
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

X O T C L —
A N O B J E C T - O R I E N T E D S C R I P T I N G L A N G U A G E

Gustaf Neumann and Uwe Zdun

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

XOTcl { an Object-Oriented Scripting Language

Gustaf Neumann Uwe Zdun

Department of Information Systems Speci�cation of Software Systems

Vienna University of Economics and BA University of Essen

Austria Germany

gustaf.neumann@uni-essen.de uwe.zdun@uni-essen.de

Abstract

This paper describes the object-oriented scripting
language XOTcl (Extended OTcl), which is a value
added replacement of OTcl. OTcl implements
dynamic and introspective language support for
object-orientation on top of Tcl. XOTcl includes
the functionality of OTcl but focuses on the con-
struction, management, and adaptation of complex
systems.

In order to combine the bene�ts of scripting lan-
guages with advanced object-oriented techniques, we
extended OTcl in various ways: We developed the
�lter as a powerful adapation technique and an in-
tuitive means for the instantiation of large program
structures. In order to enable objects to access sev-
eral addition-classes we improved the exibility of
mixin methods by enhancing the object model with
per-object mixins. We integrated the object system
with the Tcl namespace concept to provide nested
classes and dynamic object aggregations. Moreover,
we introduced assertions and meta-data to improve
reliability and self-documentation.

1 Introduction

XOTcl (pronounced exotickle) is an object-oriented
scripting language providing several improvements
targeted at the development and management of
large systems. The base of our work was the OTcl,
which is a Tcl extension introducing a dynamic
object and class model by using solely the C-API
of Tcl. XOTcl is a standard Tcl extension which
can be dynamically loaded into every Tcl compliant
environment (such as tclsh, wish or Wafe [23]).

A central property of scripting languages is the use of
strings as the only representation of data. For that
reason a scripting language o�ers a dynamic type

system with automatic conversion. All integrated
components (application speci�c extensions typically
written in C) use the same string interface for ar-
gument passing. Therefore these components auto-
matically �t together and can be reused in unpre-
dicted situations without change. In [27] and [25] it is
pointed out that component frameworks have proven
to provide a high degree of code reuse, and are well
suited for rapid application development. It is argued
that application developers may concentrate primar-
ily on the application task, rather than investing ef-
forts in �tting components together. Therefore, in
many applications scripting languages are very use-
ful for a fast and high-quality development of soft-
ware. Hatton [16] points out that the use of object-
orientation in languages like C++ does not �t the
human reasoning process very well. In [25] we argue
that the identi�ed de�ciencies do not apply at the
same degree on object-oriented scripting languages.

Tcl is equipped with functionalities like dynamic
typing, dynamic extensibility and read/write in-
trospection, that ease the glueing process of con-
structing systems from components. OTcl extends
these important features of Tcl by o�ering object-
orientation with encapsulation of data and opera-
tions, single and multiple inheritance, a three level
class system based on meta-classes, and method
chaining. Instead of a protection mechanism OTcl

provides rich read/write introspection facilities,
which allow one to change all relationships dynami-
cally.

We continued and extended the design philoso-
phy of Tcl and OTcl of providing freedom rather
than constraints for the programmer. Examples
are the support of dynamic changes and introspec-
tion mechanisms wherever possible. This design
philosophy trades in expressiveness for protection
in order to ease programming. However, a highly
exible language design implies less hard-wired pro-
tection against bad software architectures or bad

programming style. We believe that no protection
mechanisms can enforce the generation of coherent
code/designs, so we focused on expressiveness by
providing the programmer with more powerful con-
structs rather than on making decisions in her/his
place.

Tcl

XOTcl

dynamic aggregations
nested classes
assertions
meta-data
per-object mixins
filter

Adopted from OTcl:

multiple inheritance
method chaining
meta-classes
read/write introspection
dynamic extensibility

Tcl

object-orientation:
 encapsulation
 inheritance

Tcl

namespaces
introspection
extensibility

New Functionalities:

...

Other
Extensions

Figure 1: Language Extensions of XOTcl

The properties of OTcl described above provide
a good basis for our work (see Figure 1). In the
language design of XOTcl we focus on mechanisms
to manage the complexity in large object-oriented
systems, especially when these systems have to be
adapted for certain purposes. Such situations occur
frequently in the context of scripting languages. In
particular we added the following support:

� Filters as a means of abstractions over method
invocations to implement large structures, like
design patterns, and to trace/adapt messages.

� Per-object mixins, as a means to give an object
access to several di�erent supplemental classes.

� Dynamic Object Aggregations, to provide dy-
namic aggregations through nested names-
paces.

� Nested Classes, to reduce the interference of
independently developed program structures.

� Assertions, to reduce the interface and the re-
liability problems caused by dynamic typing.

� Meta-data, to enhance self-documentation.

In this paper we describe theses functionalities from
a language point of view. The implemented exten-
sions provide additional functionality and lead to an
improved performance in comparison to OTcl. How-
ever, we had to introduce a few incompatibilities to

OTcl (discussed in Section 2 and in [33]). Since
Wetherall and Lindblad provide in [32] a detailed pre-
sentation of OTcl and its design considerations, we
focus here on the di�erences to XOTcl. The later
sections introduce the new language constructs of
XOTcl and discuss their usage. Finally we present
a part of a larger application example (an XML-
parser/-interpreter) based on design patterns, which
is implemented using the new language constructs.

2 Language Constructs Derived from
MIT Object Tcl (OTcl)

The Object command is used to create new objects.
It provides access to the Object class which holds
the common features of all objects. Objects are al-
ways instances of classes, but since objects from the
most general class Object have no user-de�ned type,
they may be referred to as singular objects. Every
object can be dynamically re�ned with variables and
with object-speci�c methods (using the proc instance
method) at run-time. In the body of a proc, the pre-
de�ned command self is used to determine the name
of the current object. self can be used to obtain the
following information about the current invocation:

� self (without parameters) returns the name of
the currently executing object.

� self class returns the name of the class, which
holds the currently executing method. Note,
that it may di�er from the object's class.

� self proc returns the name of the currently ex-
ecuting method.

A reader with OTcl knowledge will note, that there
is a di�erence to the realization of these object infor-
mations to OTcl. XOTcl uses commands to obtain
this information, whereas OTcl uses three implicit
variables for this purpose (self, class, and proc).
This change makes the internal calling conventions
of XOTcl methods compatible with Tcl procedures.
This has the advantage that the methods are acces-
sible in XOTcl via namespace-paths (see Section 5).
For compatibility XOTcl provides the compilation
option AUTOVARS to set these variables automatically
(with a slight performance disadvantage).

Every object is associated with a class over the class
relationship. Classes are special objects with the pur-
pose of managing other objects. \Managing" means
that a class controls the creation and destruction

of its instances and that it contains a repository of
methods (\instprocs") accessible for the instances.

The instance methods common to all objects are de-
�ned in the root class Object (prede�ned or user-
de�ned). Since a class is a special (managing) kind
of object it is managed itself by a special class called
\meta-class" (which manages itself). One interest-
ing aspect of meta-classes is that by providing a con-
structor pre-con�gured classes can be created. New
user-de�ned meta-classes can be derived from the
prede�ned meta-class Class in order to restrict or
enhance the abilities of the classes that they man-
age. Therefore meta-classes can be used to instanti-
ate large program structures, like some design pat-
terns. The meta-class may hold the generic parts of
the structures. Since a meta-class is an entity of the
programming language, it is possible to collect these
in (customizable) pattern libraries for later reuse (see
Section 7 for example or [25] for more details).

XOTcl supports single and multiple inheritance.
Classes are ordered by the relationship superclass

in a directed acyclic graph. The root of the class
hierarchy is the class Object. A single object can
be instantiated directly from this class. An inherent
problem of multiple inheritance is the problem of
name resolution, e.g. when two superclasses contain
a method with the same name. XOTcl provides
an intuitive and unambiguous approach for name
resolution by de�ning the precedence order along a
\next-path" for linearization of class and mixin hi-
erarchies (see [32, 24] for details), which is modeled
after CLOS [4]). A method can invoke explicitly
the shadowed methods by the prede�ned command
next. It mixes the next shadowed method on the
next-path into the execution of the current method.

The usage of next in XOTcl is di�erent to OTcl: In
OTcl it is always necessary to provide the full argu-
ment list for every invocation explicitly. In XOTcl, a
call of next without arguments can be used to call the
shadowed methods with the same arguments (which
is the most common case). When arguments should
be changed for the shadowed methods, they must be
provided explicitly. In the rare case that the shad-
owed method should receive no argument, the ag
--noArgs must be used.

An important feature of all XOTcl objects is the
read/write introspection. The reading introspection
abilities are packed compactly into the info instance
method which is available for objects and classes.
All obtained information can be changed at run-time
with immediate e�ect dynamically. Unlike languages
with a static class concept, XOTcl supports dynamic

class/superclass relationships. At any time the class
graph may be changed entirely using the superclass

method, or an object may change its class through
the class method. This feature can be used for
an implementation of a life-cycle or other intrinsic
changes [20] of object properties (in contrast to ex-
trinsic properties e.g. modeled through roles [14, 20]
and implemented through per-object mixins [24]) .
These changes can be achieved without loosing the
object's identity, its inner state and its per-object
behavior (procs and per-object mixins).

3 Filters

The �lter is a novel approach to manage large pro-
gram structures. It is a very general interception
mechanism which can be used in various application
areas. We have studied the use of �lters for design
patters in detail (see [25] and Section 7). Other useful
application areas are monitoring of running systems
(tracing and debugging), adaptation at runtime, im-
plementation of proxy services, etc.

De�nition 1 A �lter is a special instance method
registered for a class C. Whenever an object of class
C receives a message, the registered �lter is invoked
instead of the object's methods. The �lter may handle
this message and/or can decide to forward it to the
object's methods.

Usage of Filters In order to de�ne a �lter two
steps are necessary: an �lter-instproc has to be
de�ned and the �lter has to be registered using
the filter instance method. This registration tells
XOTcl, which instprocs are �lters on which classes.
Every �lter consists of three (optional) parts:

ClassName instproc FilterName args {

pre-part

next

post-part

}

The distinction into three parts is just a naming con-
vention for explanation purposes. The pre- and post-
part may be �lled with any XOTcl-statements. In
general the �lter is free in what it does with the
message. In particular it can (a) pass the message
through (using the next-primitive), it can (b) redi-
rect it to another destination, or it can (c) decide to
handle the message itself (see Figure 2).

When a �lter instproc is executed at �rst the instruc-
tions in the pre-part are processed. Then the �lter
might call the actual method through next. The �lter
can take the result of the actual method (returned by
the next-call) and can modify it. After the execution
of \next" the post-part is executed. Finally the caller
receives the result of the �lter instead of the result
of the called method.

As an example we de�ne a class Room. Every time
an arbitrary action occurs on a room instance, the
graphical sub-system should change the display of
that particular room. A �lter can handle the neces-
sary noti�cations (here only output messages):

Class Room

Room instproc observationFilter args {

puts "room action begins"

set result [next]

puts "room action ends -- Result: $result"

return $result

}

Room filter observationFilter

When the �lter is registered (last line) every action
performed on an instance of Room is noticed with
a pre- and a post-message to the standard output
stream. We return the result of the actual called
method, since we don't want to change the program
behavior at all. When for example an instance vari-
able is set on the instance of Room r1:

r1 set name "room 1"

the output is:

room action begins

room action ends -- Result: room 1

a1

message (c)

message (a)

Filter_1
Filter_2
Filter_3

message (b)

Class A

} filter-chain
Class A

o0 pre-part

post-part

call

result

Figure 2: Cascaded Message Filtering

Filter Chains Each class may have a chain of �l-
ters which are cascaded through next (see Figure 2).
The next method is responsible for the forwarding of
messages to the remaining �lters in the chain one by

one (in registration order) until all pre-parts are exe-
cuted. Afterwards the actual method is invoked and
�nally the post-parts are processed. If a next-call is
omitted the �lter chain ends in this �lter method. In
the following example two �lters are registered, one
for observation purposes and one for counting calls.

Room set callCounter 0 ;# set class variable

Room instproc counterFilter args {

incr [self class]::callCounter

next

}

Room filter {counterFilter observationFilter}

Class B

Filter Chain of
Class B

Class A

Class Object

b1 set x 10

b2
b1

a1

o1

pre-part

post-part

1

2

3

4

5

6

Figure 3: Filter Inheritance

Filter chains can also be combined through (multi-
ple) inheritance using the next method. Filter chains
of the superclasses are invoked using the same prece-
dence order as for inheritance (see Figure 3). With-
out sophisticated e�orts a powerful tracing facility
can be implemented. E.g. a �lter solely for oÆces
distinguishes Office-rooms from other rooms:

Class Office -superclass Room

Office instproc officeFilter args {

puts "actions in an office"

next

}

Office filter officeFilter

A simple call to an instance o1 of class Office, like:

o1 set name "office 1"

increments the counter and produces the output:

actions in an office

room action begins

room action ends -- Result: office 1

Introspection of Filters Filters are ordinary
instprocs and have therefore access to all XOTcl
functionalities including the full introspection facili-
ties. Furthermore, �lters require per-call information

for reasoning or delegation purposes, i.e. information
about the caller's and the callee's environment and
the invocation record is required. The following
options are additionally available:

� objName info calledproc: Returns the origi-
nally invoked proc.

� objName info calledclass: Returns the (pre-
sumably) called class.

� objName info callingclass: Returns the class
from which the �ltered call was invoked.

� objName info callingproc: Returns the proc
from which the �ltered call was invoked.

� objName info callingobject: Returns the ob-
ject from which the �ltered call was invoked.

� objName info regclass: Returns the class on
which the �lter is registered.

� ClassName info filters: Returns the list of
�lters registered for a class.

These methods return empty strings, when the de-
sired information does not exist. The options with
the pre�x calling represent the values of self, self
proc, and self class in the invoking method.

Tracing This example primarily demonstrates the
inheritance of �lter chains. Since all classes inherit
from Object, a �lter on this class is applied on all
messages to objects. So all invocations of methods
in the whole system are traced. The actual �lter
method displays the calls and exits of methods with
an according message. The CALL traces are sup-
plied with the arguments, the EXIT traces contain
the result values. We have to avoid the tracing of the
trace methods explicitly. With a more sophisticated
�lter implementation, the trace can be restricted to
instances of certain classes, or produce trace output
for only certain methods.

Object instproc traceFilter args {

don't trace the Trace object

if {[self] == "::Trace"} {return [next]}

::set method [[self] info calledproc]

puts "CALL > [self]->$method $args"

::set result [next]

puts "EXIT > [self]->$method ($result)"

return $result

}

Object filter traceFilter

Related Work The underlying idea behind �l-
ters (and per-object mixins) are interceptors for
messages. In [1] objects that are able to abstract
interactions among objects are introduced. The
message passing model is enhanced by input/output
interception, an idea generally introduced in CLOS
[4].

Our driving motivation for the implementation of
�lters was language support for design patterns [25].
Several authors proposed other reection and in-
terception mechanisms for their implementation of
design patterns. The LayOM-approach [5] is the
most similar to the �lter approach. It o�ers an
explicit representation of patterns using an extended
object-oriented language. The approach is centered
on message exchanges as well and puts layers around
the objects which handle the incoming messages.
The �lter approach di�ers from LayOM since it can
represent patterns as ordinary classes and needs no
new constructs, only regular methods. The FLO-
language [11] introduces a \component connector"
that is placed between interacting objects. Connec-
tors are controlled through a set of interaction rules
that are realized by operators. Hedin [17] presents
an approach based on an attribute grammar in a
special comment marking the pattern in the source
code. The comments assign roles to the classes,
which constrain them by rules. Constraining of
patterns can be achieved in XOTcl using assertions
(see Section 6), which can be checked at run-time.

4 Per-Object Mixins

Per-object mixins are a novel approach of XOTcl
to extend the method chaining of a single object.
Therefore, per-object mixins can handle complex
data-structures dynamically on a per-object basis.
The term \mixin" is a short form for \mixin class".

De�nition 2 A per-object mixin is a class which is
mixed into the precedence order of an object in front
of the precedence order implied by the class hierarchy.

An arbitrary class can be registered as a per-object
mixin for an object by the prede�ned mixin method.
This method accepts a list of per-object mixins for
the registration of multiple mixins. The following
example de�nes the classes Agent and MovementLog

(each with a same-named method) and registers
MovementLog on the Agent-instance a as a mixin:

Class Agent

Agent instproc moveAgent {x y z} {

puts "moving"

do the movement ...

}

Class MovementLog

MovementLog instproc moveAgent {x y z} {

puts "Agent [self] moves to ($x,$y,$z)"

next

}

Agent a -mixin MovementLog

Per-object mixins use the next-primitive to forward
messages to the chain of other mixins and to pass it
�nally to the ordinary class hierarchy of the object.
If a call on object a is invoked, like \a moveAgent 1

2 3", the per-object mixin is mixed into the prece-
dence order of the object, immediately in front of
the precedence order resulting from the class hierar-
chy (as illustrated in Figure 4). The resulting output
of the example call is:

moving

Agent a moves to (1,2,3)

Object

method
invocation

Agent

next

MovementLog

a

instance-of

next

per-object
mixin

Figure 4: Per-Object Mixin Example

Mixins can be removed dynamically at arbitrary
times by handing the mixin method an empty list.
Methods of mixins have full access to all introspec-
tion options. As interceptors they additionally have
access to the info-options callingproc, callingclass
and callingobject (see Section 3). The registered
mixins can be introspected using

objName info mixins ?class?

which returns the list of all mixins of the object, when
class is not speci�ed. Otherwise it returns 1, if class
is a mixin of the object, or 0 if not.

The mixin relationship of an object can be used to
model extrinsic properties (such as roles), whereas
the class relationship is used to de�ne its intrinsic
properties. Per-object mixins are ordinary classes
and support full specialization/generalization to
make their usage compatible with ordinary classes.

Related Work Per-object mixins use the same
mechanism as the method chaining in OTcl [32].
Both the precedence order and the idea of mixins
in OTcl are inuenced by the lisp extension CLOS
[4, 18]. The �lter approach (discussed in last sec-
tion) is the class-level interception construct whereas
per-object mixins are interceptors for single objects
independent of the class relationship. A comparison
between per-object mixin and �lter can be found
in [26]. In Agora [30] mixins are treated as named
attributes of classes. In [7] di�erent inheritance
mechanisms are compared and mixins are proposed
as a general inheritance construct.

Modeling of objects changing roles (as in [14]) can
be implemented through the change of class relation-
ships (see Section 2). In [24] we provide a deeper dis-
cussion of per-objects mixins and we point out that
the per-object mixin are well-suited to model roles.
Per-object mixins are transparent to clients. They
let us decompose extrinsic (role) and intrinsic prop-
erties of objects into classes and combine them into
one conceptual entity. Bosch proposes in [6] a com-
ponent adaption technique, which is similar to the
per-object mixin idea. It is also transparent, com-
posable and reusable, but it is not introspective, not
dynamic and a pure black-box approach.

5 Nesting of Classes and Objects

Most object-oriented analysis and design methods
are based on the concepts of generalization and ag-
gregation [29]. Generalization is achieved through
class hierarchies and inheritance, while (static) ag-
gregation is provided through embedding.

In order to support (static and dynamic) aggrega-
tion we use the namespace concept provided by Tcl
since version 8.0. A namespace provides an encap-
sulation of variable and procedure names in order to
prevent unwanted name collisions with other system
components. Each namespace has a unique identi-
�er which becomes part of the fully quali�ed vari-
able and procedure names. Namespaces are therefore
already object-based in the terminology of Wegner
[31]. OTcl is object-oriented since it o�ers classes
and class inheritance. Since objects in OTcl provide
namespaces (with di�erent semantics) as well, two
incompatible namespace concepts existed in parallel.
In OTcl every object has a global identi�er.

XOTcl combines the namespace concept of Tcl with
the object concept of OTcl. Every object and every
class in XOTcl is implemented as a separate Tcl

namespace. The biggest bene�t of this design deci-
sion aside from performance advantages is the ability
to construct aggregated objects/nested classes and to
reduce name conicts. Note, that the namespaces do
not eliminate all possible naming conicts. InXOTcl
object identi�ers are Tcl commands. In the case of
nested objects, a name conict between the object
names and per-object procs may arise.

Through the strong integration with the Tcl names-
paces we achieved additional advantages: Instance
variables are traceable in XOTcl through Tcl's
trace command, and methods may be executed
via namespace quali�cation directly (by-passing
XOTcl's dispatch), which can make method invoca-
tion as fast as Tcl's proc invocation for performance
critical sections (although loosing the assertion and
interception facilities of XOTcl).

Nested Classes As a simple example of nested
classes, the description of a oval carpet and a desk
can nest inside a OvalOffice-class:

Class OvalOffice

Class Carpet ;# a general carpet

Class OvalOffice::Desk

special oval carpet - no name collision

Class OvalOffice::Carpet -superclass ::Carpet

Nested classes have the same properties as ordinary
classes. Additionally the information aboutthe nest-
ing is available through the info method:

ClassName info classchildren
ClassName info classparent

The classchildren option returns a list of children
(possibly empty). classparent results in the name of
the parent class, if the class is nested. In order to ease
the construction of the full path of a namespace we
support the following two alternative syntax forms
for the creation of nested classes:

MetaClassName ClassName::nestedClass

ClassName MetaClassName nestedClass

Dynamic Object Aggregation Every object in
XOTcl has its own namespace which can contain
other objects. Suppose an object of the class Agent

should aggregate some property objects of an agent,
such as head and body:

Class Agent

Class Agent::Head

Class Agent::Body

The classes Head and Body are in the Agent namespace
and do not infer with other same-named classes.

Agent myAgent

Agent::Head ::myAgent::myHead

Agent::Body ::myAgent::myBody

Now myHead and myBody are part of myAgent and
they are accessible through the full namespace path.
These paths can turn out to be quite cumbersome to
write. Fortunately, in most situations a programmer
does not have to write the full path, since within
XOTcl methods the object's namespace is set auto-
matically and the self command obtains the fully
quali�ed object name. For the creation of aggregated
objects the following two forms can be used:

ClassName objName::aggregatedObj

objName ClassName aggregatedObj

The information about the part-of relationship of ob-
jects can be obtained the same way as for classes
through the info method interface:

objName info children
objName info parent

Dynamic Aggregation It is likely that all agents
have properties for head and body. This implies a
static or pre-determined relationship between class
nesting and object aggregation. A pre-determined
aggregation of property objects can be built through
a constructor, such as:

Agent instproc init args {

::Agent::Head [self]::myHead

::Agent::Body [self]::myBody

}

Agent myAgent

Every agent is now created with a head and a body.
The aggregation can be changed dynamically at
runtime by creation or destruction of objects. The
destroy method turns the agent into a headless
agent:

myAgent::myHead destroy

XOTcl provides introspection for aggregations as
well. Suppose, that in the virtual world the agents
heads may be slashed from their bodies. The graph-
ical system can simply ask the agent with info

children, whether it has a head or not, and can
choose the graphical representation accordingly.

Every object/class can be moved (and copied) to an
other object/class by the move (copy) method. These
are deep operations, e�ecting the object and all its
aggregates.

Related Work Our view of aggregation is inu-
enced by investigations on modules [13], conceptual
modeling [29], and object-oriented languages, like
Troll [15]. Several common programming languages
o�er nested or inner classes, e.g. Java, C++, Beta,
etc. These concepts provide aggregation of descrip-
tive structures, but lack in introspection abilities
and dynamics. Banavar [3] points out that class-
level nesting is a form of composition.

In languages without support for object aggregation,
it is approximated by embedding of objects or by as-
sociation through pointers (a reference). Embedding
does not permit dynamic aggregations, pointers lead
to low level programming with hand coded opera-
tions for operators like deep-copy/-move. These ap-
proximations contradict the idea of an aggregation.

Several design patterns also use aggregations for
composition. The whole-part pattern [9] aggregates
objects of arbitrary types. Dynamic object aggrega-
tions form a language support for this pattern. The
more special variant \composite" [12] aggregates
hierarchies of objects of the same type and can also
be language supported (see Section 7).

6 Other Functionalities

This section describes briey some other language
functionalities that are not available in OTcl.

Abstract Classes A class is de�ned abstract if at
least one method of this class is abstract. The build-
in method abstract de�nes an speci�es the interface
of an abstract method. Direct calls to abstract meth-
ods produce an error message. E.g. a Graphic-class
provides an abstract interface for drawing:

Class Graphic

Graphic abstract instproc draw args

Parameters Classes may be equipped with parameters

de�nitions which are automatically created for the
convenient setting and querying of instance variables.
Parameters may have a default value, e.g.:

Class Person -parameters {

name

{friends ""}

{ID [self]}

}

Each instance of class Person has three properties
de�ned. name has no default value, friends defaults

to an empty list, and the ID defaults to the instance's
self-ID. parameters are inherited to subclasses. The
following example demonstrates setting and querying
of parameters:

Person p1 -name Anakin ;#set name at creation

p1 name "Darth Vader" ;#set name at runtime

puts "Name of p1: [p1 name] objID: [p1 ID]"

Assertions In order to improve reliability and self
documentation we added assertions to XOTcl. The
implemented assertions are modeled after the \de-
sign by contract" concept of Bertrand Meyer [21, 22].
In XOTcl assertions can be speci�ed in form of for-
mal and informal pre- and post-conditions for each
method. The conditions are de�ned as a list of and-
combined constraints. The formal conditions have
the form of ordinary Tcl conditions, while the in-
formal conditions are de�ned as comments (speci�ed
with a starting \#"). Pre- and post-conditions are
appended as lists to the method de�nition.

Since XOTcl o�ers per-object specialization it is de-
sirable to specify conditions within objects as well
(this is di�erent to the concept in [21]). Furthermore
there may be conditions which must be valid for the
whole class or object at any visible state (that means
in every pre- and post-condition). These are called
invariants. Logically all invariants are appended to
the pre- and post-conditions with a logical \and".
The syntax for class invariants is:

ClassName instinvar invariantList

and for objects invariants:

objName invar invariantList

All assertions may be introspected. Since assertions
are contracts they need not to be tested if one can
be sure that the contracts are ful�lled by the part-
ners (see [21]). But for example when a component
has changed or a new one is developed the asser-
tions could be checked on demand. The checking is
then ful�lled at the beginning and at the end of each
method call. The checkmethod has con�guration op-
tions for all assertions types to turn checking on/o�.
The syntax is:

objName check ?all? ?instinvar? ?invar? ?pre?

?post?

Per default all options are turned o�. check all

turns all assertion options for an object on, an ar-
bitrary list (maybe empty) can be used for the se-
lection of certain options. Assertion options are in-
trospected by the info check option. The following
class is equipped with assertions:

Class Sensor -parameters {{value 1}}

Sensor instinvar {

{[regexp {^[0-9]$} [[self] set value]] == 1}

}

Sensor instproc incrValue {} {

incr [self]::value

} \

{{# pre-condition:} {[[self] value] > 0}} \

{{# post-condition:} {[[self] value] > 1}}

The parameter instance method de�nes an instance
variable value with value 1. The invariant expresses
the condition (using the Tcl command regexp), that
the value must be a single decimal digit. The method
de�nition expresses the formal contract between the
class and its clients that the method incrValue only
gets input-states in which the value of the variable
value is positive. If this contract is ful�lled by the
client, the class commits itself to supply a post-
condition where the variable's value is larger than 1.
The formal conditions are ordinary Tcl conditions.
If checking is turned on for sensor s:

s check all

the pre-conditions and invariants are tested at the
beginning and the post-condition and invariants are
tested at the end of the method execution automat-
ically. A broken assertion, like calling incrValue 9
times (would break the invariant of being a single
digit) results in an error message.

We have already pointed out that the presented con-
cepts are relying on Meyer's Design by Contract [21,
22]. The di�erences are, that due to the ability to
de�ne per-object specializations object assertions are
introduced, and that due to the dynamics of the lan-
guage the assertions are also dynamically changeable
and introspectable.

AsserTcl [10] is another approach that introduces as-
sertions into Tcl through four new Tcl commands.
The advantages of our approach are the integration
with object-orientation , the placement of assertions
at a familiar place (at the end of the method de�-
nition) and the support for invariants in classes and
objects.

Meta-data To enhance the self-documentation
and the consistency between documentation and
program it is useful to make the documentation a
part of the program, i.e. to store meta-data like the
author, a description, the version, etc. Meta-data
registered for classes is inherited and propagated to
all instances and are a dynamic and introspective.
Syntactically, meta-data can be speci�ed through the
metadata method with its options add and remove.

Other arguments for the metadata method are inter-
preted as meta-data values. E.g. on Object:

Object metadata add {description version}

Object metadata description "This class \

realizes all common object behavior"

Object metadata version "1.0"

Since the meta-data registered on classes is inherited,
all objects can store information on description and
version. E.g. the agent a1 stores such values:

Agent a1

a1 metadata description "My testing agent"

a1 metadata version "0.1"

Classes and objects can store additional meta-data
for their own purposes at any time. E.g. agents can
store information about the host on which they have
been created. Introspection of meta-data is imple-
mented through info metadata method, which lists
all de�ned meta-data attributes with values associ-
ated (only those). Meta-data values can be accessed
through the metatdata instance method, similar to
the usage of set. If no value parameter is given, the
current value is returned. The following command
produces the result \1.0":

Object metadata version

Beneath the special features, like inheritance, meta-
data could be expressed through instance variables
solely. But especially in distributed environments,
it is important to have such a facility, because the
common place and the introspection mechanisms al-
low di�erent people and, in XOTcl's case, even other
programs, to gain the meta-data without searching
for them. Since this is not only a naming convention,
but a language construct, the interpreter results in
an error if the meta-data is used incorrectly.

Automatic Name Creation The XOTcl autoname
instance method provides an simple way to take the
task of automatically creating names out of the re-
sponsibility of the programmer. The example below
show how to create on each invocation of method new

an agent with a fresh name (pre�xed with agent):

Agent proc new args {

eval [self] [[self] autoname agent] $args

}

7 Application Example: An XML-
Parser/-Interpreter

Now we illustrate the usage of the new language con-
structs in a larger example: the design pattern based
architecture/implementation of an XML-Parser/-
Interpreter. XML [8] is a meta-language that de�nes
on basis of a document type de�nition (DTD) the
structure of an application document.

An application program that wants to extract infor-
mation from an XML document has to parse the
document and has to interpret the resulting struc-
ture. The (partial) design of our implementation
is presented in Figure 5, where a wrapper facade
pattern integrates and encapsulates an o�-the-shelf
XML parser, the interpreter-/composite-patterns ab-
stracts from the syntax tree representation, a builder
separates the parsing from the creation of the result-
ing structure, a visitor decouples the interpretation
from the syntax tree and a per-object observer is used
to trace visitations.

AbstractNode

XMLNode

Client

XMLParser

may be
used as

per-object
mixin

TreeVisitor

XMLVisitor

VisitObserver

PrintObserver

TclXMLParser

Functions

TclXML

NodeBuilder

...

Interpreter/Composite

Wrapper Facade

Visitor

Per-Object
Observer

Builder

XMLBuilder

Figure 5: Partial Design of the XML
Parser/Interpreter

The interpreter pattern [12] de�nes an object-
oriented representation for a grammar along with an
interpretation mechanism (essentially an interpret
method for each node type). All clients abstract
from expressions through the use of an abstract
interface for interpretation purposes. At run-time
expression objects form an abstract syntax tree.
Frequently the interpreter's tree representation is
implemented as a composite pattern, that arranges
objects in a tree with leaf and composite nodes of
the same component type. Registered composite
operations are recursively forwarded to all children
of the composite.

The composite pattern can be implemented through
a meta-class that registers a �lter in the constructor

of the meta-class for forwarding of the operations to
the nested nodes. We implement the abstract pat-
tern in a meta-class Composite which can be loaded
from a library and reused and instantiated in sev-
eral application classes. addOperations registers and
removeOperations unregisters the operations which
should be forwarded to the nested nodes.

Class Composite -superclass Class

Composite instproc addOperations args {...}

Composite instproc removeOperations args {...}

Composite instproc init args {...}

The registered operations are stored in the associa-
tive array ops (a class variable in the class on which
the �lter was registered) that is accessed by a generic
�lter which performs the actual forwarding:

Composite instproc compositeFilter args {

set m [[self] info calledproc]

set c [[self] info regclass]

set r [next]

if {[info exists ${c}::ops($m)]} {

foreach child [lsort \

[[self] info children]] {

eval [self]::$child $m $args

}

}

return $r

}

The �lter determines through info calledproc the
method which is called, obtains the registration
class of the �lter through info regclass, and checks,
whether the called method m was registered in the
array ops for forwarding. If m is registered, the mes-
sage is passed to all children objects (determined by
info children). Finally, next forwards the message
to the actual node. Since the children may be com-
posites as well, this mechanism iterates recursively
on the entire tree structure. The �lter is registered
for derived application classes in the constructor of
Composite.

Now the meta-class Composite can be used to im-
plement the interpreter pattern for XML-nodes.
We de�ne a class AbstractNode with the meta-class
Composite and an abstract operations for accepting
interpretation through a visitor, which should work
recursively, therefore it is added as a composite op-
erations. Application node classes such as XMLNode

can be derived by specializing AbstractNode:

Composite AbstractNode

AbstractNode abstract instproc accept v

AbstractNode addOperations accept

Class XMLNode -superclass AbstractNode

For parsing of XML documents several parsers (such
as TclXML [2]) can be used. In order to use a legacy
parser in an exchangeable manner it has to be encap-
sulated transparently. The wrapper facade pattern
[28] provides a general means to shield clients from
direct dependencies to functions.

Actually we use XMLParser as a wrapper facade object
that embodies the interface to the XML parser as
object-oriented methods. configure sets the parser
con�guration, cget queries the con�guration, parse
invokes the parsing of XML text, and reset cleans up
the parser context before a new text can be parsed.

Class XMLParser -parameters {nodeBuilder}

XMLParser abstract instproc init args

XMLParser abstract instproc cget option

XMLParser abstract instproc configure args

XMLParser abstract instproc parse data

XMLParser abstract instproc reset {}

A speci�c TclXML parser is derived by sub-classing:

Class TclXMLParser -superclass XMLParser

In order to separate the construction process of the
complex node structure from its representation and
to make representations exchangeable, we use the
builder pattern [12]. The parser is the director of
the construction process, invoked by parse operation.
parse uses the NodeBuilder interface containing three
methods to build the data representation (startElt
actually creates nodes). A concrete implementation
XMLBuilder builds the abstract syntax tree.

Class NodeBuilder

NodeBuilder abstract instproc charData text

NodeBuilder abstract instproc startElt \

{tag attrList}

NodeBuilder abstract instproc endElt tag

Class XMLBuilder -superclass NodeBuilder

The visitor pattern [12] is used to de�ne operations
on the nodes independently from the intrinsic prop-
erties of the nodes. According to the pattern the
nodes have to concretize an accept method , which
calls the visit method of the visitor for all nodes
(since it is registered as a composite method):

XMLNode instproc accept v {$v visit [self]}

Below is an abstract TreeVisitor and a specialization
PrintVisitor that just prints out every node:

Class TreeVisitor

TreeVisitor abstract instproc visit objName

Class PrintVisitor -superclass TreeVisitor

PrintVisitor instproc visit objName {

puts "Visitation of node $objName"

}

Such visitors can be used e.g. for locating XML-
elements with certain properties, for extracting or
mapping of the XML-structure, etc. For observing
certain events in the system, a per-object observer
[26] may be used, which can for example observe the
parsing of the document. The per-object observer
is based on the observer in [12] and implemented
through per-object mixins. The PrintObserver

watches the processing of startElt tags:

Class PrintObserver

PrintObserver instproc startElt {t a} {

puts stderr "... watching: name=$n"; next

}

The PrintObserver can be added to the XMLBuilder,
which should be observed. Finally, the parser is con-
nected with the node-builder instance:

XMLBuilder ::t -mixin PrintObserver

TclXMLParser x -nodeBuilder ::t

x parse "...<PERSON>...</PERSON>..."

The implementation of the presented XML process-
ing system has the size of 73 lines (including two more
useful visitors) plus 22 lines for the wrapper facade,
and 25 lines for the implementation of Composite (in-
cluding the de�nitions of abstract interfaces).

8 Conclusion

This paper introduces XOTcl, which is an experi-
ment to combine the bene�ts of a scripting language
with the bene�ts of a high level object-oriented lan-
guage. We tried to preserve the underlying prin-
ciples of the scripting language Tcl (like dynamic
typing, exible glueing of preexisting components,
read/write introspection) while extending the lan-
guage with high level object-oriented concepts (like
�lters, per-object mixins and dynamic aggregations).
Our goal was to improve productivity and software
reuse by providing the programmer with powerful
means to manage complexity and to improve com-
posability.

We used the new language concepts with promis-
ing success in various applications, including a web
browser [19], an HTTP server, a web-based object
and a mobile code system [34], a persistent store,
an XML-/RDF-Parser, etc. The new language con-
structs helped to improve the modularization, the
robustness and the code size of these systems.

XOTcl is available from:
http://nestroy.wi-inf.uni-essen.de/xotcl.

References

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and
A. Yonezawa. Abstracting object interactions using
composition �lters. In R. Guerraoui, O. Nierstrasz,
and M. Riveill, editors, Object-Based Distributed
Processing, pages 152{184. LCNS 791, Springer-
Verlag, 1993.

[2] S. Ball. TclXML. http://www.zveno.com/zm.cgi/
in-tclxml/, 1999.

[3] G. Banavar. Nesting as a form of composition. In
Proc. of CIOO Workshop at ECOOP, July 1996.

[4] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E.
Keene, G. Kiczales, and D. A. Moon. Common lisp
object system speci�cation. Sigplan Notices, 23(9),
1988.

[5] J. Bosch. Design patterns as language constructs.
Journal of Object Oriented Programming, 11(2):18{
32, 1998.

[6] J. Bosch. Superimposition: A component adapta-
tion technique. Information and Software Technol-
ogy, 41, 1999.

[7] G. Bracha and W. Cook. Mixin-based inheritance.
In Proc. of OOPSLA/ECOOP'90, volume 25 of
SIGPLAN Notices, pages 303{311, October 1990.

[8] T. Bray, J. Paoli, and C. Sperberg-McQueen. Ex-
tensible markup language. http://www.w3.org/TR/
REC-xml, 1999.

[9] F. Buschmann, R. Meunier, H. Rohnert, P. Som-
merlad, and M. Stal. Pattern-oriented Software Ar-
chitecture { A System of Patterns. J. Wiley and
Sons Ltd., 1996.

[10] J. Cook. Assertions for the Tcl language. In Proc.
of the Fifth Annual Tcl/Tk Workshop 1997, Boston,
1997.

[11] S. Ducasse. Message passing abstractions as elemen-
tary bricks for design pattern implementations. In
Proc. of LSDF'97, 1997.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[13] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fun-
damentals of Software Engineering. Prentice Hall,
1991.

[14] G. Gottlob, M. Schre, and B. R�ock. Extending
object-oriented systems with roles. ACM Transac-
tions on Information Systems, 14(3), 1996.

[15] T. Hartmann, R. Junghans, and G. Saake. Ag-
gregation in a behavior oriented object model. In
O. Madsen, editor, Object-Based Distributed Pro-
cessing, pages 57{77. LCNS 615, Springer-Verlag,
1992.

[16] L. Hatton. Does OO sync with how we think? IEEE
Software, May/June 1998.

[17] G. Hedin. Language support for design patterns us-
ing attribute extension. In Proc. of LSDF'97, 1997.

[18] G. Kiczales, J. des Rivieres, and D. Bobrow. The
Art of the Metaobject Protocol. MIT Press, 1991.

[19] E. K�oppen, G. Neumann, and S. Nusser. Cineast
{ an extensible web browser. In Proc. of the Web-
Net 1997 World Conference on WWW, Internet and
Intranet, Toronto, Canada, November 1997.

[20] B. B. Kristensen and K. �sterbye. Roles: Concep-
tual abstraction theory & practical language issues.
Theory and Practice of Object Systems, 2:143{160,
1996.

[21] B. Meyer. Object-Oriented Software Construction.
Prentice Hall, 2nd edition, 1997.

[22] B. Meyer. Building bug-free o-o software:
An introduction to design by contract.
http://ei�el.com/doc/manuals/technology/
contract/index.html, 1998.

[23] G. Neumann and S. Nusser. Wafe { an X toolkit
based frontend for application programs in various
programming languages. In Proc. of USENIX Win-
ter 1993 Technical Conference, San Diego, January
1993.

[24] G. Neumann and U. Zdun. Enhancing object-
based system composition through per-object mix-
ins. Proc. of Asia-Paci�c Software Engineering Con-
ference (APSEC), December 1999.

[25] G. Neumann and U. Zdun. Filters as a language sup-
port for design patterns in object-oriented scripting
languages. In Proc. of COOTS'99, 5th Conference
on Object-Oriented Technologies and Systems, San
Diego, May 1999.

[26] G. Neumann and U. Zdun. Implementing object-
speci�c design patterns using per-object mixins. In
Proc. of NOSA`99, Second Nordic Workshop on
Software Architecture, Ronneby, Sweden, August
1999.

[27] J. K. Ousterhout. Scripting: Higher level program-
ming for the 21st century. IEEE Computer, 31,
March 1998.

[28] D. C. Schmidt. Wrapper facade: A structural pat-
tern for encapsulating functions within classes. C++
Report, SIGS, 11(2), February 1999.

[29] J. Smith and D. Smith. Database abstractions: Ag-
gregation and generalization. ACM Transactions on
Database Systems, 2(2), 1977.

[30] P. Steyaert, W. Codenie, T. D'Hondt, K. D. Hondt,
C. Lucas, and M. V. Limberghen. Nested mixin-
methods in Agora. In Proc. of ECOOP '93, LNCS
707. Springer-Verlag, 1993.

[31] P. Wegner. Learning the language. Byte, 14(3):245
{ 253, March 1989.

[32] D. Wetherall and C. J. Lindblad. Extending Tcl
for dynamic object-oriented programming. In Proc.
of the Tcl/Tk Workshop '95, Toronto, July 1995.

[33] U. Zdun. Entwicklung und Implementierung von
Ans�atzen, wie Entwurfsmustern, Namensr�aumen
und Zusicherungen, zur Entwicklung von kom-
plexen Systemen in einer objektorientierten Skript-
sprache. Diplomarbeit (diploma thesis), Universit�at
Gesamthochschule Essen, 1998.

[34] U. Zdun. Entwurf und Entwicklung eines mo-
bilen Objekt-Systems f�ur Anwendungen im Inter-
net. Diplomarbeit (diploma thesis), Universit�at
Gesamthochschule Essen, 1999.

