
applications (e.g. more features, better performance).
The Tcl server application should also be able to
determine if extensions are present on the thin client,
and to take advantage of them if so.

Communication Protocols
This section describes the lower level communications
protocols upon which the Proxy Tk architecture has
been built. We'll describe the actual communications
mechanisms by stepping through an application of how
it would be actually used.

In our example, we are running our Tcl server
application on the machine www.company.com. This
machine is also running a web server; because of Java
security restrictions, our applet will only be able to
connect to servers on the same machine as it is
retrieving web pages from.

Making Connections

A user on another machine uses their web browser to
open up the web page at this URL:

 http://www.company.com/myapp.html

This page contains the following HTML:

<html>
<body>
<applet code="ThinClient.class"
 width="400"
 height="400">
<param name="host"
 value="www.company.com">
<param name="port"
 value="9900">
</applet>
</body>
</html>

When this web page is loaded, it will run the applet
stored in ThinClient.class, passing as parameters the
host and port of our Tcl server application. On starting,
the applet will make a socket connection to this server.

The Tcl server application is written something like the
following. It sets up a listening socket, and waits for
connections from a thin client, When it gets one, the
server creates a new Tcl interpreter for that particular
thin client. It then loads a Tcl package called "proxy"
into the new interpreter, which provides routines to
send and receive messages from the thin client, defines
proxy widgets, etc. It then transfers the socket to the
new interpreter. Finally, it sources the Tcl program
containing the code for our application. That program
will then communicate with the thin client.

Using multiple interpreters, one for each client,
removes the possibilities for namespace conflicts
between client proxies, and also opens up the
possibility of using one thread per thin client, for
performance. Though not a fundamental characteristic
of our architecture, using multiple interpreters did prove
to be a useful design choice in our case.

Main server application code
socket -server acceptCmd 9900

proc acceptCmd {sock addr port} {
 set interp [interp create]
 interp transfer "" $sock $interp
 $interp eval package require proxy
 $interp eval proxy::init $sock \
 $addr $port
 $interp eval source myapp.tcl
}

Messages

Both the Tcl server-side and the Java thin client watch
their sockets for messages sent from the other side.
Though any reasonable framing strategy could be used
to define the boundaries of messages, we chose simple
carriage return delimited strings, with appropriate
quoting for carriage returns embedded in the message.

The actual format of the messages is not defined, other
than it must start with a single word (i.e. sequence of
non-space characters), and may optionally be followed
by a space and any further sequence of characters.

This first word signifies the message handler that is
responsible for handling this command. Both the Java
side and the Tcl side consist of a number of these
handlers, which determine the functionality they are
able to provide (i.e. what messages from the other side
they respond to). A variety of built-in handlers are
included when you call "proxy::init" on the Tcl server,
or when you instantiate the ThinClient applet from
Java. You can also add others.

Handlers have a name (which is the first word of the
network messages), a version (for tracking
enhancements over time), and a handler proc which

responds to the message. On the Tcl side, this is just a
Tcl procedure taking a single argument, namely the
extra parameters sent along as part of the network
message. A handler proc is registered using the
"proxy::handler" Tcl command e.g.

handler for FOO version 0.1
proc fooHandler {params} {
 ... interpret params
}

proxy::handler FOO fooHandler 0.1

Server side handlers can also be defined in C; a similar
API is used in that case. A C handler proc consists of a
single function taking both a string parameter (for
parameters), and a pointer to an internal structure
holding data for that proxy client.

On the Java side, a handler is any class that implements
an interface called MessageHandler, containing a single
handle() method. To add new packages to the applet,
the programmer generally creates a new subclass of the
ThinClient class, and calls its registerHandler method to
add each new package. This is illustrated below.

class FooHandler
 implements MessageHandler {
 public void handle(String params) {
 ... interpret params
 }
}

public class MyClientApplet
 extends ThinClient {
 public void registerHandlers() {
 super.registerHandlers();
 m_client.registerHandler("FOO",
 "0.1", new FooHandler());
 }
}

Determining Capabilities

One of the requirements in this system is that the
application logic contained in the server needs to know
what packages the thin client implements, so that it
knows what facilities for display are available to it. This
might be used for example, so that different applets
(with more features) can be run on newer browsers that
support more recent versions of the JDK.

When the thin client first connects up, it sends a
message to the server telling it what handlers (and what
versions of each handler) it has available. The message
might look something like this:

 HANDLERS CANVAS 1.0 ENTRY 0.5...

On the Tcl side, the first word of the command is
stripped out ("HANDLERS") and the remainder of the
command sent to the handler for the (built-in) handler
named HANDLERS. This handler stores the list, and
makes it available to the Tcl application via the
"proxy::remotehandlers" command. With no
parameters, this command returns a list of all known
handler names, while passing it the name of a handler
returns the version of that particular handler.

The message format above would be fairly typical for
most handlers, because it is easy to parse. But again, it
is worth stressing that this system assumes nothing
about the message format after the first word. The
routines that read in messages just look for the first
word in their list of registered handlers, and send the
rest of the message on to the appropriate handler.

Defining Widgets

Not surprisingly, each widget that is provided by the
thin client implements a single handler. For example,
the thin client’s button widget is accessed through
messages starting with the word “BUTTON”. Most
widgets have some elements in common, such as an id
number to refer to them, a fairly uniform way of
formatting the underlying messages (e.g. “handler id
operation options…”) and similar operations that are
available (e.g. create, delete, set configuration options).

To use the button widget as an example, the server
would send the following two messages to the thin
client to create a button (having id 25) and set its label:

 BUTTON 25 new
 BUTTON 25 set label Push Me!

On the Java side, a singleton instance of a
ButtonHandler class would receive and interpret the
messages. The new message would cause the handler to
create a new instance of a ButtonWidget (a wrapper
around AWT’s Button class) and store it in a table of all
known widgets, indexed by its id. The set message
would cause the handler to look up the ButtonWidget in
the table, and call its ‘set’ method, which would modify
the properties of the underlying AWT button.

Notice that the Java side has not received any
instructions as to what to do when the user presses the
button (e.g. the equivalent of the “-command” option in
Tk). The thin client has no knowledge of how the
application should deal with events; anytime the button
is pressed, it will simply send a message back to the
server, which can handle it as it chooses:

 BUTTON 25 buttonPress

The application code running in the server will have to
remember that button 25 corresponds to the “Push Me!”
button, and know what to do when it is pressed. While
it would be possible to develop programs at this low
level that use the Java thin client, clearly a higher level
interface that hides all these protocol details would be
beneficial. We’ll cover just such a programming
interface in the next section.

Tcl Interface
The previous section outlined the communications
protocol which defines the low-level interface between
the server-side application and the Java thin client
display. The specific operations supported by the
protocol determine what functionality in the thin client
is available to the application for its use.

However, its clear that working at such a low level —
formatting and parsing network messages, caching
proxy widget state information, and keeping track of
widgets by id number — are not exactly conducive to
the high level programming practices we’ve become
used to with tools like Tcl and Tk!

Therefore, we created a Tcl interface that encapsulates
all the low level protocols, caches widget information,
and does all the housekeeping one would expect.

Not surprisingly, the design of this Tcl interface bears
more than a passing similarity to Tk. A widget creation
command (e.g. button) is used to create new widgets,
their object command (e.g. .proxy.b) is used to refer to
them and manipulate them, configuration options can
be set and queried, event bindings are available, etc.
Table 1 provides a summary of what subset of Tk has
been implemented in the current version of Proxy Tk.

Because the API is mostly just a subset of the API for
Tk, it’s a fairly straightforward manner to either port
existing code, or have a code base that runs well under
both Tk and Proxy Tk. We’ll discuss this in a bit more
detail in the next section. We’ll also touch on some of
the differences that arise because the actual user
interface is running remotely from the application, and
how these can be addressed.

The implementation of the proxy widgets on the Tcl
side is also straightforward. Each widget typically
requires three things. A message handler interprets
messages it receives from the thin client. A widget
creation command creates both a new Tcl command to
refer to the widget, and a cache for any data associated
with the widget, Finally, a widget object command is
used to set configuration options and perform other
operations. Each of these will format and send
messages over the network to the Java applet.

Command Options

button -text, -command, -font

entry get, insert, -width, -show, -font

menu post, add/insert; command, separator,
radiobutton, entryconfigure; –label
–command –state

text insert, delete, get, -width –height –font
–color –state –background

listbox insert, delete, get, see, curselection,–font

canvas create line, rectangle, oval, text,
window, image; bbox, canvasx,
canvasy, delete, coords, itemconfigure,
itemcget, bind, find withtag /
overlapping / enclosed, type, gettags,
raise, lower, –width, –height, –text,
–background, –scrollregion; –tags, –fill,
–outline,–font, –anchor, –window

grid –in, –column, –row, –columnspan,
–rowspan, –sticky

bind which events depends on widget

destroy

focus -force

winfo width, height, exists

Table 1. Summary of current Proxy Tk Tcl interface.

Example

To give a quick example of the correspondence
between the Tcl interface and the underlying network
protocol, consider the freehand drawing program shown
in Figure 3. Buttons at the top control the color of the

Figure 3. Simple Proxy Tk drawing program.

drawing. Clicking and dragging in the canvas draw in
the selected color. Code is below.

simple freehand drawing program

root window
set w .proxy

import commands into the root namespace
namespace import proxy::*

create buttons at the top for choosing
grid [button $w.black –text Black \
 -command “set color black”] \
 –column 0 –row 0
grid [button $w.blue –text Blue \
 -command “set color blue”] \
 –column 1 –row 0
grid [button $w.red –text Red \
 -command “set color red”] \
 –column 2 –row 0
set color black

canvas for drawing
grid [canvas $w.c –background white] \
 –column 0 –columnspan 3 –row 1 \
 -sticky nwes
bind $w.c <1> “set x %x; set y %y”
bind $w.c <B1-Motion> {
 $w.c create line $x $y %x %y \
 –fill $color
 set x %x; set y %y
}

When this program first starts up, the following
network messages are sent from the thin client to create
the user interface (comments in italics).

create each button; the grid is handled
by the root window (id=1), which is a
canvas widget in Proxy Tk
BUTTON 2 new
BUTTON 2 set text Black
CANVAS 1 grid activate
CANVAS 1 grid add 2 column=0 row=0
columnspan=1 rowspan=1 fill=none
anchor=center

BUTTON 3 new
BUTTON 3 set text Blue
CANVAS 1 grid add 3 column=1 row=0
columnspan=1 rowspan=1 fill=none
anchor=center

BUTTON 4 new
BUTTON 4 set text Red
CANVAS 1 grid add 4 column=2 row=0
columnspan=1 rowspan=1 fill=none
anchor=center

CANVAS 5 new
CANVAS 5 set background ffffff
CANVAS 1 grid add 5 column=0 row=1
columnspan=3 rowspan=2 fill=nwes
anchor=center

If the user clicks the red color button, the following
message is sent back to the server.

BUTTON 4 buttonPress

Finally, as the user clicks and draws on the canvas,
messages like the following sequence are sent from the
thin client, followed by a message back from the server,
telling the client to actually draw the line on the
display.

mouse down and drag event
CANVAS 5 mousePressed x=26 y=32
CANVAS 5 mouseDragged x=30 y=34

server sends create a line item, id 6
CANVAS 5 create line 6 26 32 30 34
CANVAS 5 itemset 6 color ff0000

event from client…
CANVAS 5 mouseDragged x=32 y=36

… and server tells us to draw, etc.
CANVAS 5 create line 7 30 34 32 36
CANVAS 5 itemset 7 color ff0000

Proxy Tk in Practice
We used Proxy Tk to port our TeamWave Workplace
software described earlier to run in a web browser. In
this section, we’ll describe our experiences with doing
the port, and identify some of the issues that arose as a
result of using this thin client architecture, and the
solutions we found.

In describing how we used Proxy Tk, we can’t claim to
provide a perfectly objective evaluation. The Proxy Tk
infrastructure was developed in conjunction with the
port of Workplace, and the subset of widget features
available to date are those that we required. Other
projects may need to implement different capabilities
depending on their needs. As well, we took the
opportunity to redesign large parts of the user interface,
partly to make the application look more “web-like”,
but also to improve the existing interface. As such, we
can’t make many useful direct comparisons between the
web version and the original standalone client.

Overview of Workplace Port

The new web-based user interface for TeamWave
Workplace is shown in Figure 4. Much of the user
interface “around” the whiteboard has been changed
from the original client, though the bulk of the program
running “inside” the whiteboard remains similar.

First, some general comments are in order. The most
important thing is that we were able to successfully use
Proxy Tk to deliver a web-based version of our
application. We were able to do this very quickly, and

were able to reuse the vast majority of our existing code
(which still is used by the standalone Tk client). While
many issues arose, we have been able to successfully
deal with them. The applet that is downloaded to the
browser is a tiny 75k in size, making it no larger than
many images on web sites. From our point of view, we
are very satisfied with this approach, which lets us
continue to enjoy Tcl development practices while
delivering web-based software.

We had to modify approximately 5-10% of the existing
Tcl/Tk code to make it work with Proxy Tk. The
changes were needed to address different naming for
widgets, and to work around features that had not — or
could not —be implemented using Proxy Tk.

In what follows, we’ll describe some of the problems
and solutions required by the thin client approach used
in Proxy Tk.

The first problem was quite specific to our application.
We had used multiple Tcl interpreters even within each
client (e.g. for each of the tools in the whiteboard), and
a fairly complex scheme whereby Tk was shared among
them. When we added multiple interpreter support to
Proxy Tk, we chose a simpler approach to sharing
widgets between interpreters, which resulted in the
names of the widgets being different. We needed to
restructure the code to figure out the topmost widget
name once (rather than just assuming it was “.”), and
base other widget names from that. This is a convention
we should have had to begin with.

Network Latency

In the drawing program example, new lines are seen on
the whiteboard only after a round trip of messages from
the thin client to the server (to inform the server of a
mouse move) and back (to draw the line). On any kind
of local area network, such as a corporate intranet, this
presents no problems whatsoever. On high latency
networks, this can lead to very long lags in feedback to
user actions, though in practice even on long-haul
Internet links we have not found very severe problems.
Most operations, such as selecting tools in our tool
palette do not suffer from slower feedback.

This effect is minimized because most widget updates
(e.g. when text is entered into an entry widget) are
handled purely on the client side by the native Java
widgets. In these cases, there is no interaction with the
server, so no delay exists. One clear advantage of this
approach over protocols like X11 or VNC is that screen
refresh and most event handling is done locally on the
thin client, and not sent over the network. Perceived
performance is therefore comparable to running a local
application.

For situations like drawing in the canvas, we have
designed but not yet implemented a solution. The server
could provide the thin client with a “response template”
for a widget. This would be similar to a Tk binding
(including percent substitutions). However, rather than
it being a Tcl command, it would instead be a network
message, such as the thin client might actually receive
from the server. On a mouse drag in the affected
widget, the thin client would use the template to create
the message it would normally receive, and insert it into
its own network queue. In this way, feedback is
received without the need for a network round trip.

One could get arbitrarily complex with substitutions for
response templates (in fact designing a complete
scripting language for them!), but analyzing a number
of situations where quicker performance may be
warranted showed the simple case would handle most
of them quite well. Essentially this technique allows us
to design in application-specific performance
enhancements when required.

Current Widget Contents

Unlike with standard Tk, using proxy widgets means
that the current state of the widget, as visible by the
user, and the state as visible by the application running
on the server, may be quite different. Network
messages must be sent between them to synchronize
them. This has a number of implications.

First, when widgets are changed by the user, the
changes must be sent back to the server. For many
widgets, e.g. checkbuttons, this can easily be done

Figure 4. Web-based TeamWave Workplace.

every time the widget is changed. For others, e.g.
entries or text widgets, a user typing may generate a lot
of network traffic; much of this may not be needed, as
the application may only care about the contents of the
widget after all data is entered, e.g. in a dialog.

We have added a new boolean configuration option,
–immediatefeedback to entry and text widgets for this
purpose. When true, changes are sent back on every
keystroke. When false, changes are not sent back on
every change, but only when directed to do so by
another widget. As an example, buttons are set up so
that before informing the server that they have been
pressed, they first instruct all of their sibling widgets
(i.e. those having the same parent window) to send their
current value back to the server. This has proved for
example an effective solution for dialog boxes, where
hitting the “Okay” button ensures all widgets in the
dialog box first report their current state.

Physical Size of Objects

A related issue is that the server generally does not
know the physical size of widgets or objects in the thin
client, particularly text objects (which rely on font
metrics unknown to the server application). We’ll take
two examples where this became an issue.

In the first example, we wanted to display selection
handles around text objects that have been selected on
the whiteboard. In Tk, we do this by using the canvas’
“bbox” command to determine the current bounding
box of the item. With Proxy Tk, we’ve made the thin
client send back the current bounding box of any
changed text items as soon as it knows them (i.e. after a
redraw). As it turns out, we never need to change the
contents of the text, and immediately select the item, so
we can get away with this delay. Otherwise, we’d have
to wait for the bounding box to be returned before we
could select the text. Note that our caching mechanism
has to be clever as well; when we move the object, we
can immediately update the cached bounding box,
because we know just moving the object will not
change its size.

A more problematic situation came up in implementing
the URL-like strings shown in the user interface along
the top and left. In general, these consist of one or more
regions of black and blue text abutted together, with the
blue parts being clickable, having status line feedback,
etc.

On a regular Tk canvas, we would have created a text
item for each segment, determining its starting point by
looking at the bounding box of the previous segment. In
Proxy Tk, we can’t do this, unless we’re willing to wait
the round trip message after each segment. Instead,
because these URL-like strings are pervasive in the new

interface, we decided to implement the behavior
directly in the Proxy Tk core. Each string is created as a
single text item, and we’ve added a new configuration
option called –highlightranges. The value of this option
is a list specifying what ranges of the string are
highlighted, what command to invoke when they are
clicked on, and a status line message for each. All
processing of this option’s associated behavior is
handled locally by the thin client.

Client-Server Architectures

Our description of Proxy Tk has assumed that the
program we’re web-enabling consists of a single
application that runs on the user’s workstation.
Workplace actually uses a client-server architecture,
where the client application on the user’s workstation
communicates with a server program.

We could have run the Proxy Tk-based version on the
server machine as a separate process, and have it make
a socket connection to the actual server, running on the
same machine. Instead, we took the small bit of code
that accepts connections from the Java proxy and
spawns new interpreters, and placed that in our existing
server. So our server started up new copies of the client
application in its own process, as usual with a new Tcl
interpreter.

Instead of using actual socket connections (which
would have worked), we developed a new Tcl channel
type, loosely based on Andreas Kupries’ memory
channel. Our version was used to connect two Tcl
interpreters in the same process together. Data written
by one interpreter could be read by the other.

Extensibility, Scalability and Portability

One problem with this approach, and Java in general, is
that if you really need some functionality that is not
available directly through Java applets, you’re pretty
much out of luck — no dropping down to native code.

On the other hand, running in a web browser does give
us access to all kinds of facilities. Displaying a web
page to the user for example is implemented as a five
line Proxy Tk message handler.

To allow files to be downloaded to the user’s hard drive
(which can’t be done directly from Java), we added a
very simple httpd server to our server application. We
instruct the thin client to connect to this server to
download files. This server looks for URL’s with a
particular format (e.g. starting with /files/) and copies
the file from our own file store. Images are also handled
in this manner; any URL’s starting with /image/ are
mapped to an internal table. Java provides the built-in
routines to create an image from a URL.

Uploading files to the server (again not allowed in Java)
proved trickier. The thin client is instructed to connect
to our built-in httpd server, at a URL that generates an
HTML form containing a file upload field. The user can
then use this mechanism to choose a file from their
local machine, and submit the form, which uploads the
file to our httpd server. The file is then finally moved
into our server file store for use by other parts of the
program. Note that both file upload and download
involve explicit confirmation with the user on the
workstation side, and server-side storage is within a file
store controlled by our own server software, not the
server’s general file system. As such, this does not
introduce new security issues.

Scalability is one potential issue with thin client
architectures, as now the server is responsible for the
majority of processing that would otherwise be handled
by the client’s workstation. How many simultaneously
connected clients a server will support will depend
entirely on the application. In our measurements, the
Proxy Tk layer itself adds little overhead. For our own
moderately complex application, we found the server
could scale quite well. We had to be careful not to have
any one operation process for too long without
reentering the event loop. Doing so would prevent other
clients from obtaining processing time. Breaking up
long operations into several pieces is a common
technique needed by many such event-driven,
cooperative multitasking systems.

Finally, a word about portability is in order. Its no
secret that despite all the hype, because of all the bugs
in the various Java Virtual Machines, Java remains a
“write once, debug everywhere” language. At present,
our applet runs on only a small number of JVMs,
though we are in the process of making it more
portable. Not surprisingly, we’ve found that making our
75k applet work on different JVMs is an order of
magnitude easier than doing so for a thick client applet.
To work around a bug in Java’s Button widget for
example, requires changing one piece of our code, not
one piece for every button created by the application.

Conclusions
We’ve described Proxy Tk, which allows Tcl
programmers to deliver web-based applications using a
thin client architecture. Using an API that offers a
subset of Tk functionality, a high-level Tcl program can
control a 75k Java applet to implement its user
interface. This technique extends the range of solutions
available for delivering web-based applications using
Tcl, and is particularly suited for highly interactive
applications that must run in situations where
downloading new software would be prohibitive.

Our experience in using Proxy Tk to develop a web-
based interface for TeamWave Workplace suggests that
existing Tcl/Tk code can be ported with fairly minimal
changes, and that problems encountered because of the
architecture are surmountable. We believe that using
the techniques described here would be an effective
means for developing web-based versions of a wide
range of Tcl applications.

Acknowledgements

Thanks to Leo Pelland, who wrote the Java side of the
prototype that led to this design and implementation.
Feedback on earlier drafts of this paper was provided
by Leo Pelland, Ted O’Grady, and Larry Virden.

References

1. Lam, I. and Smith, B. Jacl: A Tcl Implementation
in Java. Proceedings of the Fifth Annual Tcl/Tk
Workshop. July, 1997.

2. Levy, J. A Tk Netscape Plugin. Proceedings of the
Fourth Annual Tcl/Tk Workshop. July, 1996.

3. Libes, D. Writing CGI Scripts in Tcl. Proceedings
of the Fourth Annual Tcl/Tk Workshop. July,
1996.

4. Nielsen, J. The increasing conservatism of web
users. Alertbox. March 22, 1998.
http://www.useit.com/alertbox/980322.html

5. Richardson, T., Stafford-Fraser Q., Wood, K. and
Hopper, A. Virtual Network Computing. IEEE
Internet Computing 2(1), 1998. Also see
http://www.uk.research.att.com/vnc/

6. Roseman, M. Managing Complexity in
TeamRooms, a Tcl-Based Internet Groupware
Application. Proceedings of the Fourth Annual
Tcl/Tk Workshop. July, 1996.

7. Welch, B. and Uhler, S. Web Enabling
Applications. Proceedings of the Fifth Annual
Tcl/Tk Workshop. July, 1997.

