
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

C O L L A B O R AT I V E C L I E N T - S E R V E R
A R C H I T E C T U R E S I N T C L / T K :

A C L A S S P R O J E C T E X P E R I M E N T A N D E X P E R I E N C E

Franc Brglez, Hemang Lavana, Zhi Fu, Debabrata Ghosh, Lorie I. Mofftt,
Steve Nelson, J. Marshall Smith, and Jun Zhou

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Collaborative Client-Server Architectures in Tcl/Tk:

A Class Project Experiment and Experience

Franc Brglez Hemang Lavana

Zhi Fu Debabrata Ghosh Lorie I. Moffitt

Steve Nelson J. Marshall Smith Jun Zhou

Dept. of Computer Science, Box 8206
NC State University, Raleigh, NC 27695, USA

http://www.cbl.ncsu.edu/˜brglez/csc591b/

Abstract

This paper presents a class software project that
was part of a recent experimental graduate course
on Frontiers of Collaborative Computing on the In-
ternet. We chose Tcl/Tk to facilitate rapid proto-
typing, testing, and demonstrating all phases of the
project. The major milestones achieved during this
course are:
• rapid proficiency in Tcl/Tk that allowed each stu-

dent to manipulate data and widgets, apply socket
programming principles, and create a progression of
client/server applications, from textbook cases to a
unique client/server architecture prototype – driven
by and matched to a well-defined collaborative project
driver.
• universal server that supports any number of

user-configurable clients, each accessible through a
Web-browser on a Mac, Windows, or UNIX plat-
forms. Prototype client configurations include: (1)
collaborative document composition, (2) collabora-
tive Tcl/Tk debugging and compilation, (3) collabo-
rative design workflow.
Keywords: client-server architectures, collabora-
tive computing, Internet, Tcl/Tk, GUI.

1 Introduction

There is no consensus about the definition of collab-
orative computing. It appears that while Computer-
Supported Cooperative Work (CSCW since 1960’s)
may have been eclipsed by groupware, the notion
of collaborative computing is still being molded.
Checking out a web-based search engine with key-
words such as ‘CSCW’ returns about 44,470 links
to related Web pages, ‘groupware’ returns about
228,940 links (mostly about Lotus Notes, NetWare,

* F. Brglez and H. Lavana have been supported by con-

tracts from the DARPA/ARO (P–3316–EL/DAAH04–94–G–

2080 and DAAG55-97-1-0345), and a grant from Semiconduc-

tor Research Corporation.

Office97, ...), while ‘collaborative computing’ re-
turns only 8,857 links, several already listed under
earlier keywords.

This paper is one of the two companion papers [1]
that were initiated at the conclusion of the course on
Frontiers of Collaborative Computing on the Inter-
net (csc591-b, [2]). This course defines ‘collaborative
computing’ as the hardware, software and structures
that support a group of individuals working on re-
lated tasks – where hardware, software, data, and in-
dividuals may be distributed over a wide geograph-
ical area. ‘Groupware’ is a subset of collaborative
computing: it is the software that allows communi-
cation, coordination and the sharing of information
between distributed individuals and groups. Com-
mon examples of groupware are e-mail and video
conferencing facilities, shared access to databases
of documents and images, and applications such as
shared white boards. A number of commercial sys-
tems are available to support such activities and the
systems continue to evolve [3].

The main goal of csc591-b is to introduce collab-
orative computing as a distributed process, asyn-
chronous and synchronous, that invokes, links, and
executes

• data sets residing/generated on local/remote
hosts;
• heterogeneous applications residing on lo-

cal/remote hosts;
• floor control for collaborating teams dis-

tributed among local/remote hosts.

To make this process less abstract, we introduced
the notion of a collaborative project:

An entity with distributed participants, dis-
tributed data sets and libraries, distributed tool
sets and libraries, and objectives to be met by
completing well-defined sequences of tasks – as-
signed by the the project leader, and subject to
collaborative project activity and reviews.

A project driver that matches this definition, and
is within the scope of a single semester graduate
class, is the creation of a distributed environment
that supports collaborative document composition.
The class instructor acts as a project leader and
document editor, while students, having created a
distributed environment first, maintain bibliograph-
ical databases, create graphics for embedded illus-
trations, write and compile the pre-assigned sections
of the document. Most of such activity uses clients
that interact with the local host of each participant,
while periodic synchronization and sharing of data
with other participants takes places when each client
links to the common server.

While the environment as described above appears
specific to document composition, the implementa-
tion, conceived as part of the class project, demon-
strates a universal client/server architecture where
the same server can now support any number of user-
configurable, project-specific tasks or workflows. In
order to complete most of the key objectives of the
project before the end of the semester, we made
Tcl/Tk [4] the scripting language of choice at the
very beginning. The first few weeks of the course
were devoted exclusively to the introduction and ex-
ercises in Tcl/Tk.

Our choice of Tcl/Tk for the class project in collab-
orative computing was also influenced by a number
of favorable experiences with Tcl/Tk, each of which
could also be shared and critiqued in the class envi-
ronment, such as GroupKit [5], AgentTcl [6], user-
configurable workflows [7], recording and playback
toolkit [8], and toolkit for the web-browsers [9]. This
paper introduces the Asynchronous Group Server
Architecture (AGS) and a platform-independent
client as it was conceived and implemented for a
number of collaborative demos as part of the project
in this course. The paper is organized into several
sections as follows:

• Course Organization;
• Collaborative Project Driver;
• GUI and Client/Server Architecture;
• Server Design;
• Client Design;
• Collaborative Experiments;
• Conclusions.

A complementary architecture that also evolved
from this class project, in particular the Synchroniz-
ing Group Server Architecture (SGS) and the trans-
formation of single-user client-applications into col-
laborating client-applications is presented in a com-
panion paper [1].

2 Course Organization

The class brought together a team of seven stu-
dents, each with some programming experience un-
der UNIX, WindowsNT, and MacOS. Few stu-
dents had limited experience in Java programming,
and only one student had significant experience in
Tcl/Tk programming. The remaining students have
learned about the rudiments of Tcl/Tk program-
ming during the first few weeks of the course so that
the remainder of the course could be devoted to a
major joint class project that applied and extended
the principles of client/server programming under
Tcl/Tk. Specifically, the course was organized into
three major sections:

• Rudiments of Tcl/Tk, including socket pro-
gramming and client-server architectures;
• Case studies of various client-server architec-

tures;
• Collaborative project outline, implementation

hints, implementation reviews, final presentation
and report.

The nominal textbook for the course was Effective
Tcl/Tk Programming [10]. Chapters that were cov-
ered in some detail include Event Handling, Canvas
Widget, Text Widget, Top-level Windows, and In-
teracting with Other Programs. Preceding the in-
troduction of this textbook was a series of lectures
on Tcl, mostly based on the material from [11, 12].
Tcl/Tk man pages and related links were made avail-
able on the course home-page [2].

Hands-on case studies, in class and as homework, of
various client-server architectures covered The Elec-
tric Secretary in [10], GroupKit5.1 in [5], REUBEN
in [7]. In addition, the class was introduced to Web-
WiseTclTk in [9], which assisted in migrating the
client application to the Web. Some of the home-
work assignments were completed and submitted as
recorded sessions, using RecordnPlay in [8]. The in-
troduction of AgentTcl in [6] was dropped due to
lack of time.

A number of collaborative client/server architectures
are known. Principally, they deal with single appli-
cations rather than workflows of applications, rang-
ing from a shared calendar (The Electric Secretary)
[10] to a shared whiteboard [5]; from collabora-
tive visualization for health care [13] to collabora-
tive editing of schematic diagrams [14]. This class
project builds on the recent experiences with col-
laborative workflows of heterogeneous applications
[7, 8, 15] and the client-server architecture of The
Electric Secretary in [10]. The latter served as the
initial model for the Asynchronous Group Server Ar-
chitecture (AGS) described in sections that follow.

tool and file server

latex -> main.aux -> bibtex -> main.bbl latex -> main.dvi -> dvi2ps -> main.ps -> ps2pdf -> main.pdf

projectDir
 abstract.tex
 cite.bib
 main.tex
 section1.tex
 section2.tex
 section3.tex
 title.tex

student1
terminal

student2
terminal

student3
terminal

instructor
terminal

section1.tex section2.tex section3.texmain.tex
title.tex
abstract.tex
cite.bib

Fig. 1. An informal arrangement to collaboratively execute a document composition project.

3 A Collaborative Project Driver

The example that motivated and guided much of
the class discussion and one that became the project
driver, is first shown as an informal arrangement in
Figure 1. The project involves the project leader
(instructor) and a number of students. The objec-
tive of the project is to write a joint paper on the
technology that will have enabled the class to de-
vise and implement a client/server architecture to
compile the paper in a collaborative mode. In the
arrangement as shown in Figure 1, we assume

• all students have login access to a common tool
and file server,
• each student will use a unique file name when

writing a section assigned by the project leader,
• each student can create her own ‘main’ pro-

gram that includes her section, and may be sec-
tions from others, to compile into a composite
document that can be viewed or printed as a
postscript or a pdf document by anybody in the
class.

The compilation process itself may consist of all or
some of the following steps:

1. first execution of latex [16] on file main.tex
to output a file main.aux;

2. execution of bibtex on file main.aux to out-
put a file main.bbl (to be cross-referenced with
citations contained in a file *.bib);

3. second execution of latex on file main.bbl to
output a file main.dvi (now containing the full
document);

4. execution of dvi2ps on file main.dvi to out-
put a file main.ps (ready for printing or viewing
as a postscript file);

5. execution of ps2pdf on file main.pdf to out-
put a file main.pdf (ready for printing or viewing
as a pdf file).

This arrangement, while workable in principle, has
a number of drawbacks:

• it requires all participants to have a login ac-
count on the server;
• it is based on ad hoc coordination of files and

symbolic links in the executable directory (owned
by the project leader) versus the data files that
are written by students in their home directories
for which a symbolic link must be maintained in
the executable directory by the project leader.
• it would require ftp in order for students to

maintain their files on their local client hosts;
• it has no structure to render editing of files, or

execution of the compilation sequence interactive
and collaborative.

We next introduce an abstraction that formalizes the
project description in Figure 1 such that we can also
render it collaborative.

Formalizing the views. The document composi-
tion project illustrated in Figure 1 can be executed
using a makefile – but only if data and tools reside
on the same host. In general, this is not the case.
The sequence of executable tasks in Figure 1 defines
a simple workflow that can be represented with an
acyclic Petri net graph consisting of data and tool
nodes, with tool nodes acting as transitions that ex-
ecute (or ‘fire’) only when all required input data is
present at the inputs of the nodes. This is a special
case of the more general case that involves graphs
with cycles [7].

The graph representation, with distributed data
nodes invoking tool nodes on any number of dis-
tributed file servers, is an effective GUI for the work-
flow client applications. In particular, such repre-
sentation can readily support collaborative features
and user-configurability. Three views of the essen-
tial features of such a client interface are outlined in

dvi2ps
latex
again

*.dvi *.ps*.tex

bibtex ps2pdf
make
clean latex

*.aux *.bbl *.pdf*.bib

AAAA

fred

fred

dvi2ps
latex
again

*.dvi *.ps*.tex

bibtex ps2pdf
make
clean latex

*.aux *.bbl *.pdf*.bib

AAAAA

fred

fred

dvi2ps
latex
again

*.dvi *.ps*.tex

bibtex ps2pdf
make
clean latex

*.aux *.bbl *.pdf*.bib
fred

fred

(a) Initial configuration of the project-specific workflow client (as initiated by project leader Fred)

owner files
----- ------------
fred abstract.tex
fred main_fr.tex
server section1.tex
server section2.tex
server section3.tex
fred title.tex

(b) Asynchronous configuration of the project-specific workflow client (as continued by project team)

owner files
----- --------------
fred abstract.tex
alice main_alice.tex
bob main_bob.tex
fred main_fred.tex
alice section1.tex
bob section2.tex
alice section3.tex
fred title.tex

owner files
----- --------------
server abstract.tex
alice main_alice.tex
bob main_bob.tex
fred main_fred.tex
server section1.tex
server section2.tex
server section3.tex
server title.tex

(c) Synchronizing configuration of the project-specific workflow client (as completed by project team and the leader)

Fig. 2. Three views of a project-specific client workflow for collaborative edits and execution.

Figure 2: set-up view, asynchronous view, and syn-
chronizing view.

Without loss of generality, we continue using the
document composition project illustrated in Figure 1
as the illustrative example. To keep the presentation
simple, the project leader (Fred) engages only two
participants: Alice and Bob. The expected output
from this project is a multi-section document on a
specific topic, with Alice and Bob contributing tech-
nical sections, and Fred acting as the editor and also
contributing the cover section, the abstract section,
and the maintenance of the bibliography database.

Set-up View. Shown in Figure 2(a), this is a view
of the client as initially configured by the project
leader (Fred). In this project, task completion im-
plies sequential execution of one or more tools from
the set {makeClean, latex, bibtex, dvi2ps, ps2pdf}.
With the exception of makeClean, these tools read
instances of input files and write instances of output

files. The task of the tool makeClean is to delete
all of the intermediate file classes such as {*.aux,
*.bbl, *.dvi, *.ps, *.pdf } since any file instances
in these classes can be regenerated by invoking the
tasks that are driven by instances from primary in-
put file classes such as {*.tex, *.bib }. Generating
and editing instances of files in these two classes rep-
resents the essential contribution to the project from
each member of the team.

In the set-up view, Fred has the exclusive r/w own-
ership of all files in the class *.bib as well as the
files ‘main fred.tex’, ‘title.tex’ and ‘abstract.tex’ in
the in the class *.tex. The files ‘section1.tex’, ‘sec-
tion2.tex’, and ‘section3.tex’ are shown as owned
by ‘server’, indicating that other team members are
free to claim ownership to any of them. The file
‘main fred.tex’ has a listing of any *.tex and *.bib
files that are to be included in the compiled docu-
ment. With the exception of ps2pdf, shown as con-

trolled exclusively by Fred, there are no restrictions
on execution of other tools. At this point, Fred
can execute and test the task execution of the en-
tire workflow by invoking makeClean and then latex
on ‘main fred.tex’, to be followed by other tool in-
vocations until reaching ps2pdf. Alternatively, any
segment of the tools could be chained for automated
execution of the entire task sequence or any subse-
quence. At this stage, the files ‘section1.tex’, ‘sec-
tion2.tex’, and ‘section3.tex’ are simple template
files with tentative titles and are yet to be expanded
and edited by Alice and Bob.

Asynchronous View. Shown in Figure 2(b), this
view of the client depicts the work in progress, with
contributions from Fred, Alice and Bob. Specifi-
cally, Alice claims ownership of ‘section1.tex’, and
‘section3.tex’, while Bob claims ownership of ‘sec-
tion2.tex’. In addition, each has created files
‘main alice.tex’ and ‘main bob.tex’, respectively, to
execute any desired combination of the files from
*.tex and *.bib class. In this view, the three partic-
ipants work to a large extent independently, while
each can always access, read, and process the files
created by others. Typically, each may be editing
the files on a local host rather than the server where
all files are accessible to all the tools in the flow.

Synchronizing View. Shown in Figure 2(c), this
view depicts the state of the client when the project
leader Fred has scheduled a project review and a
collaborative editing session in which all team mem-
bers participate. While the team may reside at dif-
ferent locations, all communicate with each other, at
the minimum via a chat-like window on the terminal
screen. In the best case scenario, participants may
communicate also via audio and/or a video channels.
The main goals of the review are (1) to synchronize
versions of input files generated by distributed team,
(2) to review and edit individual files, and (3) to
share the control of the flow execution for the final
version of the document. This is an interactive and
collaborative process in real time.

In the synchronizing view as shown in Figure 2(c),
most files are returned to the ownership of the server
– allowing any team member to access them in r/w
mode for editing. In particular, we note that Bob
has secured access to ‘abstract.tex’ – a file originally
generated by Fred. The decision to access this file by
Bob has been made after a brief discussion among
all team members. In its crudest form, the mech-
anism by which others can observe Bob’s editing is
to download the revised file on prompts from Bob.
In a more elaborate environment, others may ob-
serve Bob’s editing in real time on their own termi-

nal screen. Ultimately, one may expect an environ-
ment where two or more members may be editing
the same file in real time in a user-friendly and an
unambiguous manner.

Issues in rendering a client collaborative.
Given the code for the stand-alone client applica-
tion, the traditional approach is to re-write it as a
client for collaborative application. This can be a
formidable task, especially when all possible pref-
erences for modes of collaboration cannot be an-
ticipated in advance. Such a client may turn out
to be user-unfriendly or confusing for a particular
team. Simple preferences, such as whether and when
should the scrollbars track for all participating col-
laborators, or should separate scrollbars be provided
(and color-coded) for each participant, are at the
core of such issues [5, 17, 18]. Such issues are ad-
dressed, and an effective solution proposed, in the
companion paper [1].

Generic examples of issues in rendering a stand-
alone client collaborative, as introduced and dis-
cussed in the class setting, are included in the lecture
notes [2] and the companion technical report [20].
The project driver example as introduced in Figure
1, and more formally in Figure 2, has been instru-
mental in arriving at the two-way partition of the
server architecture to support two dynamic views of
a collaborative project:

1. asynchronous view, defining parameters for
an asynchronous group server (AGS);

2. synchronizing view, defining parameters for
an synchronizing group server (SGS).

Due to limited time, the emphasis of the course was
to prototype a client/server architecture that pri-
marily supports the asynchronous view of collabora-
tion and is described in the remainder of this paper.
However, the simple demos, by the end of the class,
that demonstrated the feasibility and the potential
of the synchronizing view of collaboration, have also
provided the direction beyond the class setting, lead-
ing to the companion paper on the SGS client/server
architecture and implementation [1].

4 GUI and C/S Architecture

We have defined the concept of a collaborative
project and the notion of a partitioning a set of
project-specific tasks and data among project par-
ticipants – giving rise to one or more workflow clients
that are to be executed by participants in asyn-
chronous and synchronizing modes. In addition,
we identified behavioral classification of objects in
the workflow client partitions, impacting the way we
propose to implement a collaborative client. All of

UserId_______ UserPw_______ ProjectId_____ FlowId_____

SocketHost___ SocketPort____

Tool > Tool > Tool ? Tool ? Tool ? Tool
 0 1 2 3 4 5

clear
save
save as

Standard Output and Error

Connect
Login

Disconnect
Exit

Server dir_loc
owner files
brglez A00_Brglez.tex
lavana A00_Lavana.tex
moffitt A00_Moffit.tex
brglez D_Introduction.tex

Client dir_loc
owner files
brglez A00_Brglez.pdf
brglez A00_Brglez.ps
brglez D_Introduction.tex
brglez H_Conclusions.tex

display and edit any text files
fromserver / client directories

lock

release
delete

The workflow toolset is user-configurable and
invoked by a specific FlowId, whereas UserId
and UserPw are required to access a project-
specific directory identified by ProjectId. Be-
fore clicking on the Connect button, user en-
ters SocketHost and SocketPort . After click-
ing on the Login button, files in the project-
specific directory are listed in the respective
Server and Client widgets. Participants can
release ownership of files by clicking on the
files they own. File transfers between client
and server directories can be executed with or
without locking the ownership.

User-invoked tools are displayed as a tool
chain and users can enable/disable any links
by clicking on the > or ?. In this example,
clicking on Tool0 invokes the tool, which on
completion will also invoke Tool1, followed by
Tool2.

Fig. 3. An example of a universal user-configurable workflow client interface.

these factors have influenced the current view of the
universal user-configurable workflow client interface
and the corresponding server architecture.

We first specify the GUI of the client, and describe
how it relates to the proposed client/server archi-
tecture. This specification served as a blueprint for
the student teams implementing several versions of
both the server (in Tcl) and the client (in Tcl/Tk),
as described in the subsequent sections.

GUI for the Client. The currently proposed and
implemented workflow client interface consists of five
major ‘frames’, each with a number of functions:

1. loginFrame supporting
• buttons to connect, login, disconnect, exit
• entries for userId, userPw, projectId, flowId,

socketHost, socketPort
2. toolFrame supporting
• buttons to invoke tool0, tool1, tool2, The

bindings for the tools may be hard-wired in the
initial versions of the client, but will be loaded
later from a user defined configuration file, iden-
tified with a specific flowID.
• connectors to connect/disconnect successive

invocations of tool0, tool1, tool2, . . .
3. filesFrame supporting
• server button that may toggle and display ei-

ther server top-level project directory location or
participant’s subdirectory location on the server
(the latter is created from project partitions by
the project leader).
• two-column listbox or textbox listing file

owner and file name in the server directory or sub-
directory.

• client button that may toggle and display ei-
ther local client project directory location or the
interacting participant’s local directory (subject
to mutually agreed permissions).
• two-column listbox or textbox listing file

owner and file name in the respective client di-
rectory.
• entries for buttons to lock/release ownership

of selected files, button to delete a selected file,
arrow buttons to upload/download a file to/from
the server.

4. editFrame supporting
• buttons to clear, save, save as files brought

into the display and edit window.
• text widget to display and edit any text file

from the server or client directory (after clicking
on the selected file). All files can be accessed for
display, file owners can edit them.

5. stdoutFrame supporting
• text widget to display any messages directed

to standard output or to standard error.

A sketch of the proposed GUI for this client is shown
in Figure 3, along with illustrative text of represen-
tative user interactions.

Client/Server Architecture. The proposed
client/server architecture in Figure 4 matches the
concept of a collaborative project as stated earlier:
a number of workflows configured and partitioned
by the project leader may be associated with each
project; whereas participants may work in an asyn-
chronous mode on the project partitions as well as
a synchronizing mode. This concept is reflected in
the client/server architecture which itself is parti-

 Object Status Object Owner
Object display execute A B C
--------- --------- --------- ----------------------
w1 shared shared i/❉ -- o/❉
w2 shared local -- i/❉ o/❉
w3 local shared o/❉ o/❉ i/❉
w4 local local i/A o/A i/B
w5 shared local -- -- --

Inter-client Synchronization Table
 Object Status Object Owner

Object display execute A B C
--------- --------- --------- ----------------------
w1 shared shared ✓ ✓
w2 shared local ✓
w3 local shared ✓
w4 local local ✓ ✓ ✓
w5 shared local

Objects Ownership Table

UserId/Pw
ProjectId
FlowId
......

Universal
user
configurable
client

UserId/Pw
ProjectId
FlowId
......

Universal
user
configurable
client

Synchronizing
group server

SGS

Tool
server 1

Tool
server n

Asynchronous
group server

AGS

Workflow
Libraries

Project
Data

Archives

ProjectId FlowId

● ● ● ● ● ● ● ●

A number of workflows may be selected for each project, the objects in each workflow may be assigned a project and a
team specific object ownership table by the project leader. This static table initializes the Inter-client synchronization
table where activity permissions related to the objects can be changed dynamically by the participants, subject to the
initialization constraints. For example, participant C can interact with object w3 and share the interactions with all
participants (i/∗), while participants A and B can only choose to observe (o/∗) or not observe (−) the same object.
However, since all participants are initialized as owners of w4 (the shaded entries in this table correspond to the permission
checkmarks in the initialization table), all can choose to interact in variety of ways with this object: A can interact with
w4 alone, (i/A), with only participant B observing (o/A under the column B); C can interact with B only (i/B under
the column C). Each participant can click on the entries in this table and ‘toggle’ the entry into the desired or allowable
state. For example, the object w3 can be assigned to C as i/∗, o/∗, or −, while the same object can be assigned to B only
as o/∗ or −.

Fig. 4. The SGS/AGS client-server context and architectural features.

tioned into an Asynchronous Group Server (AGS)
and a Synchronous Group Server (SGS). For each
project and workflow invoked by the participant, the
AGS maintains not only the project data archives
and workflow libraries but also an Objects Owner-
ship Table preconfigured by the project leader. Once
invoked, the Objects Ownership Table initializes the
Inter-client Synchronization Table which interacts
with SGS and the participants’ clients.
A brief description of anticipated user-interactions in
the interactive collaborative mode (where the Inter-
client Synchronization Table can be changed dynam-
ically by the project participants) is given in Figure
4. See the companion paper [1] for more details.
Project status by the end of semester. One
student has implemented a version of the AGS server
that supports all features as defined for the client in
Figure 3 – except the file subdirectories for individ-
ual participants. A total of five similar but different
clients have been independently developed by col-
laborating pairs of students. The toolFrame in one
of these clients is user-configurable, so the client is
truly universal.
In the document composition project, each partici-
pant can maintain/release ownership of files. A sim-
ple naming convention allows each member to exe-
cute the project partition independently of others,

while the project leader can assemble and edit the
complete document for immediate access and feed-
back to all. The client is invoked through a Web
browser from any platform (UNIX, WindowsNT,
MacOS) and collaborative execution can take place
with distributed participants.
The paper concludes with highlights of AGS de-
sign, client design, and collaborative experiments
conducted with the universal client/server architec-
ture for three different applications: distributed doc-
ument composition, distributed software debugging
and compilation, and distributed experimental de-
sign environment.

5 Server Design

The design of a collaborative server was very critical
to the success of this class project. There are several
requirements of the server. It should support and
maintain:

• connections from different students, after ver-
ification of their identity;
• several different projects and workflows acces-

sible by the students;
• restriction for each project to access only those

specific tools that are required by the project;
• ownerships of data files in the project direc-

tory;
• data transfers between the server’s project di-

rectory and the student’s client host;
• invocation of tools in each project directory.

The first step was to define and develop a commu-
nication API (application programmer’s interface)
that can be used by the client/server to meet de-
sign requirements, as outlined above. We decided
to employ asynchronous communication scheme, as
described in [10]. The server was configured to un-
derstand a minimal set of commands. The mech-
anism for client/server communication is described
next. The client sends a request to the server which
consists of a string of the following form:

server_cmd arg1 arg2 ... argn client_cmd

The server processes the request from the client
by invoking a procedure server cmd, in a safe-
interpreter, with n arguments. After the
server cmd completes its execution, the server
parses the client cmd string and replaces all oc-
currences of (1) "%v" with the result returned by
server cmd execution, and (2) "%l" with the length
of the result returned by server cmd execution.
The new client cmd string is then sent back to
the client, which processes the string received in
a safe-interpreter. However, whenever execution
of sever cmd results in an error, the server sends
error result reason to the client, instead of send-
ing back the client cmd string. The list of com-
mands recognized by the server falls into four cate-
gories:

1. Initial set-up/login process: Once the clients
establish a socket connection to the server, it is
necessary to identify the user using the command:

login <user> <pswd> <project> <client_cmd>

If the user logs in successfully, then the following
commands are made available to the client.

2. Ownership of data: The following commands
allow the client to perform ownership related op-
erations on a data file:

checkOwnership <filename> <client_cmd>
grabOwnership <filename> <client_cmd>
releaseOwnership <filename> <client_cmd>

A client can assume ownership of a data file, only
if it is owned by the server. On releasing the own-
ership of a data file, the server becomes its owner.
All three commands return the current ownership
of the file.

3. Data transfer: Clients can get the list of data
files, download, upload or delete a data file, as
follows:

getList <client_cmd>
downloadFile <file> <client_cmd>
uploadFile <file> <data> <client_cmd>

deleteFile <file> <client_cmd>

4. Tool invocation: A client may invoke a tool
on the server using the following command:

executeCommand <what args> <client_cmd>

This single command gives the server the flexi-
bility to invoke any tool specified in what args
without having to restart the server when a new
tool need to be added to the services. However, it
can also be major concern for security. We resolve
this issue as described next.

Configuration Makefile. The server is designed
to maintain several projects. Each project is re-
stricted to access a limited set of tools only, depend-
ing on what tools are required by the project. A con-
figuration makefile, stored in the project directory,
determines the set of tools available for any given
project. Each tool needs to be explicitly specified
in the makefile along with the command line argu-
ments necessary for its invocation. A typical entry
in the makefile, which generates a pdf file from a
postscript document, is as shown below:

document=A00_main
ps2pdf:

ps2pdf $(document).ps $(document).pdf

This task may be invoked from the com-
mand line as make ps2pdf or make ps2pdf
document=A00 Brglez. In the first case, the default
value (A00 main) of the document is used, whereas
in the second case, the document rootname is spec-
ified on the command line. Thus, a client would
typically send the following command to the server
to invoke the above task:
executeCommand "ps2pdf document=A00_Brglez" "puts {%v}"

The server will invoke this task, if available, in the
project directory.

6 Client Design

As the course evolved, so did the versions of the
client implementations and likewise, the versions of
the server implementations – a true learning expe-
rience for everyone in the class. Unlike the server
design which was completed by a single student who
had prior experience with TclTk, the client design
was completed by students who only learned TclTk
during this course. While sharing the debugging ex-
periences with each other, a total of five clients were
designed independently by five student teams.

Each of the clients implemented the basic function-
ality as specified in in Figure 3 and the screenshot of
each client, demonstrated and tested for collaborative
document composition functionality during the last

Fig. 5. Client design 1 (Here, the toolFrame is loaded from a configuration file).

session of the class, is archived as part of the report
posted on the class home page [2]. Each of the clients
was tested through a Netscape browser and was ex-
ecutable from a UNIX, MacOS, and WindowsNT
workstation, provided the browser has installed the
WebWiseTcl [9], Safe-Tcl plugin, and the csc591b
(course) policy. The latter is required to download
and save the files from the server to the local client.

Each team was also responsible to contribute a
subsection highlighting elements of TclTk used to
achieve the required functionality. A representative
GUI for the client is shown in Figure 5. Like all
other clients designed in this course, this client is

executable from window in a web-browser. This par-
ticular client is universal: the contents of the tool-
Frame are loaded from a user-specified configuration
file, which is linked to the project-specific makefile
maintained by the server. In addition, this client
makes use of the B-widget Toolkit [19] to implement
its GUI.
We use the the initial client interface specification in
Figure 3 to briefly describe the GUI of the client in
Figure 5.

loginFrame. The loginFrame is invoked by click-
ing on ‘Network Information’ in Figure 5. A set of
entry boxes will prompt the user to enter ‘UserId’,

‘UserPw’, ‘ProjectId’, ‘FlowId’, etc. A set of well-
placed buttons will allow user to ‘connect’, ‘login’,
‘disconnect’, ‘loadFlow’, ‘removeFlow’, and ‘exit’.

toolFrame and reconfigurability. The tool-
Frame can be ‘hard-wired’ as part of the flow-specific
client itself (e.g. the composition project flow), or
can be loaded as a user-specified configuration file
that is linked to the flow-specific makefile on the
server. This configuration file can only contain a
subset of the targets and dependencies of the make-
file. The toolFrame of the client shown in Figure
5 has been generated automatically by loading the
configuration file. The flow shown chains the appli-
cations that are used in the document composition
project and can invoke ‘Clean’ to remove old work
files, ‘LaTex’ to generate a compiled version of the
document, ‘BibTeX’ to create citation indices, ‘La-
TeX Again’ to load to update the document with
citation indices, ‘Dvi2ps’ to create a postscript file,
and ‘Ps2pdf’ to create a document in the pdf format.
In the example shown, links between ‘LaTex’, ‘Bib-
TeX’, ‘LaTeX Again’ have been activated by the user
(shown now as arrows after each click on the connec-
tor bar), so all buttons are executed consecutively
once the user clicks on ‘LaTeX’. Such control of ex-
ecution, from task i to task j, cannot be achieved
with the make utility, where only the end-task j can
be specified by the user.

The entry for ‘file rootname’ allows each user to se-
lect the name of the ‘main.tex’ file that should be
invoked upon execution of the flow. Additional ex-
amples of the universal client invocation, for differ-
ent sets of tasks, are shown in Figure 6.

filesFrame. The filesFrame has three parts: two
listboxes that list files on the server and the client
in the directories specified by the project name; a
set of control buttons to allow a number of trans-
actions take place between the two listboxes: file
‘upload’, ‘download’, ‘release ownership’, ‘lock own-
ership’, ‘refresh’, etc. These transactions take place
once the filename has been highlighted in a specific
listbox. By clicking on the file name, the contents of
the file are displayed in the text window.

The display of the files in the listboxes can be filtered
by clicking the appropriate class selection, e.g. *.bib
would display files in this class only. In addition to
files, the listboxes also show the current owner of
the file. Only the file owner can modify or delete
a file. There are two ways the owner can release
ownership of a file: (1) by clicking on the file in the
ownership field, or (2) by highlighting the file name
and clicking the ‘release’ button. In either case the

ownership field will change from ‘userId’ to ‘server’.
There are two ways the owner can lock ownership of
a file when it is owned by ‘server’: (1) by clicking
on the file in the ownership field (it will change from
current server to ‘userId’), or (2) by highlighting the
file name and clicking the ‘lock’ button. In either
case the ownership field will change from ‘server’ to
‘userId’.

editFrame. This frame is invoked by clicking on
‘Text File Viewer/Editor’. The editFrame includes a
scrollable text widget in which user can write, mod-
ify, or delete text of a file that has been retrieved
from the directory on the server or the client – de-
pending on user selection. Besides the text widget,
additional widgets in this frame provide functional-
ity such as ‘edit file’, ‘save on server’, ‘save’, and
‘clear’.

stdoutFrame. The stdoutFrame is a scrollable text
widget which accepts inputs from standard output
and standard error. Its main purpose is to maintain
a log of all transactions taking place between the
server and the client.

7 Collaborative Experiments

A number of experimental testing of the client/server
architecture was taking place for most of the last
third of the course. During the last week of the
course, there were two sets of student presentations
and demos: as a dry run and as a brief presen-
tation/demo during the open house. These demos
came in two sets:

Demo set 1. The complete set of demos that used
the universal client described in Figure 5 is summa-
rized in Figure 6:

(a) This flow executes the collaborative docu-
ment composition as discussed in the preceding
sections.
(b) This flow executes the collaborative Tcl/Tk

compile. Here, there may be two or more partic-
ipants working on a complex TclTk application.
Each may be writing and testing a set of proce-
dures in isolation. The question is: will they work
together as expected. By uploading the files from
several sources to the server, a combined version
can be assembled and compiled on the server, then
accesed for execution among the participants.
(c) This flow executes the collaborative experi-

mental design. A colleague may have uploaded a
set of reference circuit files to the server to create
a mutant class of circuits. These are characterized
and laid out as schematics which can be accessed
by another team for inspection and further analy-

(a) Configuration to execute a collaborative document composition

(b) Configuration to execute a collaborative Tcl/Tk compile

(c) Configuration to execute a collaborative experimental design

Fig. 6. Three executable configurations of the universal workflow client.

sis. Such flows are expected to play an important
role in the collaborative design of experiments to
test the performance of various algorithms [15].

Demo set 2. This demo set consists of the remain-
ing four client implementations devised by student
teams. Except for the universal user-reconfiguration
of the task flow implemented in Figure 5, all of the
client GUI designs have implemented the collabora-
tive task flow for document composition in LaTeX
as per original specification in the class. The minor
difference in the interface are a reflection of individ-
ual preferences and the interpretation of the design
specification. The screenshots of these client GUI
designs are available in a technical report [20].

Notably, all implementations of the client have
tested as executable through a web-browser. The

latter included the implementation of the csc591b
policy that allowed each participant to download
and save files in the directory of the local host –
thus overriding the nominal defaults of the web-
browser. Currently, such fine-grained security poli-
cies are not as readily achievable with browser-based
clients written in Java.

Final impressions. As the course concluded, there
were really no surprises. The client/server archi-
tecture behaved as expected – it allowed multiple
students to independently complete the writing as-
signments about a phase of the project which would
then be shared with other participants and included
in the overall document such an early draft of this
paper. Preliminary experiments, such as rendering
a single-user application collaborative under user-

controlled preference also took place – a promising
new approach, now described in more detail in the
companion paper [1].

8 Conclusions

The material for this paper evolved as part of an ex-
perimental course on ‘collaborative computing’. We
are no closer to making a definite statement about
what actually is the most appropriate definition of
‘collaborative computing’ than we were in the first
paragraph of the paper.

In the context of this project, definitions are less
important as the expectations we may have of col-
laborative computing. Bringing together a class of
students and learning a scripting language that al-
lows for rapid prototyping of user interfaces and net-
working concepts, and linking it all to a well-defined
project driver, has been an important motivating
factor for each participant eager to improve the en-
vironment where collaboration can be a rewarding
learning experience.

The rewarding experience has been not only to learn
the textbook material but also to question existing
client/server architecture and to try some new ones.

The projects on the Asynchronous Group Server Ar-
chitecture and the Synchronizing Group Server Ar-
chitecture (SGS) along with the respective clients
continues as a small project and both the server and
the client software is expected to be released for use
by the peer community during the year 2000. See

http://www.cbl.ncsu.edu/software/

for more details.

References
[1] F. Brglez and H. Lavana. CollabWiseTk: A Toolkit for

Rendering Stand-alone Applications Collaborative. In
Seventh Annual Tcl/Tk Conference. USENIX, Febru-
ary 2000. Also available at http://www.cbl.ncsu.edu/-
publications/#2000-TclTk-Lavana.

[2] F. Brglez. Frontiers of Collaborative Computing on the
Internet, A Graduate Course Experiment, January 1999.
Two project reports, published after the completion of
the course, are also available from the course home page
under http://www.cbl.ncsu.edu/~brglez/csc591b/.

[3] Netmeeting Version 3.0. Published under URL
http://www.microsoft.com/netmeeting, 1999.

[4] The Tcl/Tk Consortium. Published under URL
http://www.tclconsortium.org/, 1998.

[5] GroupKit Version 5.1. Published under URL
http://www.cpsc.ucalgary.ca/grouplab/groupkit,
1998.

[6] R. S. Gray. Agent Tcl: A transportable agent sys-
tem, 1999. For up-to-date bibliography and soft-
ware releases, see http://agent.cs.dartmouth.edu/-
software/agent2.0/.

[7] H. Lavana, A. Khetawat, F. Brglez, and K. Kozminski.
Executable Workflows: A Paradigm for Collaborative
Design on the Internet. In Proceedings of the 34th Design

Automation Conference, pages 553–558, June 1997. Also
available at http://www.cbl.ncsu.edu/publications/-
#1997-DAC-Lavana.

[8] A. Khetawat, H. Lavana, and F. Brglez. Internet-based
Desktops in Tcl/Tk: Collaborative and Recordable. In
Sixth Annual Tcl/Tk Conference. USENIX, September
1998. Also available at http://www.cbl.ncsu.edu/-
publications/#1998-TclTk-Khetawat.

[9] H. Lavana and F. Brglez. WebWiseTclTk: A Safe-
Tcl/Tk-based Toolkit Enhanced for the World Wide
Web. In Sixth Annual Tcl/Tk Conference (Best Stu-
dent Paper Award). USENIX, September 1998. Also
available at http://www.cbl.ncsu.edu/publications/-
#1998-TclTk-Lavana.

[10] M. Harrison and M. McLennan. Effective Tcl/Tk Pro-
gramming. Addison-Wesley, 1998.

[11] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley, 1994.

[12] B. B. Welch. Practical Programming in Tcl and Tk.
Prentice Hall, 1997.

[13] TANGO: Collaboratory for the Web. Published under
URL http://trurl.npac.syr.edu/tango, 1998.

[14] G. Konduri and A. Chandrakasan. A Framework for
Collaborative and Distributed Web-Based Design. In
Proceedings of the 36th Design Automation Conference,
June 1999.

[15] H. Lavana, F. Brglez, and R. Reese. User-Configurable
Experimental Design Flows on the Web: The ISCAS’99
Experiments. In IEEE 1999 International Symposium
on Circuits and Systems – ISCAS’99, May 1999. A
reprint also accessible from http://www.cbl.ncsu.edu/-
publications/#I999-ISCAS-Lavana.

[16] (La)Tex Navigator, 1999. See http://www.loria.fr/-
services/tex/english/index.html.

[17] S. Greenberg and M. Roseman. Groupware Toolkits for
Synchronous Work. In M. Beaoudouin-Lafon, editor,
Computer-Supported Cooperative Work, Trends in
Software Series. John Wiley & Sons Ltd., 1998. Also
available as a Research Report 96/589/09, Dept. of Com-
puter Science, University of Calgary, Calgary, Canada,
under http://www.cpsc.ucalgary.ca/projects/grouplab-
/papers/1998/98-GroupwareToolkits.Wiley/Report96-
589-09/report96-589-09.pdf.

[18] S. Greenberg. Real Time Distributed Collaboration. In
P. Dasgupta and J. E. Urban, editor, Encyclopedia of
Distributed Computing. Kluwer Academic Publishers,
1999. Also available as a Research Report 96/589/09,
Dept. of Computer Science, University of Calgary,
Calgary, Canada, under http://www.cpsc.ucalgary.ca/-
projects/grouplab/papers/1998/98-Encyclopedia-
Distrib/encyclopedia-realtime-collaboration.pdf.

[19] BWidget Toolkit, 1999. For more information, see
http://www.unifix-online.com/BWidget/.

[20] F. Brglez, H. Lavana, Z. Fu, D. Ghosh, L. I. Moffitt,
S. Nelson, J. M. Smith, and J. Zhou. Collaborative
Client-Server Architectures in Tcl/Tk: A Class Project
Experiment and Experience. Technical Report 1999-
TR@CBL-01-Brglez, CBL, CS Dept., NCSU, Box 8206,
Raleigh, NC 27695, May 1999.

