
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

F E AT H E R :
T E A C H I N G T C L O B J E C T S T O F L Y

Paul Duffin

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Feather: Teaching Tcl objects to fly

Paul Duffin
IBM Hursley Laboratories, UK

pduffin@hursley.ibm.com, http://purl.oclc.org/net/pduffin/home

December 16, 1999

Abstract

Feather is a set of extensions which enhances the
capabilities and flexibility of Tcl objects, builds a
framework around them to enable new data types
to be easily added and also provides a rich set of new
data types. This paper starts off by giving quite a
detailed description of how Tcl objects work and
then moves on to describe the features of Feather,
how they work and what they can be used for.

1 Introduction

One of the major complaints raised against Tcl
by advocates of other scripting languages such as
Python, Lisp and Perl is that it has very few data
structures.

Feather is the remedy.

The introduction of Tcl objects in Tcl 8.0 not only
greatly improved the scalability of Tcl in terms of
speed and memory usage, it also provided the foun-
dation for Feather to build on.

Feather is a set of extensions which not only pro-
vides lots of new data types, it also provides frame-
works into which new data types can be easily in-
serted. It was decided early on that Feather must
not require any changes to the Tcl core in order
to make it as easy as possible for people to use.
At times it seemed that the decision might have to
be changed, but in the end a core change was not
needed.

As there is not enough space here to describe all
the features of Feather completely, this paper aims
to provide enough information to prove that it is

technically feasible and to show you some of the
exciting things which Feather makes possible.

The paper starts off by giving quite a detailed de-
scription of how Tcl objects work and their limita-
tions and restrictions. This should provide a sound
basis for the next few sections which describe the
various enhancements that Feather makes. The
final sections describe what Feather uses these en-
hancements for, gives a brief summary of what could
not be included and a look towards the future.

2 Tcl objects

This section aims to give a description of how Tcl
objects work, it describes why they were introduced,
gives an overview of them and then goes into more
details, especially of the subtleties which cause the
most problems for users.

2.1 History

Versions of Tcl prior to 8.0 used C NUL terminated
character strings as their primary data type. This
approach has the following scalability problems and
data representation limitations.

• Everything from lists to procedure bodies to
loop bodies had to be parsed every time they
were used.

• Strings had to be copied whenever a long last-
ing reference to it was required.

• Binary data was not easily supportable because
in general no length was associated with the
strings.

Hence the Tcl objects were created.

2.2 Basic characteristics

The starting point for Tcl objects is that as far
as the Tcl programmer is concerned they must be-
have exactly like strings do. In other words the Tcl
programmer must be able to treat everything as a
string.

In order to provide the necessary functionality each
Tcl object has the following information associated
with it.

• Reference count.

• Type.

• Dual representations

– A string representation, including length.

– A type specific, or internal representation.

2.2.1 Reference counted

Much of the string copying done in older versions of
Tcl was done because a private reference to the data
was required and there was no way of protecting the
data from being changed, or of detecting when it
needed to be freed.

Tcl objects solve both of these problems by using a
simple reference count to keep track of how many
references there are. The object can only be freed
when the reference count reaches 0, and it can only
be changed if the reference count is less than or
equal to 1, i.e. only the code which is changing
the object has a reference to it.

set a "hello"

set b $a

In the above code a is a reference to the literal ob-
ject "hello" which has a reference count of 1. The
assignment of $a to b simply makes b a reference to
the object and increments its reference count to 2.
The equivalent code in a string based version of Tcl
would have to copy the string value of a.

2.2.2 String representation

This is the most important information stored in
a Tcl object as it allows it to behave like a string.
The length of the string is also stored in the object
which means that it can handle binary data with
embedded NULs.

2.2.3 Typed

A Tcl object’s type basically determines the for-
mat of the internal representationn; the actual type
which an object has is determined by the context
it is used in. For example, an object which is used
as a number will have a number type and an object
which is used as a list will have a list type. If an
object does not have the correct type for the current
context it is automatically converted to the correct
type if possible, otherwise an error is reported.

Literal strings which are found in source code have
no internal type at all so they are untyped.

set a "1 2 3 4"

set b [lindex $a]

In the above code a starts as a reference to the lit-
eral object "1 2 3 4", [lindex] then changes the
type of the object to list generating an internal list
representation in the process. The string represen-
tation is not changed.

Each type has to define the following operations:

• Free the internal representation.

• Duplicate the internal representation.

• Convert to type.

• Update the string representation.

2.2.4 Type specific representation

As its name suggests the nature of this information
depends on the type of the object.

2.3 Behaviour and rules

Although Tcl objects are quite simple structures the
rules governing their behaviour can be a little con-
fusing. When Tcl objects were first introduced it
took quite a long time to remove all of the problems
caused by their unforeseen behaviour.

2.3.1 Dual representation

As mentioned above Tcl objects have two represen-
tations, a string one and an internal or type specific
one. Each type provides mapping functions to con-
vert from one to another. The built in Tcl types fall
into two broad categories depending on the mapping
function they use.

A transparent type is one whose string representa-
tion contains all the information that the internal
representation does. They have the following char-
acteristics.

• Mapping from the string representation to the
internal representation requires no other infor-
mation.

• Changes to the internal representation requires
changes to the string representation.

• Objects of this type have no seperate identity,
an identical but seperate object can be created
simply by copying the string and converting to
the correct type.

• The internal representation is unique to a Tcl
object.

• Objects of this type are automatically freed
when they are no longer needed.

A handle type is one whose string representation is
simply an identifier for the internal representation.

• Mapping from the string representation to the
internal representation requires additional in-
formation such as a hash table.

• Changes to the internal representation does not
require changes to the string representation.

• Objects of this type have their own identity,
copying the string and converting to the correct
type, simply results in another object which
refers to the same internal representation as the
original.

• The internal representation may be shared be-
tween many Tcl objects.

• Objects of this type have to be explicitly freed.

Integer, double, boolean, string, regular ex-
pression and list are all transparent types. Com-
mand, index, window and font are all handle
types.

2.3.2 Conversions

Converting from one type to another is done as fol-
lows

1. Update the string representation.

2. Invalidate the existing internal representation.

3. Parse the string representation and create the
new internal representation.

4. Change the type.

Step 2. calls the free internal representation op-
eration of the current type which means that it is
difficult to distinguish between converting from one
type to another and deleting the object.

2.3.3 Shared objects

An object is shared when its reference count is
greater than 1 and you have to be very careful when
working with objects which are or could be shared.
In fact you should assume that any object you are
working with is shared, unless you know otherwise.

The one rule that you must follow when working
with shared objects is that you must never mod-
ify the string representation: you can do just about
anything else to it but that. If no string represen-
tation exists then it is valid to generate it but once
it exists you must not change it. i.e.

set a "hello"

set b $a

append b ", world"

puts $a

In the above code the assignment of a to b causes
the literal string object "hello" to have a refer-
ence count of 2 and hence is shared. If [append]
modified the string representation of that shared ob-
ject then the code would output "hello, world"
which is not correct according to Tcl’s semantics.
Instead, if [append] has to append to a variable
whose value is shared it first duplicates the value
object and works with that duplicate ensuring the
correct behaviour. This is called copy-on-write se-
mantics.

2.3.4 Lossy conversions

A lossy conversion is one which loses information,
e.g. converting from a floating point number to an
integer can lose information. If an object is subject
to a lossy conversion it is most important that the
string representation is generated before the conver-
sion happens.

set a 1

incr a

set b [expr {$a * 0.1}]

puts $a

In the above code a is initialised with an object
which has a string representation of "1", a type of
integer and a value of 1. It is then incremented, re-
sulting in it being assigned a new object1 with no
string representation, a type of integer and a value
of 2. [expr] causes the object to be converted to a
double type, with a value of 2.0. If that conversion
did not generate the string representation from the
integer value then the final line would output 2.0,
instead of 2 which is of course incorrect.

2.3.5 Literal handling

When parsing, Tcl replaces all literal strings with a
Tcl object and identical literal strings are replaced
with the same Tcl object. In the following code all

1If the object is not shared then it would be the same
object.

occurrences of .b are replaced with the same Tcl
object.

button .b -command {

puts "Button pressed"

}

pack .b

This behaviour has lots of advantages in that it re-
duces the memory requirements and if the object
is used in the same context as shown above it can
also improve the performance by allowing subse-
quent uses to benefit from any cached information.
However, because this process increases the number
of shared objects it also can have disadvantages be-
cause of the increased chance that shimmering (see
below) will occur.

If the literal string looks like an integer then the
parser will actually create an integer object, rather
than simply a literal string object.

2.3.6 Shimmering

This is what happens when an object is repeatedly
converted from one type to another and happens
most often with shared objects but can happen with
any object, because the problem is caused not by
the number of references but by the number of dif-
ferent uses made of the object. These conversions
can take up a lot of time causing performance prob-
lems. It is very difficult to actually quantify the ef-
fect shimmering has on a program as there is no way
at the moment to monitor the conversions which
take place. This also means that it is difficult to
find these problems, unless you have a deep under-
standing of the internals of Tcl.

set b 1.0

for {set a 0} {$a < 200} {incr a 2} {

set b [expr {$b / 2}]

}

In the above admittedly slightly contrived example
the literal integer object 2 is used both as an integer,
by [incr] and as a double, by [expr]. This means
that it will be repeatedly converted from one type
to another with the consequent loss of performance.

2.3.7 Threads

Accesses to Tcl objects are not serialised because
the overhead would be too great and for the most
part unnecessary. Because of this you must not
use an object from two different threads at once.
It is possible to pass objects from one thread to
another but they must not be used concurrently.
Also, shared objects must never be passed from one
thread to another because it is almost certain that
this rule would be broken as you do not have control
over how and when the object is to be used.

3 Interfaces

One of the biggest limitations of Tcl objects is that
they can only have one internal representation which
is the primary cause of shimmering. Adding addi-
tional internal representations is not really a suit-
able solution for the following reasons.

• Increased memory usage in both the Tcl Obj
structure itself and for all the internal repre-
sentations which now exist concurrently.

• Increased complexity managing the internal
representations, choosing which one to free,
finding an internal representation of the correct
type, etc.

• It will most likely introduce major incompata-
bilities with existing extensions.

The approach that Feather takes is to keep one in-
ternal representation but to allow each object type
to behave in different ways depending on the con-
text, which means that in many cases conversions
become unnecessary. This does not solve all shim-
mering problems but it does eliminate a large set of
them which for the most part tend to be impossible
for the Tcl programmer to do anything about.

These additional behaviours are provided by inter-
faces. If an object type can behave like a command
then it provides an implementation of the command
interface, if it can behave like a foobar then it pro-
vides an implementation of the foobar interface.

Conversely, if a particular context needs an object
which behaves like a foobar then it checks to see

if it provides a foobar interface. If it does then
the interface is used, otherwise the context could
try and convert the object to a known type which
does provide a foobar interface. If the conversion
failed, or no such type existed then an error would
be reported.

3.1 Implementation

An interface definition is simply a structure of func-
tion pointers and possibly other related data. The
Tcl ObjType structure is the interface which Tcl
object types must provide. An interface implemen-
tation consists of a set of functions and an initialised
instance of the structure.

Rather than go into details of exactly how the in-
terface mechanism works I will save space and time
by just describing its important features.

• It is very dynamic.

• The Tcl ObjType is extended to allow a set
of interfaces to be associated with it. This is
done dynamically to avoid any incompatabili-
ties with existing extensions.

• Each interface definition has a unique fixed
name. e.g. the Feather command interface
is called ”feather::command”.

• Each interface definition used is dynamically
allocated a key. This key is used to retrieve an
interface from a Tcl ObjType in O(1) time.

• Interfaces have to be added to, and removed
from, Tcl ObjTypes dynamically.

While developing the interface mechanism I did take
a brief look at the way Python worked but rejected
it immediately because it only seems to support a
fixed set of interfaces which are hard coded into its
structures. The definition of PyTypeObject in the
Python header file object.h has space reserved in
it for each interface that is supported with unused
space for future expansion. This seemed far too re-
strictive for Tcl which prides itself on its dynamism
and lack of limits.

3.2 Polymorphism

A polymorphic function, or command, is one which
can work with different types of objects. Interfaces
support polymorphism in just the same way as ab-
stract virtual classes in C++ [1] do,

4 Opaque objects

As mentioned before Tcl only supports a few data
types; strings, numbers, lists and arrays. While the
latter two are very powerful they can be difficult to
use and may also be relatively inefficient. Feather
attempts to solve these problems by providing a rich
set of new types.

Unfortunately, neither a transparent or a handle
type was suitable for these new types. Transpar-
ent objects must in general be copied before be-
ing changed. This would be very inefficient for the
types that I wanted to provide and make them much
harder to use. On the other hand the fact that han-
dle objects need to be explicitly freed makes them
unsuitable because of the increased risk of memory
leaks. Therefore, I created a new category of object
types called opaque. Opaque objects combine parts
of transparent and handle types and have the fol-
lowing characteristics (labelled to indicate whether
they were taken from transparent or handle type)

• Mapping from the string representation to the
internal representation requires additional in-
formation such as a hash table. (Handle)

• Changes to the internal representation does not
require changes to the string representation.
(Handle)

• Objects of this type have their own identity,
copying the string and converting to the correct
type, simply results in another object which
refers to the same internal representation as the
original. (Handle)

• The internal representation may be shared be-
tween many Tcl objects. (Handle)

• Objects of this type are automatically freed
when they are no longer needed. (Transparent)

4.1 Mutable objects

Mutable objects consist of those opaque objects
whose internal representation can be changed. Sup-
port for mutable objects was the primary reason
for creating opaque objects although as can be seen
later it is not the only one. The majority of the new
Feather types are mutable.

The introduction of mutable objects into Tcl brings
with it the ability for Tcl scripts to create cycles
of Tcl objects. These cycles will not be cleared up
by simple reference counting and Feather does not
currently support garbage collection.

4.2 Implementation

The implementation of opaque objects is quite sim-
ple but does reveal some subtleties about their use
which mean that they are not suitable for all pur-
poses. While the following implementation is not
the only way to implement opaque-like types I have
found it to be the best both in terms of simplic-
ity of implementation and versatility from the Tcl
programmer’s perspective. Also, remember that
Feather provides a framework for creating opaque
objects and therefore has to cope with problems in
a very general manner.

The internal representations of opaque objects need
to be reference counted because each one can be
referenced by multiple Tcl objects. In fact it is the
internal representation which uniquely identifies the
opaque object, not a Tcl object.

In addition to the normal Tcl ObjType operations,
opaque objects also need to support the opaque in-
terface. This interface consists of the following op-
erations:

• Set internal representation.

• Get internal representation.

• Increment reference count.

• Decrement reference count.

The main reason why this interface is needed is to
allow an object whose string representation refers

to an opaque object to be converted back to that
object whatever type it may be.

The following describes the Tcl ObjType interface
that opaque objects implement and also the opaque
interface that they use.

4.2.1 Update the string representation

This operation has to create a string representation
which uniquely identifies the internal representa-
tion amongst all opaque objects. At the moment
Feather objects uses a combination of the type
name, for readability, and the address of the internal
representation, for simplicity.

As soon as, but not before, the string representation
is generated it becomes necessary to provide a way
to convert an object from its string representation
to the correct type.

set opaque [createFooObject]

eval useFooObject [list $opaque]

In the above code [eval] concatenates the string
representations of the literal string useAsFooObject
and the string representation of the list containing
the opaque object referred to by opaque and then
evaluates it. At this point [useAsFooObject] is
passed an untyped Tcl object which it needs to con-
vert to an opaque Foo type.

While this conversion back from the string represen-
tation to the opaque object type is not strictly nec-
essary, without it the objects are almost unusable
because they will not work properly with [eval] or
[uplevel] which are very commonly used.

Therefore, once this operation has generated the
string representation it then stores the internal rep-
resentation and the type of the opaque object into
the table of opaque objects using the string repre-
sentation as the key.

4.2.2 Convert to type

This operation uses the string representation as a
key to find the internal representation and object
type in the table of opaque objects. If it found them
it then checks that the stored type and the type to

which it is being converted match and only then
does it do the conversion. If either the key was not
valid, or the check failed then an error is generated
and the conversion does not go ahead.

The conversion is actually done by the set ob-
ject from internal representation operation from the
opaque interface.

4.2.3 Duplicate the internal representation

If the object is mutable then this operation simply
has to create a duplicate of the internal representa-
tion and associate it with the duplicated Tcl object,
just like transparent objects.

If on the other hand, the object is not mutable then
this operation can either create a duplicate of the
internal representation as above, or it can just in-
crement the reference count of the existing internal
representation.

Duplicating the internal representation requires
that the string representation of the duplicated ob-
ject be invalidated because otherwise there would
be two different opaque objects with the same string
representation. This breaks the rule defined in the
section above that the string representation has to
uniquely identify the internal representation.

Invalidating the string representation of the dupli-
cated object may seem like a dangerous thing to do
but it is actually quite safe. The duplication pro-
cess was designed with copy-on-write semantics in
mind so it was never intended to create a clone of
the original object but rather a copy of the object
which could be modified. The string representa-
tions of duplicated objects are usually invalidated
after they have been created. Because opaque ob-
jects do not support copy-on-write semantics they
never need to be implicitly duplicated, rather they
are explicitly duplicated when necessary.

As far as the Tcl programmer is concerned the dif-
ference between duplication and incrementing the
reference count is that the former changes the string
representation of the object whereas the latter does
not.

4.2.4 Free the internal representation

This operation simply decrements the reference
count of the internal representation. Only when the
reference count reaches zero is the internal repre-
sentation actually freed. Freeing the internal rep-
resentation also removes the information associated
with the string representation in the table of opaque
objects.

4.2.5 Set internal representation

This operation takes a Tcl Obj pointer and a
pointer to the internal representation and converts
the object to the correct type and attaches the in-
ternal representation to it.

set opaque [createFooObject]

eval useOpaqueObject [list $opaque]

In the above code [useOpaqueObject] is passed an
untyped string object which it needs to convert to
an opaque object, however, it does not know what
the type of the object should be. The conversion
process uses the string representation as a key to
find the internal representation and the object type
in the table of opaque objects. If it found them it
then calls this operation to do the actual conversion.

4.2.6 Get internal representation

This operation takes a Tcl Obj pointer and returns
a pointer to the internal representation.

4.2.7 Increment reference count

This operation increments the reference count of the
internal representation.

4.2.8 Decrement reference count

This operation decrements the reference count of
the internal representation.

4.3 Interaction with interfaces

The process of retrieving an interface implementa-
tion from an object is complicated by the intro-
duction of opaque objects. Without them, a sin-
gle query to the object is sufficient to determine
whether it supports the interface. With them, the
object has to be converted to an opaque object first
if necessary and then queried.

4.4 Limitations

Opaque objects have some limitations which mean
that they are not suitable for all uses. n

4.4.1 Conversions

You have to be very careful when using opaque ob-
jects that you do not convert them to other types
as this will cause the reference from the Tcl object
to the internal representation to be released which
may cause the internal representation to be freed.

transparent objects do not have this problem be-
cause they can be recreated from the string repre-
sentation if necessary and handle objects have to be
explicitly freed.

4.4.2 Callbacks

Opaque objects do not work well with string based
callbacks.

set opaque [createFooObject]

scrollbar .sb -command [list command $opaque]

unset opaque

In the above code [scrollbar] takes a copy of the
string representation of the list and stores it away.
By the time the scrollbar command is evaluated
[unset] has caused the opaque object to be freed.

The solution to this is to make sure that the opaque
object exists as long as the -command option refers
to it.

The following code fails in the same way, even
though button commands are stored as Tcl objects,

because the Tcl parser concatenates bCommand and
the string representation of the opaque object before
calling [button].

set opaque [createFooObject]

button .b -command "command $opaque"

unset opaque

5 Container objects

A container object is simply an object which pro-
vides a container interface.

5.1 Interface

The container interface defines operations to read
and write elements, to remove elements, to check
that elements exist, to get the size, contents and
keys of the container and also to get an iterator
for the container. It can handle both single dimen-
sional, e.g. lists, and multi-dimensional containers,
e.g. matrices.

Container iterators have their own interface which
defines operations to increment and decrement it,
to read and write elements, to free it and to check
that it has reached the end.

The list type is the default container type. This
means that if an object being used as a container
does not have a container interface and is not opaque
then it is converted to a list object, which does have
a container interface courtesy of Feather.

5.2 Implementation

The implementation of container objects is very sim-
ple. There is one thing however which is worth men-
tioning because it affects how the Tcl programmer
uses them. The string representation of the opaque
container objects contains a space to enable poly-
morphic functions like [loop] and [container] to
differentiate between the string representation of an
opaque container object and the string representa-
tion of a list containing a single opaque container
object.

5.3 New container objects

Unfortunately, there is not enough space to describe
all the details of each of the container types that
Feather provides. The following list just provides
a brief description of each one.

chain A mutable linked list which is O(1) for inser-
tion and removal and O(N) for indexing.

hash A mutable hash table similar to, but faster
and more efficient than, a Tcl variable array.
The main reason for this is that it uses Tcl ob-
jects and not strings for the keys.

map A mutable container based on a red-black or 2-
3-4 tree. The objects are stored in order in the
tree, and searching and inserting are all very
efficient. This is the perfect container to use to
implement a set construct.

sequence A transparent container which can be
used to efficiently create repetitions of objects
or arithmetic series.

structure A mutable container very similar to C
structures.

vector A mutable container very similar to Tcl
lists.

Creation of a container object is done by calling
the Tcl command of the same name with the first
argument as create. This command also provides
type specific operations. Operations which can be
done through the container interface are all done
using [container].

5.4 Polymorphic container commands

5.4.1 container

This command provides access container objects
through the container interface. The following code
creates a vector and a hash object and then gets the
first element in the vector (indexed by 0) and the
colour of a frog.

set vector [vector create alpha beta gamma]

set colourOf [hash create frog green]

container get $vector 0

container get $colourOf frog

5.4.2 loop

This command provides a way to iterate over con-
tainers. The following code iterates over the con-
tents of the vector and prints them on stdout.

set vector [vector create alpha beta gamma]

loop letter $vector {

puts $letter

}

6 Command objects

Command objects are Tcl objects which can be used
in place of a normal Tcl command. The distinguish-
ing feature of command objects is that they imple-
ment the command interface.

Although all existing Feather command objects are
opaque they do not need to be. In fact Tk windows
are a prime example of a handle object type just
waiting to be converted into a command object.

6.1 Interface

The command interface consists of one function
whose prototype is the same as a Tcl ObjCmdProc.

cmdName is the default command type.

6.2 Implementation

Command objects are implemented by modifying
the behaviour of the cmdName type in a similar
way to Tcl Blend [2]. Unfortunately, I did not dis-
cover this until well after I had implemented by own
version.

What differentiates Feather from Tcl Blend is that
Feather provides a framework for others to add in
their own command objects.

One important distinction between opaque com-
mand objects and other opaque objects is that the
string representation of an opaque command object
contains no characters which are treated specially
by [eval], i.e. spaces, newlines and semicolons.

The reason for this is to allow them to easily pass
through [eval] without having to worry about us-
ing [list] to protect them.

6.3 Lambda objects

This is basically an unnamed procedure which is
wrapped up in an opaque object. It is opaque in
order to hide the arguments and the body.

A lambda command object is created by using
[lambda] which takes the same arguments as
[proc] apart from the name. It should behave iden-
tically to a named procedure with the same argu-
ments and body.

set command [lambda $parameters $body]

eval $command $arguments

The above code should behave identically to the fol-
lowing code ignoring any differences due to the dif-
ferent names.

proc command $parameters $body

eval command $arguments

Just like [proc], [lambda] does not support static
scoping, however by combining lambda objects and
curried objects which are described later it is possi-
ble to emulate it.

6.3.1 Examples

The following code creates a lambda command ob-
ject which returns the result of multiplying its ar-
gument by itself. When applied to 12 this returns
144, or 122.

set square [lambda {x} {

expr {$x * $x}

}]

$square 12

The following code creates a button which, when
pressed, outputs "Pressed".

button .b -command [lambda {} {

puts Pressed

}]

pack .b

6.3.2 Performance

Lambda objects are almost as fast as normal pro-
cedures and the difference between them is mainly
due to the overhead arising from the overriding of
the cmdName type. With a suitable patch to the
Tcl core command objects should be just as fast as
normal procedures.

6.4 Curried objects

A curried object is an opaque command object
which encapsulates a command , or command object
and a list of other Tcl objects. When the curried
object is invoked it in turn invokes the encapsulated
command with its arguments appended to the end
of the encapsulated objects.

The following code creates a curried object contain-
ing a command and the literal objects 1 and 2. In-
voking the curried object with the literal objects 3
and 4 results in [command] being invoked with the
literal objects 1, 2, 3 and 4.

proc command {args} {

puts $args

}

set object [curry command 1 2]

$object 3 4

As mentioned above curried objects can be used
with lambda objects to allow most if not all func-
tional programming constructs to be used. Curried
objects are also very useful for callbacks and for im-
plementing Tk window-like object systems.

6.4.1 Examples

The following code creates a procedure, compose,
which takes two commands as its arguments, con-
structs another command object by composing
those two commands together and then returns it.
It then uses [compose] to create a command object
which returns the result of multiplying its argument
by itself and then multiplying the result of that by
itself. When applied to 3 this returns 81, or (32)2

or 34.

The currying is necessary because Tcl does not sup-
port static scoping and apart from substitution,

which will not work properly with command ob-
jects, there is no way for the composed command
to get access to the creating commands variables.

proc compose {f g} {

curry [lambda {f g x} {

$f [$g $x]

}] $f $g

}

set quad [compose $square $square]

$quad 3

It is also very easy to create simple object oriented
interfaces. For each instance that you want to create
you first create a mutable object which contains the
state of that instance, and then you encapsulate that
along with the command which manages the state
of the object in a curried object and return that as
your objects command.

proc command {clientData method args} {

switch -- $method {

:

: Modify the $clientData object here.

:

}

}

proc factory {args} {

set clientData [createStateObject]

set command [curry command $clientData]

return $command

}

6.4.2 Performance

When passing large lists through [eval], or
[uplevel] it is much faster to wrap them in curried
objects than using [list] to protect them. This is
because it eliminates the need to generate and then
reparse the string representation of the list.

7 Additional features of Feather

Unfortunately, there has not been enough room to
describe in detail all of the features of Feather so
here is a brief description of some of the things which
were not included.

Tables This is the unimaginative name that I have
given to the very useful data type upon which
the interface mechanism is built.

Per interpreter data This is an AssocData-like
mechanism (using tables) which is faster O(1)
and requires less memory per key than the ex-
isting mechanism based on hash tables.

Overrides This is a mechanism to change the be-
haviour of existing commands in much the same
way as [rename] and [proc] can but it does
not pollute namespaces with renamed proce-
dures and the overrides can be removed in any
order.

Handles These are general purpose handles which
can be used to safely pass Tcl objects through
hazardous environments such as string based
callbacks.

Generic interface This allows a Tcl object type
to choose what interfaces each object of that
type provides.

Generic object The generic object uses this fea-
ture to expose interfaces to the Tcl program-
mer.

8 The future of Feather

Feather is nowhere near finished yet, here is a se-
lection of the things which need doing to it and with
it.

• Work with Scriptics to integrate some of the
Feather stuff into the Tcl core.

• Finish off the existing container types, and cre-
ate new ones such as matrices.

• Define new interfaces such as a numeric one for
use by [expr].

• Serialisation of objects in both binary and ascii
format.

• Create yet more object oriented systems using
the Feather concepts.

• Try and define a mechanism to allow one object
to be wrapped around another.

• Garbage collector to clean up reference loops
created by mutable objects.

• Create some new types to provide efficient com-
munication between threaded interpreters.

9 Acknowledgments

Thanks to everyone who helped with the design and
implementation of Feather and also to those who
helped with this paper.

A special thank you to Jean-Claude Wippler for yet
another good idea and to Alexandre Ferrieux for
spending the time to convince me that conversion
from string to opaque object was needed.

The biggest thank you must however be reserved
for my wife Julie who read about 4 or 5 different
versions of this paper even though she did not under
it.

10 Availability

At the time of writing I have not yet managed to
get permission to make the source code freely avail-
able. As soon as I get it I will announce it on
comp.lang.tcl and comp.lang.tcl.announce.

References

[1] Bjorn Stroustrup, The C++ Programming
Language, 3rd Edition, Addison-Wesley Pub-
lishers (1997).

[2] Tcl Blend,
http://www.scriptics.com/products/java/,
http://ptolemy.eecs.berkeley.edu/ cxh/java/

[3] comp.lang.tcl

The reference section is very short because I have
not had access to conference papers before and most
of my knowledge about what is happening in the rest
of the Tcl world is obtained from [3].

