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Abstract

We present the design of a AGNI - a Tcl 8.1 based Middle-
ware for building reactive, extensible, reconfigurable dis-
tributed systems, based upon an abstraction we call Mobile
Streams. Using our system, a distributed, event-driven ap-
plication can be scripted from a single point of control and
dynamically extended and re-configured while it is in exe-
cution. Our system is suitable for building a wide variety
of applications; for example, distributed test, conferencing
and control-oriented applications. We illustrate the use of
our system by presenting example applications.

1 Introduction

Our work is motivated by a couple of observations about the
evolving nature of distributed applications and their imple-
mentation environments. First, the structure of distributed
software is undergoing some changes. We are seeing the
growth of new types federated, loosely coupled distributed
applications that have several common requirements and
characteristics including: (1)Event-driven Architecture:
A single distributed application may be composed of sep-
arate components that all work together in a coordinated
fashion. Such applications are event-oriented in nature in
that we can think of changes in the overall state of the
global application as being triggered by discrete changes
in the state of event processing at each of the components.
(2)Heterogeneity: The components must run on a vari-
ety of different platforms with varying inherent capabilities
and environments. In addition, some of components them-
selves are reused pieces of software implemented in a vari-

ety of languages and environments. Despite all of this het-
erogeneity, it is desirable to be able to design and develop
distributed applications in a common portable framework.
(3)Mobility: The ability to dynamically move code to and
among these platforms during application execution greatly
enhances the ability to deploy and reconfigure complex sys-
tems. (4)Reliability: These extension and reconfiguration
capabilities can be used to construct reliable systems that
distribute system state in ways that enable graceful failure
recovery and adaptation. (5)Security: In such highly dy-
namic systems, the ability to secure and control resources
at several levels (global application, single node, individ-
ual process) is necessary to insure the correct behavior of
applications and the viability of systems that support them.

Our second observation is that while many systems share
the characteristics mentioned above, the variety of compo-
nent types and platforms that must be accommodated pre-
clude a language specific or application specific solutions.
Instead we suggest that a Middleware approach based upon
Tcl scripting technology provides the most flexibility in the
design of such composite applications. Tcl is great ”com-
ponent glue”. Its simplified structure and extensibility are
strengths when assembling applications from disparate, het-
erogeneous software components1.

This paper is about AGNI - a multi-threaded Tcl 8.1 based
Middleware for scripting reconfigurable event-oriented dis-
tributed systems. AGNI builds upon the proven scripting
power of Tcl by adding extensions for an abstraction we call
Mobile Streams. Mobile Streams (MStreams) are a gen-
eralization of simple mobile code technologies (e.g. Java
Applets) that provide code distribution and communication
between clients and servers. MStreams extend today’s sim-
ple notions of code mobility by incorporating state mobility,
decentralized peer-to-peer communications and the ability
to extend and reconfigure distributed application during ex-
ecution while preserving behavioral guarantees. At a higher
level, MStreams allow the separation of the logical structure

1Indeed, thus spake John Ousterhout : ”If you look at financial services,
a lot of what they do is try and tie together all of the different systems that
need to be coordinated with traders, not to mention the front and back
office. It’s a tremendous integration effort, and that’s exactly what Tcl
does wonderfully...”.
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of a distributed application from the physical placement of
components. Our model of code mobility allows the map-
ping of logical application structure to physical resources
(e.g. machines and processes) to occur dynamically at run
time and change during the course of the active life-time of
the global application.

The rest of this paper is organized as follows: Section 2
presents the MStreams programming model and system ar-
chitecture and presents an introductory example. Section 3
gives a brief overview ofAGNI, our prototype implementa-
tion of MStreams Middleware. Section 4 presents a sim-
ulation environment for designing applications using our
system. Section 5 presents some more comprehensive ap-
plications that we have built on our system. In Section 6
we compare and contrast our work with those of others. In
Section 7 we conclude and present our future plans for this
project.

2 Mobile Streams

In this section we present our programming model and pro-
vide a small, introductory example. We begin by introduc-
ing a few terms that are used through the rest of the paper.

A Mobile Stream(MStream) is a mobile communication
endpoint in a distributed system. The closest analogy to
an MStream is a mobile active mailbox. As in a mailbox,
an MStream has a globally unique name.MStreamspro-
vide a FIFO ordering guarantee, ensuring that messages
are consumed at the MStream in the same order as they are
sent to it. Usually mailboxes are stationary. MStreams, on
the other hand, have the ability to move fromSite to Site
dynamically. Usually mailboxes are passive. In contrast,
message arrival at an MStream potentially triggers the con-
current execution of message consumption event handlers (
Append Handlers) registered with the MStream, which can
process the message and, in turn, send (append) messages
to other MStreams.

An MStream has a globally unique name. We refer to any
processor that supports an MStream execution environment
as aSite. A distributed system consists of one or more
Sites. A collection of Sites participating a distributed ap-
plication is called aSession. Each Session has a distin-
guished, trusted, reliable Site called aSession Leader. Each
Site is assigned aLocation Identifierthat uniquely identi-
fies it within a given Session. New Sites may be added and
removed from the Session at any time. An MStream may
be located on, or moved to any Site in the Session that al-
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Figure 1: Logical organization of the System. A Ses-
sion consists of multiple participating Sites. Each Site can
house multiple MStreams. Each MStream can have multi-
ple Agents that can register Handlers for different Events.
MStreams can move from Site to Site. When an MStream
moves, all its registered handlers move with it.

lows it to reside there. MStreams may be opened like sock-
ets and messages sent (appended) to them. Multiple Event
Handlers (Handlers) may be dynamically attached, to and
detached from, an MStream. Handlers are invoked on dis-
crete changes in system state such as message delivery (ap-
pend), MStream relocations, new Handler attachments new
Site additions and Site failures. We refer to these discrete
changes in system state as Events. Handlers are attached by
Agentswhich provide an execution environment and thread
for the Handlers that they attach. (i.e. an Agent specifies
a collection of Handlers that that all use the same thread of
execution and interpreter.) Logically, the system is struc-
tured as shown in Figure 1.

Handlers can communicate with each other by appending
messages to MStreams. These messages are delivered asyn-
chronously to the registered Append Handlers in the same
order that they were issued2. A message isdeliveredat an
MStream when the Append Handlers of the MStream has
been activated for execution as a result of the message. A
message isconsumedwhen all the Append Handlers of the
MStream that are activated as a result of its delivery have
completed execution. Byasynchronous deliverywe mean
that the sender does not block until the message has been
consumed in order to continue its execution.

2Synchronous delivery of messages is supported as an option but asyn-
chronous delivery is expected to be the common case.
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register_agent bar {} {

              puts $argv

          }
            on_stream_relocation {

                   set my_loc [stream_location]
                   puts "I am at $my_loc" ;#d

           }
}

            

bar

stream_move bar 2

      stream_open bar
       on_stream_append {
            stream_append bar $argv ;#b

        }
}

         on_stream_append {

              stream_relocate 1 ;#c

stream_move foo 1

stream_create bar
stream_create foo

register_agent foo {} {

Figure 2: A simple auto-reconfiguring reactive system
scripted from a single point of control.

A distributed application is constructed by first specifying
the communication end-points as MStreams and then at-
taching Agents to those end-points, that in turn attach Han-
dlers for specific Events. A given MStream may have mul-
tiple Agents and each Agent may register Handlers for dif-
ferent Events, but each Agent may have only one Handler
for a given Event. When an Event occurs, the appropriate
Handlers in each Agent are concurrently and independently
invoked with appropriate arguments. Handlers are typically
registered on Agent initialization and may be dynamically
changed during execution.

An application built using our Middleware, may be thought
of as consisting of two distinct parts - an active part and a
reactive part. The reactive part consists of MStreams and
Handlers. The active part orShelllives outside the Middle-
ware and drives it. A Shell may connect to the Middleware
and issue requests and may exit at any time. The reactive
part is persistent.

Figure 2 shows an example script that instantiates a simple
distributed system that resides atSites1 and 2. A message
is sent to the MStream calledfooby thestream append

command issued via the external Shell (#a in Figure 2) . The
MStream calledfoo receives the message ”Hello world”
and sends it to the MStream calledbar (#b in Figure 2)
which outputs the message via its handler and then moves
MStreambar to Site 1 (#c in Figure 2). The arrival han-
dlers run when the MStreambar arrives atSite1, printing
the string ”I am at 1” to the console at Site 1 (#d in Fig-
ure 2).

In Figure 2 the script labelled ”External Input” in is the
Shell and MStreams and their registered handlers are the
reactive parts.

2.1 Dynamic Extension and Re-configuration

An application built on our Middleware may be dynami-
cally extended and re-configured in several ways while it is
in execution (i.e., while there are pending un-delivered mes-
sages). First, an Agent can dynamically change the handlers
it has registered for a given Event. Second, new Agents
may be added and existing Agents removed for an exist-
ing MStream. Third, new MStreams may be added and re-
moved. Fourth, new Sites may be added and removed, and
finally, MStreams may be moved dynamically from Site to
Site.

When an MStream moves from one Site to another, it (log-
ically) moves the code of all of the Agents attached to it
to the new Site along with whatever state they have placed
in their briefcase structures. We say an Agent ”visits” a
Site when its MStream visits the Site. When an Agent first
visits a Site, its initialization code executes there and when
an Agent is killed, its (optional)Finalization Handlerruns
at each location that has been visited by it. Agent state
(consisting of global state variables and code) is replicated
at each site that it visits until the Agent is destroyed. On
Agent destruction, the Handlers that it has registered are de-
registered, and the interpreter and state variables are freed at
each Site that it has visited. We assume that Sites may fail
or disconnect during execution. Site failure does not im-
ply destruction of the MStreams that reside there. Failure
processing is described in Section 2.3.

The Agent’s briefcase specifies a consistency requirement
for moves. When an Agent moves from Site to Site only the
elements in the briefcase are copied from the source execu-
tion environment to the target. The remainder of the global
state remains unaffected (and cached) at the source site of
the move. On successful completion of a move, theArrival
Handlers of the MStream are invoked at the new Site where
the MStream has moved.



Handlers may move the MStream to which they are attached
and also may move other MStreams around as well as create
and destroy MStreams. Handlers may also exit - destroying
the Agent in which they are housed and may also destroy
other Agents. Such actions may also be initiated from an
external Shell. Re-configuration may be contained by using
appropriate policy handlers.

All changes in the configuration of an MStream such as
MStream movement, new Agent addition and deletion, and
MStream destruction are deferred until the time when no
Handlers of the MStream are executing. We call this the
Atomic Handler Execution Model. Message delivery order
is preserved despite dynamic reconfiguration, allowing both
the sender and receiver to be in motion while asynchronous
messages are pending delivery.

Applications built using Mobile Streams can be extended
from multiple points of control; any handler or Shell that
has acquired an open MStream handle, can attempt to re-
configure or extend the reactive part of the system and these
actions can occur concurrently. While this adds great flex-
ibility, it also raises several security and stability issues.
We provide a means of restricting system reconfiguration
and extension using control Events that can invoke policy
Handlers. These policy Handlers may be registered only
by privileged Agents as described below. We follow a dis-
cretionary control philosophy by providing just the mech-
anism and leaving the policy up to individual applications.
Controls may be placed via policy Handlers at a session-
wide level, site-wide level and at the level of individual
MStreams for various security-relevant Events.

In summary, our security mechanisms are based on the fol-
lowing three principles:

Session-wide control: We have built mechanisms to place
session-wide controls over extension and reconfiguration
via a centralizedSession LeaderMStream.

Site-specific control: Each site may specify security poli-
cies via aSite ControllerMStream. Site-specific policies
may be used to grant or deny MStream entry to a site and
to sand-box the incoming MStream handler’s code by using
safe-Tcl mechanisms.

Stream-specific control:The MStream itself is regarded as
an extensible entity to which Agents can be attached and de-
tached. It can carry its own policy Handlers to allow or dis-
allow such actions, as determined by itsStream Controller
Agent.

Our security implementation works as follows: Messages
are classified as data messages and control messages. Data
messages are delivered directly to the MStream. Control
messages are messages that can change the configuration
of the distributed system. These are routed first through
the trusted intermediary Session Leader that can accept or
deny these actions via its policy handlers, and then through
the Site Controller which may again accept or deny the ac-
tion and finally through the Stream Controller for MStream-
specific actions. We invite the interested reader to look
at [9] for more details.

The mechanisms described above permit us to build highly
flexible and extensible distributed reactive systems that are
able to extend and re-configure themselves, and also to
place constraints on how the system can be re-configured
and extended.

2.2 Message Delivery

Within our Middleware framework, point-to-point mes-
sages are delivered using an in-order sender-reliable deliv-
ery scheme built on top of UDP. All messages are consumed
in the order they are issued by the sender despite failures
and reconfigurations. These ordering and delivery guaran-
tees make it simpler to design distributed systems.

In our scheme, the sender of the message is responsible for
re-transmitting the message on timeout. We use a sliding-
window acknowledgement mechanism similar to those em-
ployed by TCP. The sending Site buffers the message and
computes a smoothed estimate of the expected round-trip
time for the acknowledgment to arrive from the receiver. If
the acknowledgment does not arrive in the expected time,
the sender re-transmits the message. The sender keeps a
window of unacknowledged messages and controls flow by
dynamically adjusting the width of this window depending
upon whether an ACK was received in the expected time or
not. Thus far, our description is similar to the mechanisms
employed by TCP. We have implemented our own protocol,
rather than just use TCP, because TCP does not address cer-
tain conditions such as failures above the transport level and
dynamic movement of the communicating end-points.

As previously described, an application can be dynamically
reconfigured at any time with both the sender and receiver
moving. When movement of an MStream occurs, aLoca-
tion Manageris informed of the new Site location where
the MStream will reside. This information needs to be
propagated to each Handler or Shell that has opened the
MStream.



When the target of an Append moves, messages that have
not been consumed have to be delivered to the MStream
at the new Site. There are two design options in dealing
with this problem - either forward un-consumed messages
from the old Site to the new Site or re-deliver from the
sender to the new Site. Forwarding messages has some neg-
ative implications for reliability. If the Site from which the
MStream is migrating dies before buffered messages have
been forwarded to the new Site, these messages will be
lost. Hence, we opted for a sender-initiated retransmission
scheme. The sender buffers the message until it receives no-
tification that the handler has run and the message has been
consumed, re-transmitting the message on time-out.

When an MStream moves it takes various state informa-
tion along with it. Clearly, there is an implicit movement
of handler code and Agent execution state (via the brief-
case), but in addition, the MStream takes a state vector of
sequence numbers. There is a slot in this vector for each
”alive” MStream that the MStream in motion has sent mes-
sages to or received messages from. Each slot contains a
sent-received pair of integers indicating the next sequence
number to be sent or received from a given MStream. This
allows the messaging code to determine how to stamp the
next outgoing message or what sequence number should be
consumed next from a given sending MStream.

2.3 Handling Failures

A failure occurs when the Site where the MStream re-
sides fails or disconnects from the Session Leader. Each
MStream is assigned a reliableFailure ManagerSite. When
a such a failure occurs each of the MStreams located at
the Site that has failed are implicitly relocated to its Fail-
ure Manager Site where its Failure Handlers are invoked.
Failures may occur and be handled at any time - including
during system configuration and reconfiguration. Pending
messages are delivered in order, despite failures. A mes-
sage is considered ”consumed” only after all of the Append
handlers execute at the target MStream for that message. (If
none exist the message is discarded at the recipient). If the
Site housing an MStream should fail or disconnect while
a message is being consumed or while there are messages
that have been buffered and not yet delivered, re-delivery
is attempted at the MStream Failure Manager. To ensure
in-order delivery in the presence of failures, the message
is discarded at the sender only after the Append Handlers
at the receiver have completed execution and the ACK for
the message has been received by the sender. This is dif-
ferent from TCP where the receiver ACKs the message im-
mediately after reception (and not after consumption as we

require). After a failure has occurred at the site where an
MStream resides, a failure recovery protocol is executed
that re-synchronizes sequence numbers between communi-
cating MStreams that involve the failed MStream. Each of
the potential senders is queried to obtain the next expected
sequence number. FIFO ordering can be thus be preserved
despite the failure.

3 Implementation

We have implemented the Mobile Streams model in a
toolkit we call AGNI3 . AGNI is a multi-threaded TCL ex-
tension that uses the thread-safety features of TCL 8.1 and
consists of roughly 23,000 lines of C++ code. In this sec-
tion, we give highlights of the implementation some initial
performance results.

Each workstation that wishes to participate in the dis-
tributed system runs a copy of anAgent Daemon. A dis-
tinguished Agent Daemon houses the Session Leader and
is in charge of accepting or rejecting new Agent Daemons.
This Daemon also serves as a Location Manager and Fail-
ure Manager for all MStreams in the Session. Each Agent
Daemon has a unique identifier that it obtains from the Ses-
sion Leader. Each Agent Daemon maintains a connection
with the Session Leader Agent Daemon. Conceptually, the
arrangement is as shown in the figure 3.

Each Agent has a TCL interpreter and thread of execution
that is used by the Handlers that it registers. These re-
sources are created for an Agent at a Site on its the first
visit to the Site and remains allocated until the Agent (or
the MStream to which it is attached) is destroyed. When a
new Agent is added to an MStream, its code is propagated
and initialized on the first move of the Agent to a previ-
ously unvisited Site, and remains cached there until it is de-
stroyed. Provided an MStream has visited a Site previously,
and no new Agents have been attached since its last visit,
MStream movement simply consists of moving the state in-
formation in the briefcase (see Section 2) of each Agent
of the MStream to the new Site and concurrently invoking
eachon streamarrival Handler.

Except for the case when the MStream is co-located with
the Site from where the message originates, all control
Events destined for an MStream (e.g. creation, reloca-
tion, new agent attachment) are delivered through the Ses-
sion Leader Agent Daemon via the TCP connection that

3”AGents at NIst” (also Sanskrit for fire)
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Figure 3: Each Site runs an Agent Daemon that is con-
nected to the Session Leader. The Agent Daemon is Multi-
threaded with one thread per agent. The Session Leader
maintains location and cache information.

each Agent Daemon maintains with it. The Session Leader
Agent Daemon also acts as a Location Manager, keeping
track of where each MStream is located and is hence able to
re-direct messages to the location of the MStream. Sending
all control Events through the Session Leader is a simple
means of achieving a global ordering on control messages.
The negative aspect of this design is that the Session Leader
has the potential of becoming a bottleneck. However, we
expect the number of control messages to be much smaller
than the number of data messages (appends) processed by
the MStream and hence do not consider this a serious lim-
itation at present. In our future work, we plan to alleviate
this problem by replication of the Session Leader. The Ses-
sion Leader Daemon also manages the tracking informa-
tion for the code and state cache described previously and
is charge of propagating code to previously unvisited loca-
tions. As all Agent code is registered at the Session Leader
and propagated from there, this simplifies the trust model
to pair-wise relationships between each site and the Session
Leader. provided all parties trust the Session Leader.

Appended data messages are delivered to the destina-
tion MStream directly without going through the Session
Leader. Thus the Session Leader is not a bottleneck for
data message delivery.

4 An In-Situ Simulation Environment

Estimating the detailed behavior and performance of a dis-
tributed system is hard. There are several degrees of vari-
ability and the interaction between physical effects is often
difficult determine. Further, bugs - especially timing related
ones can be quite difficult to reproduce in physical test-bed

environments. In order to address these issues, we have
developed an in-situ simulation environment that enables
tuning, debugging and performance estimation of both the
AGNI runtime system and applications.

Our approach system wraps a simulated environment
around the actual AGNI system and application code using
the CSIM [11] simulation library. We replace thread cre-
ations, locking and message sends and receives with sim-
ulated versions of these but leave the rest of the code un-
modified. We have used the simulation for debugging and
performance tuning the system as well as for testing the per-
formance of applications built on top of our system. Fig-
ure 4 shows the simulation code for the introductory ap-
plication presented in section 2. As can be seen from the
example, the simulation and the actual system script look
quite similar, with the exception of the parameters at the
top and some new commands to create simulated processes
and shells. The simulation runs as a single process whereas
the actual system consists of multiple communicating pro-
cesses. The simulation contains various ”tweaking” param-
eters that have to be adjusted to match reality. These pa-
rameters include the message latency, packet drop percent-
age and simulated delays corresponding to code execution
time. The goal in tuning the simulation is to adjust these pa-
rameters to make the simulation match the behavior of the
real system for the quantities of interest. Presumably, we
can match these over some simple scenarios and then try
more complex ones, having some assurance of the validity
of results. One can get a good idea about what delays are
significant by looking at the gprof execution trace for the
actual system.

A simulation is, however, only good to the extent it matches
reality. Fitting the simulation to reality involves several cy-
cles of adjusting performance parameters and re-testing the
simulation. There is a large degree of variability in the per-
formance of the actual system. We aim to make the output
of the model fall within one standard deviation of the ac-
tual system for the quantities of interest. To test if this is
feasible, we tested some simple scenarios. In both the real
and simulated environments, we emulated packet drop by
randomly dropping packets at the receiver. The quantities
of interest that we would like to match are the throughput
of packets and the number of packets sent by the sender for
each packet consumed by the receiver (packet ratio). While
we are still in the process of tuning the simulation, our ini-
tial results are encouraging. Figure 5 shows the message
count performance of the real system and simulated system
for two fixed end-points.



set drop  10
set m0 [ machine m0 ] ;#1
set m1 [ machine m1 ]
set e0 [ create_engine $m0 -d $drop ] ;#2
set e1 [ create_engine $m1 -d $drop ]
sim_set_send_latency m0  .0005 ;#3
sim_set_send_latency m1  .0005
sim_set_execution_time "Tcl_FindHashEntry" 0.000015 ;#4
sim_set_execution_time "Tcl_NextHashEntry" 0.000015
sim_set_execution_time "Arrival" 0.000015       ;#5
create_shell $e0 {
  stream_create foo
  stream_create bar
  register_agent foo {} {
        stream_open bar
        on_stream_append {
            stream_append bar $argv
        }
   
  }
  register_agent bar {} {
        on_stream_append {
                puts "$argv"
                stream_relocate 1
        }
        on_stream_relocation {
             puts "I am at [stream_location] at [sim_clock]"
             conclude_sim
        }
  }
  stream_move foo 0
  stream_move bar 1
  stream_append foo "bar"
}
sim 100000

Figure 4: Simulation script for introductory example.

0

1

2

3

4

5

0 5 10 15 20 25 30

R
at

io
 m

es
sa

ge
s 

se
nt

/m
es

sa
ge

s 
co

ns
um

ed

Packet drop percentage

real
real top standard deviation

real bottom standard deviation
simulated

Figure 5: Simulated versus actual packet ratio for fixed end-
points.

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40 45 50

T
im

e 
pe

r 
se

nt
 m

es
sa

ge
 (

m
ic

ro
se

co
nd

s)

Packet Drop Percentage

real
real top standard deviation

real bottom standard deviation
simulated

Figure 6: Simulated versus actual message consumption
time for fixed end-points.

5 Application Sketches

In building applications using our infrastructure we adopted
a problem-driven approach in mapping AGNI capabilities
to prototype solutions. For example, we started with the
assumption that we would use mobility only to the extent
that it simplified the application design or enhanced per-
formance in some fashion, rather than adopt the approach
that mobility is a feature whose utility needed to be demon-
strated. The remainder of this section outlines the design of
two applications. The interested reader is referred to [9] for
additional examples.

5.1 Distributed Data Combination

Consider a distributed experiment where data is being gath-
ered at multiple sites and a query involves picking up data
items from each location and combining the data to produce
a composite result. Such an application may be structured
as a master server front end and a multiple slave back ends.
The front end gets the query and farms it out to to each of
the participating sites. The slave sites process sub-queries
locally, gathering results and returning them to the master
site which then returns the combined result to the remote
caller. If the combination operation is an involved one such
as a database join, this could place an excessive burden on
the master. Alternatively, this operation could be offloaded
to the client or one of the slaves. When the query is re-
ceived by the master, it creates an MStream at the client or
one of the slaves to receive data from the data sources and
and process the join.

If the data can be shipped incrementally from the data
source, and results can be produced incrementally, the op-
eration that receives results can be moved dynamically be-
tween the slaves and the client depending on available band-
width and other machine resources. Such techniques are
useful for optimizing dynamic query execution in client-
server database systems. The ordering guarantee provided
by MStreams ensures that the incremental join results are
received in order by the join operator and the output oper-
ator regardless of the physical location of the join operator.
In particular the join operator could be dynamically moving
between sites as the join is being processed. Several posi-
tioning strategies may be considered in dynamically mov-
ing the join operator around. Some of these strategies are
considered in [7] where we consider the more complex case
of a join tree and adapt the operator placement to bandwidth
variations. Figure 7 shows the overall organization of the
system.
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5.2 Collaborative Annotation of Experimental
Data

Although we have described our tool primarily as a means
of scripting distributed applications, there is no requirement
that the MStreams reside on physically separated machines.
In section we describe SMAT - A Synchronous Multimedia
Annotation Tool. SMAT was designed to be part of a scien-
tific collaboratory for use in a robotic arc welding research
project at NIST [13].

The scenario is as follows: Data is produced by sensors
in various parts of a welding system and welding cell con-
troller. Data from these sensors can have different media
types - for example, video, audio and discretely sampled
current and voltage. The primary functional requirement
for SMAT was to develop a tool that supports the capability
synchronize and play back the captured multi-media data
after the weld is complete and provides a means to stop the
playback at any point in time and enter annotations. After
the annotation session is complete, the entered annotations
are uploaded to an server for other users to view and anno-
tate. During subsequent sessions, the media and the annota-
tions are played back in synchronous fashion. Annotations
appear in the annotation window corresponding to the rela-
tive time at which they were entered.

A secondary requirement for SMAT was to support real-
time collaboration in the tool. Using this capability, users
may effectively have partial control over each other’s tools
in order to share the same view of the multimedia data.

To meet these requirements, SMAT was designed as a con-
trol and integration framework that exploits existing tools to

play specific media types. We started with the assumption
that each tool to be controlled exports an API or mechanism
(such as COM) that permits it to be controlled from another
process. The tools are all tied together using a common
control busimplemented using MStreams. The idea of the
bus is much the same as the idea of a bus in computer hard-
ware. Components are tied together by plugging them into
the software bus in the same fashion as cards are plugged
into a hardware bus. The components in this case are slave
processes that play the different multimedia files. In order
to use such an approach, the interfaces to the tools under
control must be made uniform. To achieve this uniformity
we wrap a controller script around each tool. For example,
we can use XANIM as a tool that plays video under UNIX.
XANIM takes external input via property change notifica-
tions on an XWindow Property. If we use a Microsoft tool,
it may export COM interfaces for external control. In gen-
eral, each tool may have its own idiosyncrasies for external
communication. We encapsulate these via a software driver
wrapper that hides the communication complexities from
the control layer and registers standardized callbacks with
the control layer. This is modeled after a device driver in
an operating system that would registerread, write, ioctl,
openandclosecallbacks. The callbacks in our case include
a start interface, astop interface, aquit interface, atimer
tick interface and aseekinterface. These get called from
the controller at appropriate times. It is up to the driver to
communicate with the slave tool if need be on each of these
calls. To enhance usability, we need the look and feel of a
single tool rather than several individual tools. For this, we
use Tk window embedding. Each tool that has a embed-
able top level window is embedded in a common canvas.
The overall tool is controlled by the user via a control GUI
that also sends events through the control bus. The archi-
tecture is shown in Figure 8.

There are several advantages to structuring a tool in this
fashion:
Distributed Control Each tool is controlled by a sepa-
rate AGNI Agent that implements its driver. The driver
reacts to events that can be generated from anywhere in
the distributed application. For example, the slider tool
can append messages to the controller that re-distributes
these events asseekevents to each of the tool drivers. If
the multimedia tools support random seeks, they can re-
spond to such seek requests and position their media ap-
propriately, thereby giving the ability to have both real-time
and manually controlled synchronization. If we wanted to
share the slider, in a synchronously collaborative fashion,
this seek input simply needs to originate from another ma-
chine rather than the local slider. The control inputs could
also come from another collaborative environment and in-
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Figure 8: SMAT: A composite annotation tool with a distributed control bus. Each media type is handled by a separate tool
with its own driver. An MStream-based event-bus is used to tie together the tools and provide a means to selectively export
controls.

deed we have used this approach to integrate the tool in with
the Teamwave client [12].

Isolation of ComponentsEach tool runs in its own address
space. Thus, a misbehaving tool cannot bring down the ap-
plication. Failures are easy to isolate and fix. We can utilize
off-the-shelf tools for media handling and annotation when-
ever such tools are available. For example, in our Windows
NT version of the tool, we use the COMIWebBrowser2in-
terfaces to Windows Explorer and drive it as an external tool
to allow us to browse annotations. We use the COMIDis-
patch interface to Microsoft Word to bring up an editor to
enter annotations.

Modularity and Extensibility: As all drivers export uni-
form interfaces, it is easy to add new media types. We sim-
ply build a driver to encapsulate the interface to the tool and
plug it into the bus.

A practical issue that arises in this design is how to deal with
cleanup. When the main interface exits or is killed the en-
tire tool including all its components should be terminated.
To deal with this problem, we use theclient attach and
client detachevents for which the Site Controller MStream
may register Handlers. These handlers are executed when a
client attaches or detaches from the daemon at a given site.
It can issue messages to the other tool controllers MStreams
to exit the tools that they control.

It may be a concern that the decomposition of the system
into processes degrades performance. Our experience was
that degradation in performance is not unacceptable. The
system appeared to behave well even on a slow machine
(130 MHz) running windows NT.

We are also working on a data collection facility that will
monitor the system, gather data and populate ftp reposito-



ries with the data after experiments are completed.

6 Related Work

Tcl DP [10] is the most popular extension for distributed
scripting. Our first point of comparison is with this system.
In contrast to Tcl DP that is RPC oriented, our system is
intended as a platform to script distributed event-oriented
applications. We rely on one-way messages to support this.
In Tcl DP, messages are round-trip and the sender cannot
proceed until the recipient has completed processing. Our
system can also support synchronous (round-trip) messages
where the sender blocks until the append handler at the tar-
get completes execution and hence we can do the kinds of
things Tcl DP is aimed at doing. However, we expect most
applications built using our system to be one-way message
oriented. It is interesting to note that in our system, we
can move the server in response to an RPC before the reply
comes back to the client.

Our framework and toolkit is related to several other sys-
tems that support mobility. In contrast to other research in
Mobile Agents, our approach has been to treat mobility and
Mobile Agent technology as an enhancement to distributed
scripting rather than as a means of supporting disconnected
operations. Consequently, we have concentrated on typical
distributed systems issues such as location tracking, mes-
sage passing and failure handling. This distinguishes and
separates our work from the other work in this area. Tcl pro-
vides an ideal platform for building mobile agent systems
and there have been a few such systems that have gained
popularity. Agent Tcl [3] supports a generalized mobility
model where migration is allowed at arbitrary points in ex-
ecution of the mobile code. This provides greater flexibility
and perhaps a more natural programming model than we
provide. However, this approach suffers from a few short-
comings. First, it requires modification of the core Tcl dis-
tribution - something that is difficult to keep up with over
the long run. Unrestricted mobility makes support of fault
tolerance and reconfiguration harder to achieve. In contrast,
our system restricts mobility and other state changes to han-
dler boundaries and treats handlers as atomic units of ex-
ecution. By providing such a clean execution model, we
simplify the system design and implementation while in-
creasing slightly the burden of the developer using our sys-
tem. Previously, we had developed a system calledSumatra
that supports unrestricted mobility for Java applications by
modification of the Java Virtual Machine [8] and many of
the design decisions in this system are influenced by the ex-
perience gained in the Sumatra exercise. TACOMA [5] is

another Tcl-based mobile agent system that adopts a pro-
gramming model similar to ours. However, there are some
basic difference as outlined below.

In this work, we proposed direct communication (reliable
message passing) between Mobile Agents. In our system
on streamappend Handlers ( analogous to ”Agents” in
other systems ) pass one-way messages to each other re-
liably ( via MStreams ) rather than meeting to exchange
messages, using a blackboard or other RPC-like mecha-
nisms. Cabri et. al. [1] argue that this is not such a good
idea for several reasons which make sense in the context
of free-roaming disconnected agents. Our system is ori-
ented towards building re-configurable distributed applica-
tions rather than supporting free-roaming autonomous enti-
ties and hence several of their concerns do not apply.

Aglets [6], Voyager [2], and Mole [14] are Java-based sys-
tems that follow a programming model similar to ours.
However, our system differs from these systems in the fol-
lowing important ways: (1) Our design philosophy is to in-
corporate reconfiguration into a distributed system build-
ing toolkit rather than support disconnected operation as
the fundamental design goal, (2) We have incorporated a
peer-to-peer reliable, resilient message delivery protocol
that none of these other systems offer and (3) We have a
means of restricting system re-configuration and extension
using policy Handlers that separate global (system-wide),
and local concerns.

Dynamic re-configuration of distributed systems has been
considered by Hofmeister and Purtilo [4] using a software
bus approach. Their system supports dynamic changes to
modules, geometry and structure of a distributed system.
However, failure processing and asynchronous message de-
livery during reconfiguration is not considered.

7 Conclusions and Future Work

In this paper we have presented the motivation and design
of a Middleware framework that uses mobility to simplify
distributed scripting. We presented examples to illustrate
the use of our system. Our system may be downloaded from
from http://www.antd.nist.gov/itg/agni/.

Our plans for extending the Middleware is concentrated in
three areas. We will incorporate reliable multicast primi-
tives in our system whereby an MStream can communicate
with a group of MStreams. As in the unicast case, both
the sender and the recipients can be in motion while mes-



sages are being delivered. Second, we intend to make our
location tracking scheme more robust and scalable by using
replication and multicast. Third, we will build persistence
at the location manager so that the system can be stopped
and restarted without loosing all the MStreams and data.
Finally, we intend to continue building applications - espe-
cially in the domain of mobile computing and distributed
testing.
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