
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

I N T R O D U C I N G Q O S AWA R E N E S S
 I N T C L P R O G R A M M I N G : Q T C L

Roberto Canonico, Maurizio D'Arienzo,
Simon Pietro Romano, and Giorgio Ventre

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Introducing QoS awareness in Tcl programming: QTcl

Roberto Canonico, Maurizio D’Arienzo, Simon Pietro Romano, and Giorgio Ventre
Dipartimento di Informatica e Sistemistica, Università di Napoli “ Federico II” , Napoli, Italy

{canonico, darienzo, sprom}@grid.unina.it ventre@unina.it

Abstract

A number of distributed applications require commu-
nication services with Quality of Service (QoS) guar-
antees. Among the actions undertaken by the Internet
Engineering Task Force (IETF) with regard to the end-
to-end QoS provisioning issue in the Internet, the defi-
nition of the Integrated Services (IntServ) framework
plays a major role. According to this model, applica-
tions need to interact with network routers by means of
a signalling protocol, RSVP. Even though special-
purpose APIs have been defined to let applications
negotiate QoS parameters across RSVP-capable net-
works, the integration of QoS negotiation mechanisms
in the applications still remains an open issue. In mod-
ern programming, the Tcl scripting language plays a
significant role, as it enables fast system prototyping
by gluing basic components to build complex applica-
tions. In this paper we present QTcl, an extension of
Tcl-DP which provides programmers with a new set of
primitives, fully compliant with the SCRAPI pro-
gramming interface for RSVP. We also present how
QTcl has been used in an advanced VoD application to
setup reservations in an IntServ network.

1. Introduction

Building global-scale distributed systems with predict-
able properties is one of the great challenges for com-
puter systems engineering in the new century. Quality
of Service (QoS) requirements will be critical for a
large number of these systems, in particular for dis-
tributed applications whose performance depends
mainly on the characteristics of the communication
service provided by the networking infrastructure [1].
The global network par excellence is the Internet, with
millions of users spread world-wide. Communication
on the Internet is based on the connectionless IP proto-
col, which offers only a best-effort service. Hence, a
great effort has been made in the past years to provide
advanced communication services with QoS guaran-
tees in IP-based networks.

The Internet Engineering Task Force (IETF) has de-
fined an Integrated Services (IntServ) [2] framework to
provide a service model that includes best-effort serv-
ice, real-time service and controlled link sharing. Ac-

cording to this model, applications can, with the help
of an appropriate signalling protocol like RSVP (Re-
source reSerVation Protocol) [3], request communica-
tion services with bounds on communication through-
put or end-to-end latency. To do so, network routers
need to implement special resource management poli-
cies and packet scheduling algorithms. However, to
build distributed systems which benefit from the ad-
vantages of new networking services, we need to de-
sign QoS-aware applications, i.e. applications that
know exactly their communication requirements and
are able to interact with the network to negotiate the
quality of the communication service. Hence, the need
of defining ad-hoc APIs, which let applications issue
per-stream resource reservations.

A large number of applications, in particular multime-
dia applications, consist of a set of pre-existing com-
ponents (building blocks) glued together by a common
GUI. To develop applications of this kind, scripting
languages have proved to be better suited than system
programming languages [4]. It is then reasonable to
provide support for QoS into modern scripting lan-
guages. In this paper we present QTcl, an extension of
Cornell’s Tcl-DP. QTcl extends the Tcl-DP interpreter
by providing a set of new commands, according to the
SCRAPI application programming interface, defined
by the IETF [5]. This API conforms to a simplified
model, in order to reduce the complexity of the devel-
opment of new QoS-aware applications.

The rest of the paper is organised as follows. In section
2 we briefly describe the IntServ model and the
SCRAPI programming interface. In section 3 we pres-
ent QTcl and the set of new commands. We show the
use of QTcl commands in a simple application in sec-
tion 4. In section 5 we illustrate how we have imple-
mented QTcl, as an extension to Cornell’s Tcl-DP.
Finally, in section 6 we present a distributed VoD ap-
plication, which uses QTcl to protect its data flows in
a QoS-enabled internetwork.

2. QoS in the Internet

IP has been playing for several years the most impor-
tant role in global internetworking. Its connectionless
nature has proved to be one of the keys of its success.

Based on this assumption, the IETF Integrated Serv-
ices working group has specified a control QoS
framework [2] in order to provide new applications
with the appropriate support. Such a framework pro-
poses an extension to the Internet architecture and
protocols which aims at making broadly available in-
tegrated services across the Internet.

The key assumption on which the reference model for
integrated services is built is that network resources
(first of all its bandwidth) must be explicitly managed
in order to meet application requirements. The overall
goal in a real-time service, in fact, is that of satisfying
a given set of application-specific requirements, and it
seems clear that guarantees are hardly achieved with-
out reservations. Thus, resource reservation and ad-
mission control will be playing an extremely important
role in the global framework. The new element that
arises in this context, with respect to the old (non-real-
time) Internet model, is the need to maintain flow-
specific state in the routers, which must now be capa-
ble to take an active part in the reservation process.

Based on these considerations, the components in-
cluded in the reference framework are a packet sched-
uler, an admission control module, a packet classifier
and an appropriate reservation setup protocol. The
first three modules together form the traffic control
interface of the router. The reservation setup protocol
is needed to create and manage state information along
the whole path that a specific flow crosses between
two network end-points. One of the features required
to such a protocol is that of carrying the so-called
FLOWSPEC object, that is a list of parameters speci-
fying the desired QoS needed by an application. At
each intermediate network element along a specified
path, this object is passed to admission control to test
for acceptability and, in the case that the request may

be satisfied, used to appropriately parameterize the
packet scheduler [6]. RSVP [3] is the resource reser-
vation protocol recommended by IntServ.

Data treated by RSVP are of three natures, according
to the entity that supplies them (sender and receiver)
or modifies them (intermediate network elements).
The information supplied by each sender, and con-
veyed in the SENDER_TSPEC object, concerns the
type of traffic that it is going to generate. Receivers
provide FLOWSPEC objects, which are built of two
parts, RECEIVER_TSPEC and RECEIVER_RSPEC
(both contained into a message called RESV). The
former contains the traffic description the resource
reservation should apply to, while the latter carries the
service class to be used and the corresponding quality
of service parameters.

Intermediate network elements, in turn, provide addi-
tional information such as available services, delay
and bandwidth estimates, and additional service spe-
cific parameters. This information is contained in AD-
SPEC objects, and is used by the receivers to choose a
service and determine the reservation parameters. AD-
SPEC and SENDER_TSPEC objects are both con-
tained into a PATH message. Figure 1 shows the use
of the defined messages during the resource reserva-
tion phase.

IntServ service classes define a framework for speci-
fying services provided by network elements and
available to applications, in an internetwork capable of
offering multiple, dynamically selectable qualities of
service. So far, two different service classes have been
defined: Guaranteed Service (GS) [7] and Controlled
Load (CL) [8].

In both cases, it is required that the sender provides, in
TSPEC objects, a description of the traffic it is going to

Application Application

SENDER_TSPEC SENDER_TSPEC

Initial ADSPEC

Merged FLOWSPEC

Updated ADSPEC

FLOWSPEC

FILTERSPEC

PATH PATH

RESV RESV

RSVP

API

Traffic
Control

RSVP

API

RSVP

QoS (GS, CL)

Receiver TSPEC

[Receiver RSPEC]

� � � � � � � � � � �

SENDING
END SYSTEM

INTERMEDIATE
NETWORK ELEMENT

RECEIVING
END SYSTEM

Figure 1: The use of RSVP objects during the resource reservation phase

generate. Since traffic patterns are complex to de-
scribe, a worst case characterisation is provided (traffic
envelope), according to a token bucket model [9].
Relevant parameters are the following:

• token bucket depth (b [Bytes]),
• average rate (r [Bytes/s]),
• peak rate (p [Bytes/s]),
• minimum policed unit (m [Bytes]),
• maximum datagram size (M [Bytes]).

A source conforming to such a description will gener-
ate, during any time interval of length τ, a number of
bytes upper bounded by (Fig. 2):

A (τ) = min (b + r τ, M + p τ), τ ≥ 0

Guaranteed Service (GS) provides the clients data flow
with firm bounds on the end-to-end delay experienced
by a packet while traversing the network. It guarantees
both bandwidth and delay. The GS emulates the
service that would be offered by a dedicated commu-
nication channel between the sender and the receiver.
Two parameters apply to this service: TSPEC and
RSPEC. The TSPEC describes the traffic characteris-
tics for which service is being requested. The RSPEC
specifies the QoS a given flow demands from a net-
work element. It takes the form of a clearing rate R
and a slack term S. The clearing rate is computed to
give a guaranteed end-to-end delay and the slack term
denotes the difference between desired and guaranteed
end-to-end delay after the receiver has chosen a value
for R.

Controlled Load (CL) service, on the other hand, may
be thought of as a “controlled best-effort” service, i.e.
a service with the same characteristics of a best-effort
delivery over a not overloaded network. To avoid QoS
degradation when the network load increases, CL relies
upon admission control algorithms. CL is best suited to

applications that have been developed taking into ac-
count the limitations of today's Internet, but are highly
susceptible to overloaded conditions. A typical exam-
ple is given by adaptive real-time applications, which
have proved to work well when there is little or no
load on the network.

2.1. QoS programming interfaces

In the framework we just depicted, the IETF has de-
fined RAPI [10], an API compliant with the RSVP
Functional Specification [3]. It is a user-level library
written in C, which can be used by applications aiming
at exploiting the QoS functionalities made available by
a network reservation protocol like RSVP. RAPI calls
let an application interact with a local RSVP daemon
process, in order to establish a communication with
QoS guarantees.

The RAPI interface is a first step towards the integra-
tion of communication services with QoS guarantees
into applications; yet, its use is somewhat complex,
since the application programmer must be aware of a
number of parameters concerning the reservation. To
cope with such problems, the IETF has proposed a
simpler programming interface, layered on top of the
RAPI and called SCRAPI [5]. SCRAPI provides only
three functions:

• Scrapi_sender, to be used by the sender of a data
stream associated to an RSVP session,

• Scrapi_receiver, to be used by the receiver, and
• Scrapi_close, to close an RSVP session.

Figure 3 shows the SCRAPI state diagram. A generic
host starts in the Closed state. Then, it can act either as
a sender or as a receiver or as a sender/receiver.

time

data

M

p = tg γ

A

b

r = tg ϕ

Figure 2: Traffic envelope for a source con-
forming to a (b, r, p) token bucket

Closed

Send Rcv

Send/Rcv

Closed

Scrapi _sender Scrapi _receiver

Scrapi _receiver Scrapi _sender

Scrapi _close

Scrapi _sender Scrapi _receiver

Scrapi _sender or
scrapi _receiver

Scrapi _close or
scrapi _sender (0)

Scrapi _close or
scrapi _receiver (0)

Scrapi _receiver (0) Scrapi _sender (0)

Figure 3: State diagram for the SCRAPI inter-
face

SCRAPI differs from RAPI especially in the error-
handling model. While RAPI requires the application
programmer to implement a set of upcall routines, to
handle asynchronous events and errors, this is not re-
quired anymore when using SCRAPI. Upcalls are re-
placed by a simplified “ three colours” error model,
which makes use of three different values (red, yellow,
green), whose combinations let the application know
the state of a reservation at a given instant in time. A
reservation is said to be in the RED status if the trans-
mission of PATH messages from the sender has not
started yet, or PATH messages have not arrived at the
respective receiver yet, or the system is currently in an
error state. A YELLOW state indicates that a valid
PATH message flow is present, but reservations have
not been made by receivers. The transition to the
GREEN state happens when the reservation is ac-
cepted. This strategy leads to a “ light-weight” model,
even if it imposes a number of constraints on the QoS
negotiation process.

The service model used by the simplified interface
builds the required RSVP objects in a way that is
transparent to the end user. In particular, the object
SENDER_TSPEC T:

[token_bucket_rate token_bucket_depth
min_policed_unit max_datagram_size]

is created based on the following assumptions:

• the average bandwidth, specified by the sender, is
actually used as the token bucket rate (r) for the
flow;

• the peak rate (p) is considered infinite;

• the token bucket depth (b) is assumed twice as the
average bandwidth (and so two times r);

• the minimum policed unit (m) is 64 bytes;

• the maximum policed (M) unit is the greatest
MTU associated to the IP interfaces available on
the host.

As far as the receiver is concerned, the RSPEC object
for the Guaranteed Service is built by simply setting
the value of the clearing rate (R) to the average band-
width and using a slack term (S) of zero. In the case of
Controlled Load service, the receiver reserves as much
bandwidth as the sender declares in the
SENDER_TSPEC (r).

3. QTcl API

The SCRAPI programming interface has already been
implemented as a C library, and used in modified

Mbone tools. A support for QoS communication in Tcl
applications, instead, was not available. Since we
wanted to implement in Tcl a QoS-aware application
for the distribution of multimedia documents, we have
developed QTcl, an extension of the Tcl scripting lan-
guage which implements the SCRAPI interface. QTcl
provides the Tcl programmer with a set of new com-
mands to create reservations in an RSVP-enabled in-
ternetwork. The new commands are shown below:

• dp_scrapiSender dest_hostname
 dest_port
 source_hostname
 source_port
 bandwidth
 protocol

• dp_scrapiReceiver dest_hostname
dest_port

 source_hostname
 source_port
 service
 protocol

• dp_scrapiStatus dest_hostname
dest_port

 protocol

• dp_scrapiClose dest_hostname
dest_port

 source_hostname
 source_port

Using these commands, it is possible to manage the
whole process of reservation setup.

The bandwidth parameter must be expressed in
Bytes/sec. The service parameter can be one of the
following two values: cl indicating Controlled Load
or gs indicating Guaranteed Service. Finally, the
protocol parameter can be either tcp or udp.

dp_scrapiSender opens an RSVP session and
starts PATH message transmission from source host to
destination host. PATH messages are refreshed every
30 seconds.

dp_scrapiReceiver is invoked by a receiver in
order to make a reservation request. The receiver
specifies the desired QoS and class of service (Guar-
anteed Service or Controlled Load) according to the
information contained into the PATH message. This
request is forwarded to the sender across the network
via a RESV message. After sending a RESV, the re-
ceiver waits for a confirmation of successful reserva-
tion from the sender for at most 10 seconds, as set by a
specific timer; however, even in case of timer expira-
tion the reservation process will go on.

dp_scrapiStatus allows to verify the current
status of a session, according to the simplified error
model available in the SCRAPI interface, i.e. it returns
a RED, YELLOW or GREEN value according to the
status of the RSVP session.

dp_scrapiClose is the function called to tear
down an RSVP session, both in reception and in
transmission.

4. A simple QTcl application

Figure 4 shows a simple application made of a sender
process and a receiver process. The two processes
should be executed on different hosts connected by an
RSVP-enabled internetwork. The sender process in-
vokes the dp_scrapiSender command, to start the
transmission of PATH messages and then waits in a
loop until the reservation is completed. The receiver
process, instead, issues the dp_scrapiReceiver
command to start the transmission of RESV messages
and waits for the reservation to be completed. As soon
as the reservation is completed, the sender starts
transmitting UDP messages, 1480 bytes in length. The
receiver, in turn, measures the time needed to receive
a number N of such messages and estimates the re-
ceived throughput. This simple application can be
tested in order to verify that the achieved throughput is
independent from the network conditions, as long as
the routers implement an IntServ Guaranteed Service.

5. QTcl implementation

QTcl has been conceived as a tool for supporting the
development of distributed applications with simple
QoS requirements. As we did not want to reinvent the
wheel, we felt that some useful features were already
available in the Tcl-DP extension, developed at Cor-
nell University [11]. In particular, we found the
dp_RPC mechanism particularly suitable to support
the receiver-initiated reservation mechanism of RSVP.
Hence, QTcl has been developed starting from the
original Tcl-DP source distribution. We then extended
the Tcl interpreter by creating a set of C functions that
implement the SCRAPI primitives.

Notice that SCRAPI is only a programming interface
to access the RSVP service, which must be imple-
mented by a proper operating system module. In
UNIX-like systems, this is usually a daemon process,
which runs with root privileges in the end systems.
Our current implementation of QTcl is available for
the SUN Solaris, FreeBSD and Linux operating sys-
tems. For these systems, an RSVP implementation is
provided by ISI [12].

Sender.tcl
Sender
#!/home/qtcl/bin/tclsh8.0

package require dp

set sender [dp_connect udp -host
143.225.229.105\
 -port 3000 -myaddr localhost -myport 5000]

dp_scrapiSender 143.225.229.105 3000 \
 143.225.229.116 5000 100000 udp

while {$status != "green"} {
 after 1000
 set status [dp_scrapiStatus 143.225.229.105\
 3000 udp]
}
puts $status

set pkt ""
for {set i 0} {$i < 1480} {incr i} {
 append pkt x
}

puts "Press ctrl-C to interrupt"

while {1} {
 set lun [dp_send $sender $pkt]
}

close $sender

Receiver.tcl
Receiver
#!/home/qtcl/bin/tclsh8.0

proc bench { N } {
 global receiver
 set count 0
 while {$count < $N} {
 set rcv [dp_recv $receiver]
 incr count [string length $rcv]
 }
}

package require dp

set receiver [dp_connect udp -myport 3000]
fconfigure $receiver -blocking 1

dp_scrapiReceiver 143.225.229.105 3000 \
 143.225.229.116 5000 gs udp

while {$status != "green"} {
 after 1000
 set status [dp_scrapiStatus 143.225.229.105\
 3000 udp]
}
puts $status

set N 10485760
set T [lindex [time { bench $N }] 0]
set BW [format "%2.3f" [expr $N*8.0/$T]]

puts "Elapsed time: $T microseconds"
puts "Estimated bandwidth: $BW Megabit/sec"

close $receiver

Figure 4: A simple client-server QTcl application

As for the Microsoft Windows operating systems, the
implementation of QTcl is not straightforward, due to
the different semantic of the Microsoft RSVP-API im-

plemented as part of their Winsock2 API. However,
we are currently investigating the possibility of un-
dertaking the port of QTcl for this platform.

Figure 5 shows the global picture of a UNIX host run-
ning a QTcl application and interacting with an RSVP-
enabled router.

5.1. Why Tcl-DP ?

Our latest version of QTcl has been developed from
the release 4.0 of Tcl-DP. Tcl-DP communication
services rely on different transport mechanisms: serial
links, TCP, UDP, IP-multicast, and e-mail. Tcl-DP 4.0
is implemented as a loadable module, i.e. Tcl-DP
commands are made available to the Tcl interpreter by
means of the package command. Table 1 shows
some of the Tcl-DP primitives that can be used to
build a QoS-aware distributed application.

dp_RDO Perform a remote procedure
call without return value

dp_RPC Perform a remote procedure
call

dp_MakeRPCServer Create a TCP RPC server
channel

dp_MakeRPCClient Create a TCP RPC client
channel

Table 1: Tcl-DP commands

The RSVP protocol uses a receiver initiated approach.
The practical consequences of this approach are differ-
ent whether the application is based on a multicast or
unicast communication. In a unicast based application
(e.g. a Video on Demand system), a sender does not
know in advance the address of the receiver. Hence, it
can start sending PATH messages only after the re-

ceiver has declared explicitly its will of starting a ses-
sion with resource reservations. To write such an ap-
plication, the RPC mechanism provided by the Tcl-DP
extension is extremely useful. Figure 6 provides an
example of a unicast-based client application which
uses a combination of the dp_RPC and
dp_scrapiSender primitives to setup a reserva-
tion. The dp_RPC primitive invokes on a remote host
a Tcl procedure, ScrapiSndRsv, which, among
other things, in turn invokes the dp_scrapiSender
primitive.

6. A QoS-aware distributed multimedia
application based on QTcl

To show the effectiveness of RSVP bandwidth man-
agement in a real application, we added the ability of
making network resource reservations to DiVA, a dis-
tributed multimedia application developed by our re-
search group. DiVA is capable of playing and control-
ling remote audio/video documents in streaming mode.
Figure 7 shows the relevant data streams produced by
the DiVA application among a streaming server host

Figure 5: QTcl implementation in a UNIX host

HOST ROUTER
Application

RSV

Daemon

RSV

Daemon

USER
SPACE

KERNEL
SPACE

Packet

Classifier &

Scheduler

(if any)

Packet

Classifier &

Scheduler

UNIX Pipe RSVPmessages RSVP

DATADATA

SCRA-Tcl/Tk inteprete r

messages

QTcl

Figure 6: Use of QTcl in combination with dp_rpc
in a multimedia application to setup an RSVP ses-
sion for a unicast stream.

Tell Video source to start sending PATH

msgs

if [catch {dp_RPC $sockV -timeout 60000 \

ScrapiSndRsv \

$obj(viAddrSrc,$urlSP) \

$obj(viAddrDst,$urlSP) \

$bwVideo $service} error] {

 catch {diva_CloseRPC $sockV}

 error "Server not responding: $error"

}

Start sending RESV msgs upstream

set status ""

dp_scrapiReceiver \

[lindex $obj(viAddrDst,$urlSP) 0] \

[lindex $obj(viAddrDst,$urlSP) 1] \

[lindex $obj(viAddrSrc,$urlSP) 0] \

[lindex $obj(viAddrSrc,$urlSP) 1] \

$service udp

while {$status!="green"} {

 after 1000

 set status [dp_scrapiStatus \

[lindex $obj(viAddrDst,$urlSP) 0] \

[lindex $obj(viAddrDst,$urlSP) 1]

udp]

}

and a client host. In particular, the UDP audio and
video streams are transmitted downstream from the
server on the right to the client on the left, while two
TCP bi-directional streams are used to exchange con-
trol (console) and synchronization (LTS) information.

We tested the application in a testbed formed by two
different Local Area Networks, connected by means of
a WFQ router implemented in FreeBSD [6]. The
router was connected to the first LAN through a 100
Mb/s Fast Ethernet card and to the second LAN
through a 10 Mb/s Ethernet card. A host in the 10
Mb/s LAN acted as a client, while another host in the
100Mb/s LAN ran the DiVA video server. Hence,
multimedia traffic flowed through the WFQ router.

To test the effectiveness of the traffic control mecha-
nism implemented in the router, and the ability of the
application to request the necessary Quality of Service,
we generated a 9 Mb/s cross traffic stream among a
pair of different hosts. Cross traffic and DiVA multi-
media streams competed in the router for the 10 Mb/s
bandwidth available in the Ethernet LAN.

In a first experiment, we did not make any reservation
for the video/audio streams. In this case, multimedia
traffic was not protected from the cross traffic and it
had to share packet losses with it. Even though DiVA
is capable of adapting the traffic generated to the
available bandwidth, it was impossible to obtain a
Quality of Service adequate for intelligible video and
audio rendering in this case.

In a second experiment, we used RSVP to make a res-
ervation for the flows generated by the video server,
while cross traffic was still served as best effort.

In this case, Figure 8 shows that multimedia flows
were fully protected from the best effort traffic, which
started losing packets as soon as data streaming from
the DiVA server began. This behaviour preserved a
very good quality of video/audio rendering, in spite of
the presence of cross traffic.

In our prototype, the bandwidth values used to setup
reservations for the video and audio streams were de-
termined empirically for each archived document, by
observing the traffic produced by the application while
streaming it. In a real-world application, these values
should be retrieved by the client application in the
form of metadata associated to the document.

7. Conclusions

An increasing number of distributed applications can
benefit from the availability of improved communica-
tion services in RSVP-enabled IP internetworks, by
acting in a proactive way, instead of passively adapt-
ing to the available QoS offered by current best-effort
services. We believe that this support is helpful for a
wide range of modern distributed applications. In this
paper we have presented QTcl, a QoS control API
which is compliant with the IETF SCRAPI interface,
and has been designed as an extension of the Tcl
scripting language. An implementation of QTcl for
UNIX-derived operating systems is available on the
web at: http://www.grid.unina.it/qtcl.

Figure 7: Data streams generated by the DiVA application
and associated to RSVP sessions.

STREAMING
SERVER

CLIENT

(a)

(b)

(c)

(d)

(a)

(b

RSVP-enabled

ROUTER

(a) tcp console
(b) tcpLTS

(c) udpvi-
(d)udpau-

Path

Resv

Figure 8: Streams behaviour with a reservation
for the multimedia flows

References

[1] K. Kavi, J.C. Browne, and A. Tripathi. "Computer Sys-
tems Research: The Pressure Is On". Computer , Jan.
1999, pp. 30-39.

[2] R. Braden, D.Clark, and S. Shenker. "Integrated Serv-
ices in the Internet Architecture: an Overview". IETF
RFC 1633, July 1994.

[3] R. Braden, L. Zhang, S. Berson, S. Herzog, and S.
Jamin. "Resource ReSerVation Protocol (RSVP) -- Ver-
sion 1 Functional Specification". IETF RFC 2205, Sep-
tember 1997.

[4] J.K. Ousterhout. "Scripting: Higher-Level Programming
for the 21st Century". Computer, March 1998, pp.23-30.

[5] B. Lindell. "SCRAPI - A Simple ’Bare Bones’ API for
RSVP". IETF Internet Draft draft-lindell-rsvp-scrapi-
02.txt, Feb. 1999.

[6] R.D’Albenzio, S.P. Romano and G. Ventre. "An Engi-
neering Approach to QoS Provisioning over the Inter-
net". Lecture Notes in Computer Science no. 1629,
Springer, May 1999, pp. 229-245.

[7] S. Shenker, C. Partridge, and R.Guérin. "Specification
of Guaranteed Quality of Service". IETF RFC2212,
September 1997.

[8] J. Wroklawsky. "Specification of the Controlled-Load
Network Element Service". IETF RFC 2211, Sep. 1997.

[9] S. Keshav. "An Engineering Approach to Computer
Networking". Addison-Wesley, 1997.

[10] R. Braden and D. Hoffman. "RAPI -- An RSVP Appli-
cation Programming Interface - Version 5". IETF Inter-
net Draft draft-ietf-rsvp-rapi-01.txt, Aug. 1998.

[11] M. Perham, B.C. Smith, T. Jánosi, and I.K. Lam. "Re-
designing Tcl-DP". Procs. of the Fifth Annual Tcl/Tk
Workshop, Boston, 1997.

[12] USC Information Sciences Institute (ISI),
http://www.isi.edu/rsvp/release.html

