
The following paper was originally published in the

Proceedings of the 8th USENIX Security Symposium
Washington, D.C., USA, August 23–26, 1999

S C A L A B L E A C C E S S C O N T R O L F O R
D I S T R I B U T E D O B J E C T S Y S T E M S

Daniel F. Sterne, Gregg W. Tally, C. Durward McDonell, David L. Sherman,
David L. Sames, Pierre X. Pasturel, and E. John Sebes

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

Scalable Access Control for Distributed Object Systems

Daniel F. Sterne (dan_sterne@nai.com)
Gregg W. Tally (gregg_tally@nai.com)

C. Durward McDonell (durward_mcdonell@nai.com)
David L. Sherman (david_sherman@nai.com)

David L. Sames (david_sames@nai.com)
Pierre X. Pasturel (pierre_pasturel@nai.com)

NAI Labs, Network Associates, Inc.

E. John Sebes (ejs@securify.com)
Kroll-O'Gara Information Security Group

This research was funded by DARPA under contract F30602-97-C-0268.
Approved for Public Release, Distribution Unlimited.

Abstract
A key obstacle to the widespread use of distributed
object oriented systems is the lack of scalable access
control mechanisms. It is often necessary to control
access to individual objects and methods. In large
systems, however, these can be so numerous that the
resulting proliferation of access control information
becomes overwhelming. We describe Object Oriented
Domain and Type Enforcement (OO-DTE), a
technology for organizing, specifying, and enforcing
access control that has been prototyped and integrated
with commercial ORBs and SSL. OO-DTE provides
fine-grained control and scalability via a compilable
symbolic policy language. We discuss our experience
building and using OO-DTE and compare OO-DTE
with the access control terminology, concepts, and
requirements described in CORBA Security.

1. Introduction
Although distributed object technology has matured
greatly during recent years, the lack of practical,
integrated security mechanisms remains an obstacle to
its use in many application domains. CORBA1 and Java
Remote Method Invocation (RMI)2 are two of the more
popular distributed object technologies. Version 1.0 of
the CORBA Security specification (CORBASec)
[CORB] was initially released in January 1996.

1 Common Object Request Broker Architecture from
the Object Management Group (OMG)
2 Java is a product of Sun Microsystems.

However, commercial product releases that fully
comply with its Level 2 (general-purpose) requirements
are just beginning to emerge. Moreover, even Level 2-
compliant products may prove inadequate because
Level 2 requirements in some functional areas are
neither complete nor sufficiently stringent. In
particular, CORBA Security does not establish
requirements for security management mechanisms.
These mechanisms can have a major impact on the
usability and scalability of the implementation. Java
security, as represented by Sun’s Java 2 and the
recently announced Java Authentication and Activation
Service (JAAS), is still undergoing rapid evolution.
Moreover, although Sun has released plans and a draft
specification for the RMI Security Extension
[RMISEC], the facilities currently provided for
controlling RMI-based access by clients to remote Java
servers are very limited.

Providing practical access control mechanisms for
distributed objects - whether based on CORBA or Java
RMI - is a challenge because the necessary
characteristics for such mechanisms are not well
understood. One particular problem stems from the
common requirement to control access to individual
objects and methods, even in systems where the number
of these abstractions is enormous. For example,
consider the CORBA naming service, which allows
CORBA objects to be bound to portions of CORBA’s
hierarchical name space and provides queries about
name bindings. It would be unwise to give every user
complete freedom to use the naming service, i.e.,
unrestricted ability to bind any object to any part of the
name space, or unbind any name-to-object binding.

Mechanisms are needed to allow a user to invoke these
naming service methods, but only on appropriate
objects. Unfortunately, attempting to enumerate
separate access control attributes for every method of
every object in a large Object Oriented (OO) system
causes an overwhelming proliferation of access control
information that results in a loss of understandability,
manageability, and ultimately, security. This problem
is worsened when Access Control Lists (ACL) are used
as security attributes [OSG] [DENG] [HU] because
each ACL can contain many entries, including some
that appear contradictory. Moreover, the combined
effect of ACLs can only be understood by applying
complex precedence and ordering rules [BALD]
[DOWN].

This paper describes the results of a DARPA-funded
research project to develop access control technology
for distributed objects. By access control technology,
we mean mechanisms for 1) specifying the sets of
objects and methods that users and automated processes
may access, and 2) protecting objects and methods from
unauthorized access. The technology we have
developed is called Object Oriented Domain and Type
Enforcement (OO-DTE). OO-DTE is an outgrowth of
our earlier research into access controls for secure
operating system kernels [BADG] [WALK] [SHER].

OO-DTE was developed with the following goals:

• Object Oriented - It should support OO
abstractions and take advantage of OO
relationships, especially interface inheritance.

• Scalability and Manageability - It must be suitable
for controlling access in large distributed
applications systems comprising thousands of
processes, objects, and methods.

• Fine-grained Control - It must allow access to be
controlled at the level of individual objects and
individual methods.

• Role-based Access Control (RBAC) - It should
support access rules organized according to user
roles (job titles or functional responsibilities) rather
than user identities or security clearances.

• Compatibility with Commercial Products – It
should be designed as a plug-in module that can be
linked into commercial object request brokers
(ORBs) and distributed object infrastructure
components.

• Transparency - It should support security unaware
applications, i.e., applications that do not explicitly
invoke access control or other security services.

This paper is organized as follows: Section 2 provides
background, terminology, and motivation. Section 3
describes DTEL++, the compilable language used in
OO-DTE to specify access control policies. Section 4
describes the implementation, features, and status of
our OO-DTE prototypes. Section 5 compares OO-DTE
to CORBA Security concepts and terminology.
Observations on our experience with OO-DTE,
including preliminary performance data, are discussed
in Section 6. Section 7 provides a summary.

2. Background
OO-DTE extends Domain and Type Enforcement
(DTE) concepts to distributed object systems. DTE is a
set of access control mechanisms for UNIX kernels
[BADG] [WALK] [SHER]. DTE was, in turn, based
on Type Enforcement, as proposed originally by
Boebert and Kain [BOEB] in 1985. For historical
reasons, DTE and OO-DTE have continued to use
terminology that originated from Type Enforcement
even though those terms are now overloaded with
additional meanings.

On a DTE operating system, a security attribute called a
type is associated with every file, directory, device, and
IP packet. Types are assigned to these system resources
according to a site-specific policy. Types are typically
assigned to indicate the kind of information contained,
its sensitivity, integrity, or origin. A security attribute
called a domain is associated with every process.
Domains are assigned to processes to indicate the kind
of computing tasks they are intended to perform and to
prevent unnecessary access to system resources. Each
domain is defined as a collection of access rights. Each
right is expressed as the ability to access information of
a specified type in one or more access modes, e.g., read,
write, execute, send, receive, etc.

One of the innovations of DTE was the use of a
compilable high-level language to define types and
domains. This language is called the DTE Language or
DTEL. DTEL was also used to assign types to the file
hierarchy via a set of general rules with exceptions.
This allowed an entire file system, potentially
consisting of millions of files, to be “labeled” in a
concise and understandable manner by means of a few
DTEL statements. This contrasts with ordinary UNIX
systems that require an administrator to examine the
permission bits on vast numbers of files and directories
individually in order to infer how files of different
sensitivities are arranged and distributed throughout the
file hierarchy.

OO-DTE is an attempt to extend DTE notions to
distributed object-oriented systems. We have
concentrated initially on developing OO-DTE for
CORBA-based systems but have plans to adapt OO-
DTE for Java RMI. OO-DTE includes an extended
policy language called DTEL++ that provides
constructs for assigning types to methods. DTEL++
also includes rules for propagating default type
assignments from modules and interfaces to enclosed
methods3, and for propagating type assignments to
inherited methods. DTEL++ defines two new access
modes for methods: invoke (needed by clients) and
implement (needed by servers).

The first OO-DTE prototype ran on a DTE kernel and
exploited the DTE kernel’s access control facilities for
interprocess communications [SHER]. That prototype,
sometimes referred to as Kernel Level OO-DTE,
involved using and modifying the Inter Language
Unification (ILU) ORB4. These modifications were
needed to make ILU use the DTE kernel’s extended
send and receive system calls, which transmit type
attributes with messages and prevent senders and
receivers from accessing unauthorized information
types.

Although the DTE kernel provides important security
advantages, there is little interest outside the research
community in non-standard kernels. To broaden the
potential audience for our research we have
subsequently developed newer prototypes called Above
Kernel OO-DTE. Above Kernel OO-DTE was
specifically designed to run on mainstream commercial
operating systems and is the primary focus of this
paper.

2.1. Domains, Roles, and Role
Authorization
OO-DTE has been designed to support role-based
security policies, that is, policies that grant users access
rights according to their assigned roles (duties) within
an organization [NICO]. In our earlier DTE kernel
operating systems, each role was represented as a
collection of domains. This allowed each task initiated
by a user to run as a separate process in a "small
domain" providing only the minimum set of access
rights needed to accomplish that task. This approach
was developed in accordance with the principle of least

3 Note that CORBA uses the terms “interface” and
“operation” in place of “class” and “method”. We use
both sets of terms interchangeably.
4 ILU was developed by Xerox Corporation, Palo Alto
Research Center.

privilege [SALT]. OO-DTE, however, is designed to
run on mainstream operating systems whose kernels
lack comparable process spawning and access control
facilities. Consequently, in OO-DTE, each role is
represented by a single domain; hence, the terms role
and domain have become virtually synonymous.

In OO-DTE, a user may be authorized for multiple
roles, but each connection associated with a user
process is bound to a single role (domain). OO-DTE
roles can be constructed hierarchically by defining
domains in terms of other domains, in the manner of
Baldwin's Named Protection Domains [BALD]. OO-
DTE does not provide facilities for dynamic or static
separation of duty; unlike some practitioners [KUHN],
we regard these as distinct from the fundamental
aspects of role-based access control.

Roles, domains, and types provide several levels of
indirection in the authorization policy. As discussed
later, users hold X.509 certificates that contain an OO-
DTE domain as a privilege attribute. The policy
defines domains in terms of their access rights to types.
The policy also assigns types to methods. Through
these levels of indirection, a user’s authority to invoke a
method can be determined. Figure 1 shows the
relationships between users, domains, types, and
methods:

USER

DOMAIN

TYPE

METHOD

Domain Definition

Certificate

Type Assignment

User holds certificate with
domain as privilege attribute

Policy defines
domains by their
access to types

Policy assigns types
to methods

Figure 1 - Users, Roles, and Authorization

3. DTEL++ Policy Language

DTEL++ is the policy language used to specify OO-
DTE security policies [TALL]. It is used to declare
types, to assign a type to each method that might be
invoked, and to define domains in terms of the types
each domain can invoke or implement. We will
motivate the discussion of the policy language by
illustrating how it can be used to control a simple
application system.

3.1. Sample Application
Suppose we are writing an application to manage the
books in a library. The primary objects in our
application are librarians, patrons, and books. One can
enter, remove, and find books in the card catalog,
reserve books, and check books in and out. The Client-
server interface for this application, as specified in
CORBA's Interface Definition Language (IDL), might
look like this:
module Library {
 struct BookDescription {...};
 interface Patron {...};
 interface PatronDatabase {...};

 interface Book {
 readonly attribute BookDescription desc;
 void checkOut (in Patron patron);
 void checkIn ();
 long numberAvailable();
 long numberReservations();
 void reserve (in Patron patron);
 };

 interface BookDatabase {
 Book newBook (in BookDescription desc,
 in long copies);
 void removeBook (in Book book);
 Book findByTitle (in string title);
 Book findByAuthor (in string author);
 Book findBySubject (in string subject);
 };
};

In our policy, we want to allow both librarians and
patrons to find books in the card catalog and to reserve
books. Additionally, we want to allow only librarians
to check books in and out, to enter new books into the
catalog, and to remove books from the catalog.

3.2. Type Definitions and Simple Type
Assignments
Every DTEL++ policy must declare types. These types
are then used to label interface methods so that access
to the methods can be controlled. In our policy we
declare two types, safe_t and restricted_t5

with the OO_type statement:

OO_type safe_t, restricted_t;

Methods that both patrons and librarians are allowed to
invoke will be assigned the safe_t type, and methods
that only librarians are allowed to invoke will be
assigned restricted_t.

Each method in each interface must be assigned a type.
This can happen in one of several ways. The most

5 We have adopted the convention that the suffixes “_t”
and “_d” denote type and domain identifiers

straightforward way is with an explicit assign statement
for the method. Since patrons can safely be allowed to
look up books in the catalog, the type safe_t is
assigned to the method findByTitle() by the
assign statement:

assign safe_t findByTitle;

A second way of assigning types to methods is to assign
a default type to the methods within an interface or
module, as in:

assign restricted_t _DEFAULT;

Each module and interface may be assigned a default
type. By declaring a default type of restricted_t,
any method that does not receive a type via an explicit
assign statement, as shown previously, will receive the
type restricted_t. This allows us to construct our
policy so that patrons can invoke only those methods
that have been explicitly granted to them.

Other ways of implicitly assigning types will be
discussed in Section 3.5.

3.3. Domain Definitions
A DTEL++ policy must define the permissions granted
to each domain. For each type declared in the policy, a
given domain can have invoke permission,
implement permission, neither permission, or both
permissions. Only those permissions explicitly stated
in the domain definition are granted to the domain. In
our example application, we can allow patrons to
perform safe operations, and no others, with the domain
declaration:

domain patron_d = (invoke->safe_t);

We permit librarians to perform both safe and restricted
operations with:

domain librarian_d =(invoke->safe_t,
restricted_t);

Domains can be concatenated. Since the
librarian_d domain has a superset of the privileges
of the patron_d domain, it could have been defined
as:

domain librarian_d = patron_d,
(invoke->restricted_t);

While the impact upon our simple example is minimal,
had the definition of the patron_d domain been
substantially more complex, the above construction of
the librarian_d domain would still allow the
policy to show very clearly the relationship of the two
domains. This allows one to express larger policies in a

more concise, and more understandable way, for
example, policies in which roles are defined
hierarchically.

The software that maintains the library database must
implement all of the methods and requires the following
domain definition:

domain server_d = (implement->safe_t,
restricted_t);

For an example of both invoke and implement
permission, consider augmenting the server_d
domain. We may want to give it the invoke privilege
for the safe_t type if it has to invoke some of the
listed methods internally to do its job. We would re-
define the server domain statement as this:

domain server_d = (invoke->safe_t),
(implement->safe_t, restricted_t);

3.4. Sample Policy
Here is the DTEL++ policy for our library system:
OO_type safe_t, restricted_t;

module Library {

 assign restricted_t DEFAULT;

 interface Book {
 assign safe_t { _get_desc,

numberAvailable,
numberReservations, reserve
};

 };

 interface BookDatabase {
 assign safe_t { findByTitle,
 findByAuthor,
 findBySubject };
 };
};

domain patron_d = (invoke->safe_t);
domain librarian_d = (invoke->safe_t,

restricted_t);
domain server_d = (implement->safe_t,

restricted_t);

The first line declares the two types that we are using.
Next, we open the Library module and assign
restricted_t as the default type for all methods in
the module. Then we open the Book and
BookDatabase interfaces and explicitly assign the
safe_t type to methods that may be invoked by
patrons. Finally, we define our domains: applications
run by patrons will run in the patron_d domain and
be allowed to invoke only safe_t methods; librarian
applications will run in the librarian_d domain
and be allowed to invoke safe_t and

restricted_t methods; and any servers will run in
the server_d domain and be allowed to implement
both safe_t and restricted_t methods.

When an assign statement for a default type appears
within the scope of an interface statement, the default
type applies to the methods of that interface. When
such an assign statement appears outside the scope of
an interface statement, but within the scope of the
module statement, the default type is accepted as the
default type by all interfaces within the module that do
not contain their own default assign statement to
override it.

In our example, we assigned a default type of
restricted_t for the entire Library module. All
interfaces within the module will have
restricted_t as their default type since none of
our interfaces contains an assign statement to reset the
default type within the interface. All methods in the
Patron and PatronDatabase interfaces, which
may be numerous, need not be mentioned in the policy;
they will receive the restricted_t type by default.
In the Book interface we assigned the type safe_t to
some of the methods, but since we did not explicitly
assign types for the checkIn() and checkOut()
methods, they both receive the interface default of
restricted_t.

3.5. More Complex Type Assignments

Inheritance
By default, DTEL++ method types are assigned
recursively from base interfaces to derived interfaces.
For example, assume an interface ChildrensBook
that derives from the Book interface described above.
The ChildrensBook::checkOut() method
would automatically receive the same type,
restricted_t, that was assigned to the
checkOut() method in the Book interface. It is also
possible to explicitly assign a type to the
ChildrensBook::checkOut() method so that
the inherited type is overridden.

The inheritance of type assignments in DTEL++ can be
fine-tuned through the use of the –i, -l, and –f flags.
These flags appear immediately after the keyword
assign and modify the effect of the type assignments
on inherited methods or derived interfaces. These are
discussed further in [TALL].

Per Object Access Control
DTEL++ allows different objects having the same
interface to be assigned different access control
characteristics, but requires that such objects be bound
to names like those defined by the CORBA Naming
Service. Objects with different names can then be
treated differently.

For example, there may be some books in a library that
no one may check out, perhaps because they are
antiques. Instead of having to define a new
AntiqueBook interface, we can leave the IDL for the
application unchanged and add the following lines to
our DTEL++ policy:
// No one has permission to invoke null_t
OO_type null_t;
...
module Library {
 ...
 template AntiqueBook : interface Book {
 assign null_t checkOut;
 };
 assign AntiqueBook /Books/Antique/;
 ...
};

The collection of type assignments for a given interface
is called its default type template. This includes both
explicit and implicit type assignments received through
inheritance relationships or default types. An object
that is not named has the default type template applied
to it. The example above defines a named type
template AntiqueBook. The named type template
applies only to objects with names that fall under the
namespace assigned to the type template
(/Books/Antique/).

Object names are arranged in a directory-like structure,
and are given to the objects by security aware object
factories. In our example, an antique book should be
bound to a name such as “/Books/Antique/1003” (for
book #1003 in the catalog, for example), while a
regular book should be bound to a name such as
“/Books/1351” (or possibly no name at all). The
following DTEL++ line says that any object with a
name that starts with “/Books/Antique/” should have its
methods typed as in the AntiqueBook template,
rather than the standard (unnamed) Book template.

assign AntiqueBook /Books/Antique/;

4. Implementation
Several OO-DTE prototypes have been built. This
paper focuses on two more recent prototypes that have
been built as plug-in modules for two commercial
ORBS running on mainstream operating systems: Orbix

(Iona Technologies) on Solaris and Visibroker (Inprise)
on Windows NT.

4.1. DTEL++ Compiler
The DTEL++ compiler uses DTEL++ policy files and
associated CORBA IDL files as input to generate data
files used by an OO-DTE ORB at runtime. The
compiler output consists of 1) tables that bind types to
methods, and 2) domain definitions that are described
in terms of the types each domain can invoke or
implement. The compiler compares the module,
interface, and method identifiers in a DTEL++ policy
with their counterparts in the IDL files and reports
inconsistencies. If a method, interface, or module
appears in the DTEL++, but not in the IDL, it is
reported as an error. However, a method may legally
appear in IDL and not in the DTEL++. In this situation,
the compiler uses the type assignments provided by
inheritance and default types to infer the type of the
method.

4.2. Run-time Architecture
Like other ORBs, both Orbix and Visibroker provide a
"plug-in" interface for extending the ORB’s
functionality. The CORBA specification calls these
plug-ins interceptors. Although a standard interceptor
interface is under development by the OMG, current
interceptors for ORBs are vendor-specific.

The primary runtime components of our Orbix and
Visibroker OO-DTE prototypes are interceptor-like
plug-in components that reside in both the client and
server ORBS. The behavior of these plug-in
components is driven by the data files produced by
compiling DTEL++ policies. The plug-in in the server’s
ORB protects the server. For each operation request it
receives, it determines whether the requesting client is
authorized to invoke the requested operation; if not, it
rejects the request and sends a
CORBA:NO_PERMISSION exception to the client.
The plug-in in the client’s ORB protects the client. For
each operation, the client ORB determines whether the
server is authorized to implement the operation (i.e.,
provide the service); if not, the ORB rejects the request,
thereby preventing it from being sent to the server.
This prevents the client from inadvertent interactions
with any malicious applications that attempt to
impersonate servers.

OO-DTE access control plug-ins rely on vendor-
provided Secure Socket Layer (SSL) [DIERK]
packages to authenticate clients and servers and protect
traffic between them. SSL was selected as the

communications security mechanism for OO-DTE,
primarily because it is the most widely supported
security technology for CORBA.

The access control plug-ins also rely on SSL to convey
to servers the authorization of clients, and to clients the
authorization of servers. SSL uses X.509 certificates
that are issued to each principal. Each X.509 certificate
used with OO-DTE contains the principal’s domain.6

Consequently, a user authorized to act in multiple roles
will have multiple certificates, each containing a
different domain, and must designate the certificate
appropriate to the role in which he or she is currently
acting. This is analogous to a retail customer choosing
from his or her wallet a credit card appropriate to (i.e.,
accepted by) the merchant with whom a purchase is
sought.

SSL handshaking is performed whenever a client and
server establish a connection. The handshaking process
causes exchange and cryptographic verification of
information contained in the certificates including the
domains of the client and server. Each ORB retains this
information for the lifetime of the connection and
makes it accessible to the access control plug-in for use
in authorization checking as described above.

Figure 2 shows the relationships among the OO-DTE
components:

Figure 2 -OO-DTE Components

4.3. Per-Object Access Control
The OO-DTE plug-in makes access control decisions
based on the OO-DTE type of the operation, the domain
of the client (or server), and the definition of that
domain as described in the DTEL++ policy. The type
assignment for the operation is also described in the
policy, as discussed in Section 3 above. The type
depends on the operation, interface, and, when per-

6 In the initial prototype of Above Kernel OO-DTE, the
Organizational Unit of the Distinguished Name
contains the domain information.

object access control policies are used, the object’s
name, e.g., /Books/Antique/1003. The operation is
part of the request object passed to the plug-in. The
interface name can be determined by invoking local
methods on the target object, such as retrieving the
Repository ID. Obtaining the object name, if present,
required the development of additional, non-standard
mechanisms.

Per-object access control relies on assigning unique
identifiers (object names) to objects and organizing the
object names in a hierarchical manner. CORBA
deliberately avoids providing unique identifiers for
objects, so implementing OO-DTE required inventing a
specialized naming mechanism. There are several
requirements for this mechanism:

• An object can have, at most, one OO-DTE name.

• There must be a means for the plug-in to determine
the name of an object given a reference to the
object, preferably without making a remote
invocation.

• The names must be organized in a hierarchical
manner to allow easy association with type
templates.

• Object names must be assigned at object creation
and thereafter be immutable. Objects cannot be
named after creation.

An obvious candidate for naming objects is the
CORBA Naming Service. However, the Naming
Service does not provide a two-way association
between objects and names. Given a name, it is
possible to find the associated object using a Name
Server. However, it is not possible to determine an
object’s name from a reference to the object.
Furthermore, CORBA Naming provides for a many-to-
one mapping between names and objects.

The OO-DTE prototypes use a combination of
mechanisms to assign names to objects. First, the
object name is bound to the object in a secure
implementation of the Naming Service. The Naming
Service provides structure to the naming hierarchy and
ensures that object names are not re-used. Second, a
‘stringified’ form of the object name is stored in the
object key portion of the object reference to provide the
two-way association between the name and object. This
allows the object name to be extracted from the object
reference by the OO-DTE plug-in on the client side.
Since object factories are responsible for creating and
naming the object correctly, per-object access control
requires a security-aware application. However, the
impact is limited to the factory.

CORBA Client

ORB

SSL

CORBA Server or
Security Gateway

ORB

SSL
Compiled
policy

OO-DTE
Plug In

methodmethod
network(s)

Compiled
policy

OO-DTE
Plug In

invocation invocation

4.4. Policy Distribution and
Synchronization
OO-DTE takes a decentralized approach to
authorization decisions in order to keep policy
information close to OO-DTE enforcement
mechanisms, which are resident in client and server
plug-ins, and provide faster access decisions than could
be obtained by consulting with a centralized access
decision server. With this approach, however, all
policy changes must potentially be propagated to
multiple hosts to ensure consistent policy enforcement.
The OO-DTE prototype provides a central point of
control for policy changes and distribution. Policy
update notifications are pushed from this point to
individual OO-DTE hosts, providing loose
synchronization of policy changes.

OO-DTE policy distribution uses CORBA methods for
policy change notification and for transport of the
policy updates. A master policy server accesses the
authoritative copy of the policy. Local policy servers
on each host register with the master policy server at
startup. Applications (client and server programs)
register with their host’s local policy server at startup.
When the policy administrator changes the master
policy, an event notification propagates from the master
policy server to each of the registered local policy
servers, and then to the security plug-ins in the client
and server ORBs. Local policy servers invoke methods
on the master policy server to retrieve the updated
policy and then copy it into local files, which are then
read by the plug-ins of local client and server processes.
In this way, policy changes are put into effect
transparently to applications and ‘on-the-fly’, without
stopping or restarting applications. For scaling to a
large number of policy subscribers, policy distribution
servers can be arranged into a hierarchy, with each
server communicating policy changes only with its
immediate superior and subordinates. All policy
notifications and transfer operations are protected by
SSL.

4.5. ORB Gateway and Multi-Protocol
Object Gateway
OO-DTE components have also been integrated into
two network security gateways: the ORB Gateway and
its successor, the Multi-Protocol Object Gateway. Both
Gateways are deployed on or behind firewalls where
they intercept CORBA's Internet Inter-ORB Protocol
(IIOP) traffic addressed to servers in the enclave. The
Gateways perform control access in accordance with a
DTEL++ policy before forwarding requests to the

servers. If a Gateway denies a request, the request is
not forwarded. Neither Gateway requires modifications
to CORBA object references or IIOP messages. In the
event that a remote client cannot present an X.509
certificate containing an explicit DTE domain, the
Gateways can be configured to use other information
about the client, including the client’s IP addresses or
the contents of other X.509 fields, to infer or synthesize
a domain for use in access control decisions. Once a
domain is established for that client, the rest of the
access decision process proceeds as described above.
The Multi-Protocol Object Gateway provides the same
functions as the ORB Gateway but supports a subset of
Java RMI in addition to CORBA IIOP and will be a
focus of our future research.

5. Comparison to Access Control in
CORBA Security
In this section we relate OO-DTE to the access control
terminology and features described in CORBASec
[CORB].

5.1. OO-DTE Types vs. Standard Rights
Family
According to the CORBASec model, an access policy
translates privilege attributes held by a principal (e.g.,
group membership) into rights and specifies which
rights a principal must hold to invoke operations on
CORBA objects; these are called required rights.
Rights belong to rights families, which are simply sets
of rights, like sets of access modes. CORBASec
defines a standard rights family that consists of the
rights “get”, “set”, and “manage”. These correspond to
read-only, update, and administrative access modes,
respectively. CORBASec allows other rights families
to be used, but discourages them.

While the standard rights family (get, set, manage) is
simple and general, its usefulness seems quite limited.
To illustrate, we will attempt to use it to protect the
Book interface in the library application discussed in
Section 3. Consider the requirement that patrons and
librarians are allowed to reserve books, but only
librarians are allowed to check out books. Both of the
Book methods reserve and checkOut change the
application’s state. Hence, for both, the most
appropriate required right in the standard rights family
is “set”. But if the “set” right is granted to both
librarians and patrons, patrons will be allowed,
inappropriately, to invoke the checkOut method. On
the other hand, if only librarians are granted the “set”
right, then patrons will be prevented, inappropriately,

from invoking the reserve method. Unfortunately,
the standard rights family cannot readily address these
simple and ordinary requirements.

The underlying problem is that the interface to an
object often includes multiple “set” methods that update
different parts of an object’s state and should be
accessible to different groups of principals. To
adequately specify the required rights for an interface, a
distinct right might be needed for each update method.
Hence, the optimal number of update rights depends on
the application and cannot usefully be reduced to the
single “set” right provided by the standard rights
family. By contrast, the OO-DTE “rights family” is
simply the collection of types declared by the DTEL++
policy writer to suit the characteristics of the
application, e.g., safe_t and restricted_t. The simplicity
of the OO-DTE solution for the library application
presented above illustrates OO-DTE’s flexibility and
effectiveness at solving this common problem.

5.2. Per-Object Access Control
OO-DTE provides named objects and type templates so
that access control can be configured on a per-object
basis when needed. CORBASec states, however, that
“Required Rights are characteristics of interfaces, not
instances. All instances of an interface, therefore, will
always have the same Required Rights.”7

Consequently, it is not possible to directly specify per-
object access control using CORBASec’s Required
Rights mechanism. To get around this restriction, the
application architect is forced to put individual objects
or collections of objects – all of which belong to the
same interface – into separate Security Policy Domains.
The specification defines a Security Policy Domain as
“a set of objects to which a security policy applies for a
set of security related activities and is administered by a
security authority.”8

Consider the use of per-object access controls to
provide special handling of antique books in our library
example. Addressing this handling requirement by
using the CORBASec Required Rights necessitates
placing antique books into a different Security Policy
Domain than ordinary books. This seems awkward and
artificial because both kinds of books are objects “to
which a [single] security policy applies” and both are
probably controlled and “administered by a [single]
security authority”. These quotes from CORBASec
suggest that both kinds of books should belong to the
same Policy Domain. Moreover, the administrative and

7 See [CORB], Section 15.6.4, “Access Policies”
8 See [CORB], Section 15.3.8, “Domains”

programming ramifications of using multiple Security
Policy Domains are unknown because CORBASec
provides no guidance on 1) how Policy Domains are
created, deleted, and configured, and 2) how objects are
moved among domains. The concepts and
implementation issues of Security Policy Domains are
now being re-examined by the CORBASec community.
An RFP seeking clarification of the issues surrounding
Policy Domains is currently underway. For simple
applications like our library application, forcing
designers to use multiple Policy Domains seems
cumbersome, risky, and unnecessary given that OO-
DTE achieves the desired result without them.

5.3. Supporting and Exploiting Inheritance
DTEL++ uses a collection of wild-card rules to
facilitate the assignment of types to methods and make
these assignments as compact and intuitive as possible.
In particular, DTEL++ exploits the inheritance
hierarchy. When types are assigned to the methods of a
base interface, by default, the inherited methods in all
derived interfaces automatically inherit those type
assignments. As a result, when derived interfaces are
added to an application, few if any additional DTEL++
statements may be required, even if the base interface
was complex and required numerous DTEL++
statements. In addition, DTEL++ provides a variety of
optional flags to control and selectively override the
propagation of type assignments through the inheritance
hierarchy.

In the examples in CORBASec, Required Rights are
shown as a table that enumerates the rights required for
each method in each interface. Inheritance is not
discussed. This suggests that when a derived interface
is defined, it may be necessary to enumerate the
required rights for each inherited method even if they
are identical to the rights for the base interface’s
methods. This will be burdensome when deriving new
interfaces from lengthy base interfaces. Furthermore, it
is clearly unnecessary, as DTEL++ illustrates, and is
conducive to errors and inconsistencies. The
specification doesn’t prohibit an implementation from
exploiting inheritance to make the enumeration of
rights more compact. But, it also fails to provide
guidance or insights into the benefits, issues, or features
that might be required.

6. Experience
The OO-DTE features described above have been
implemented on three different ORBs (ILU, Orbix, and
Visibroker) and three different operating systems

(DTE-enhanced BSD/OS, Solaris, and Windows NT)
and in network security gateways. Although we have
not tested OO-DTE with an operational CORBA
application, we have used several non-trivial
demonstration applications, including three that were
written by other organizations; one of these was many
tens of thousands of source lines in length.

6.1. Performance – Preliminary Results
We have recently begun collecting and analyzing OO-
DTE performance data. Our initial target for testing is
our plug-in interceptor for the Visibroker ORB, Version
3.2. This ORB and our plug-in for it are written in Java
and are intended for use with CORBA programs written
in Java. In our tests, we timed a repetitive set of
operation invocations provided by a demonstration
application written by another DARPA contractor.
Start and stop times were collected on the client
machine issuing the invocations. The start time was
captured prior to invoking the first operation in the set,
but after establishing a (secure) connection to the
server. The stop time was captured after completing the
set of operation invocations.

The operation that produced the most consistent test
results is called “add_annotation”. It sends 18
(application-layer) bytes of ASCII “annotation” data to
a server and requests that the server replace the current
annotation associated with a particular CORBA object.
Timing data was collected for four configurations of
this application: 1) no security or plug-in components;
2) SSL alone; 3) SSL with a “null” plug-in on the client
and server; and 4) SSL with the OO-DTE plug-in on the
client and server. This version of Visibroker supports
only one configuration of SSL that provides
confidentiality of messages (encryption) as well as
authentication and integrity. For these tests, the client
machine was a 133 MHz Pentium with 32 MB RAM.
The server machine was a 166 MHz Pentium with 64
MB RAM. The results shown in Figure 3 below are
based on computing the incremental timing differences
between these four configurations, and dividing the
differences by 1000, the number of times the operation
was repeated between timings. This calculation
provides the average time contribution per operation
per component. Note that these numbers represent the
time consumed by the combination of the client and
server working together in a sequential manner.

Component Average time per
operation

• Application 4.09 ms

• SSL 2.95 ms

• Null plug-in 1.0 ms – 1.25 ms

• OO-DTE access
check

0.02 – 0.10 ms

Total (average) 8.33 ms

Figure 3 - Time contributions for the
“add_annotation” operation

As shown, OO-DTE access checks, without any
optimization, are relatively fast, consuming
approximately 1% of the total time for this lightweight
operation. Using the upper bound of 100 microseconds
for a pair of OO-DTE checks (one on the client and one
on the server) each check requires 50 microseconds or
less on slow Pentiums (166 MHz or 133 MHz). With
performance tuning, it is likely that OO-DTE speed
could be improved, though it’s not clear that it would
matter much, given how slow the Visibroker plug-in
mechanism and SSL (in this mode) are by comparison.

We also ran a number of other tests involving other
operations, larger data transfers (and hence more
encryption) and varying amounts of simulated compute
time on the server. No other experiment provided
consistent data that was at odds with the above.

6.2. Observations
In our testing, most OO-DTE features worked as
expected. Some of the features that appeared to be
unimportant in the design phase proved quite useful
after implementation. For example, automated policy
distribution proved invaluable during “policy
debugging” because it allowed us to distribute
experimental policy changes quickly to multiple hosts,
including our security gateways. Other features
designed to support larger, more complex policies have
had limited use so far, e.g., inheritance rules among the
type templates used for per-object access control.
Nevertheless, we still expect them to prove valuable for
operational systems.

Overall, DTEL++ has proven to be simple, flexible, and
easy to use as a policy specification language. The

DTEL++ policies we have experimented with have
tended to be compact, usually no larger than their
associated IDL files, and in some cases, much smaller.
This is largely due to the automatic inheritance of
assigned type bindings and the ease of establishing
default type bindings for an entire CORBA interface or
module.

Our experience using DCE9 integrated with Orbix
Security to secure CORBA applications has heightened
our appreciation of OO-DTE features. Compared with
OO-DTE, we perceive DCE as a set of low-level
enforcement mechanisms that lack appropriate
abstraction facilities, especially for OO. (It might be
possible, however, to hide DCE mechanisms under a
layer of better administrative tools.) In particular, DCE
does not help one organize an access control
configuration as a set of high level patterns, as is
required to enforce role-based policies and other
organizationally mandated policies. For example, when
a derived class is created that should have the same
access control characteristics as its base class, a DCE
administrator must create a new ACL for the derived
class that is a duplicate of the base class’s ACL. DCE
provides no general way to specify that both ACLs are
instances of a common pattern. For distributed OO
applications that use inheritance, this makes DCE seem
conducive to error and difficult to maintain, particularly
when access configuration changes need to affect a
collection of classes uniformly. Another advantage of
OO-DTE over DCE is that OO-DTE facilitates
inspection, audit, and analysis of the access control
configuration because a complete description of the
current access control configuration resides in a single
or small set of DTEL++ files. By contrast, auditing a
DCE configuration requires opening and inspecting
every ACL in the system.

A few aspects of OO-DTE did not work as well as
hoped. The syntax for defining type templates and the
inheritance relationships between type templates is
somewhat confusing and will be refined. We also plan
to experiment with a syntax that allows multiple
interfaces per type template. Some DTEL++ semantics
have proven ambiguous or difficult to implement in the
compiler, for example, the semantics governing the
propagation of default type assignments into interfaces
with multiple inheritance. A rule is needed that
specifies which set of defaults (if any) propagates into
the derived class. One possibility is to have no default
in cases that could be ambiguous, and instead require an
explicit type assignment.

9 Distributed Computing Environment from The Open
Group

It is desirable to detect as many DTEL++ errors as
possible at compile time because it is generally more
difficult to detect and diagnose errors at runtime.
Consequently, the DTEL++ compiler verifies that all
module, interface, and operation names in a DTEL++
policy match identifiers in the associated CORBA IDL
files and reports any mismatches. However, we have
experienced other sources of DTEL++ errors that could
potentially be detected prior to runtime by additionally
cross-checking. First, names of DTE domains that
represent user roles could be compared against the set
of DTE domains known to the certificate authority that
issues the X.509 certificates used with OO-DTE; the
names of DTE domains in these certificates should be
consistent with the DTEL++ policy. Second, a
DTEL++ policy that uses per-object access controls
assigns type templates to names in CORBA’s object
name space. It might be possible to detect naming
errors in a DTEL++ policy prior to runtime by
consulting with the CORBA naming service to validate
the existence, availability, ownership, etc. of these
names.

Another area for improvement is display of DTEL++
policies. DTEL++ was designed as an adjunct to
CORBA IDL. Consequently DTEL++ is terse and
contains little information already present in IDL. For
example, DTEL++ does not explicitly describe the
inheritance hierarchy nor does it enumerate all the
operations that are part of an interface. While avoiding
redundancy with IDL simplifies maintenance, it also
means that neither IDL nor DTEL++ by itself presents a
“complete picture” for a human administrator. A useful
addition to OO-DTE would be a viewer tool that
provides an integrated view of IDL and DTEL++. For
example, it might enumerate all the operations in the
interface, and for each, the DTE type assigned as a net
result of defaults and explicit overrides in the DTEL++
policy. In a related development, researchers at Secure
Computing Corporation have developed a graphical
administrative tool that can generate compilable
DTEL++ [THOM].

DTEL++ was originally conceived of as a collection of
annotations that would be embedded in IDL. These
annotations would be either stripped out by a DTEL++
preprocessor prior to compiling the IDL or disguised as
IDL comments. The approach described here was
adopted instead because it allows an application’s IDL
and DTEL++ policy to be changed independently in
many cases, thereby minimizing the “ripple effect”.
For example, a policy can be fine-tuned by adding new
roles without changing the files containing IDL. This is
desirable because without special tools, a change in
IDL files might trigger unnecessary recompilation of

IDL, recompilation of the generated stubs and
skeletons, and relinking of the client and server
programs that use them.

OO-DTE does not provide any features for delegation,
i.e., features that allow a client to dynamically authorize
an intermediary server to act on its behalf when
invoking methods on a target server. The primary
motivation for delegation is to limit the extent to which
an intermediary server must be trusted. This is
accomplished by allowing individual clients to grant
subsets of their own privileges temporarily to the
intermediary. While this is intuitively appealing, it is
not clear to the authors that delegation significantly
reduces the amount of trust that must be placed in an
intermediary server in many circumstances. For
example, when the intermediary concurrently supports
multiple clients having diverse privileges, the
intermediary must be trusted to use the correct set of
privileges for each request it makes on a target server.
Furthermore, the cryptographic overhead and
administrative costs of delegation appear significant.
Moreover, in order for a client to explicitly authorize
each target service used by the intermediary, the client
must know in advance how the intermediary is
implemented, i.e., must know what services the
intermediary will use to implement the services it offers
to clients. This seems to violate the well-established
software design principles of abstraction and
information hiding. Because the benefits of delegation
do not seem to outweigh these costs, the authors have
no plans at this time to support delegation in OO-DTE.

6.3. Future Plans
OO-DTE research and development is continuing under
DARPA funding. We plan to continue research in the
following areas:

• Attribute Certificates - For compatibility with SSL,
our current implementation appropriates the
Organizational Unit field of an X.509 (identity)
certificate and uses it to represent a principal’s role.
It would be preferable to pass this information
separately in an attribute certificate.

• Role Authorization Database - We are currently
developing an alternative approach for exchanging
role authorization information as part of the IIOP
message stream and validating it. The goal is to
reduce the need to issue and revoke certificates
when authorization changes occur, which may be
frequently. In this approach, each application's
plug-in validates its counterpart's requested role by
comparing it against a local role authorization

database. The database is distributed and updated
via the same mechanisms that are used to distribute
OO-DTE policy files.

• Policy Modules - Our current approach to policy
distribution causes all DTEL++ policy subscribers
to receive all policy updates. It would be
preferable for each subscriber to receive only the
policy updates it needs. Supporting this will
require mechanisms for organizing a DTEL++
policy as a collection of separable modules that can
be subscribed to independently.

• Java RMI - We plan to extend OO-DTE for use
with Java RMI. One issue that has surfaced is that
RMI supports overloaded method names. Because
CORBA IDL does not, neither does DTEL++.
DTEL++ will need to be extended accordingly for
RMI.

• Role Instances - In some applications, there is a
need to distinguish among different instances of the
same role and extend different rights to each. For
example, in a medical records application, there
may be several instances of the primary physician
role. Each instance should have access to the same
fields in patient records, but for different patients.
We plan to extend OO-DTE to support such
requirements.

7. Summary
Although distributed object technology has matured
greatly during recent years, the lack of practical,
integrated security mechanisms, particularly for access
control, remains an obstacle to its deployment in many
application domains. It is often necessary to control
access to individual objects and methods. In large
systems, however, these can be so numerous that the
resulting proliferation of access control information can
be overwhelming. We have described Object Oriented
Domain and Type Enforcement (OO-DTE), a research
technology for organizing, specifying, and enforcing
access control that has been prototyped and integrated
with commercial ORBs and SSL. OO-DTE is an
outgrowth of our earlier research into access controls
for secure operating systems.

Our experience developing OO-DTE suggests that it
has been successful in meeting its original goals:

• Object Oriented - OO-DTE is object oriented.
DTEL++, its compilable policy language,
resembles CORBA IDL, supports OO abstractions,
and takes advantage of the inheritance hierarchy to

improve the conciseness and understandability of
access control policies.

• Scalability and Manageability - DTEL++ provides
wild-card techniques for assigning OO-DTE types
to methods based on the inheritance, lexical name
scoping, and object naming hierarchies. These
techniques allow a few DTEL++ statements to
control thousands of objects and methods. OO-
DTE also provides mechanisms to automatically
distribute policy changes to large numbers of
clients and servers.

• Fine-grained Control - OO-DTE provides fine-
grained control over individual objects via named
type templates. Type templates allow distinct
combinations of OO-DTE types to be assigned to
individual objects or collections of objects whose
names share subtrees of the object name space.

• Role-based Access Control - OO-DTE provides
access control based on user roles. Roles,
implemented as OO-DTE domains, can be defined
in an application-specific manner via DTEL++. A
user’s authority to act in a role is currently
represented by the value of a field in the user’s
X.509 certificate.

• Compatibility with Commercial Products - OO-
DTE has been implemented as a plug-in module
for Iona Orbix and Inprise Visibroker, the market
leading ORBs.

• Transparency - The OO-DTE plug-in supports
security-unaware applications by automatically
invoking SSL authentication and access checks
without direct participation by application code.

We have compared OO-DTE to the access control
terminology and features of CORBASec and described
what we believe are important advantages of OO-DTE
over CORBASec’s Required Rights and standard rights
family. These advantages include the ability to 1)
address a wider range of real-world access control
requirements; 2) provide per-object access control
within a single Security Policy Domain; and 3) express
policies for derived classes in a more compact and
understandable manner.

We have also identified several areas where OO-DTE
could be improved or extended including adapting OO-
DTE for use with Java RMI. Improvements and
extensions of these kinds, combined with OO-DTE’s
designed-in scalability, should allow OO-DTE to
mature over time from a research technology to a
practical base of mechanisms suitable for commercial
products and large-scale distributed object systems.

Bibliography
[BADG] L. Badger, D. F. Sterne, D. L.

Sherman, K. M. Walker. “A Domain
and Type Enforcement UNIX
Prototype,” USENIX Computing
Systems Volume 9, Cambridge, MA,
1996.

[BALD] R. W. Baldwin, “Naming and
Grouping Privileges to Simplify
Security Management in Large
Databases”, Proceedings of the IEEE
Symposium on Security and Privacy,
page 116 (May 1990).

[BOEB] W. E. Boebert and R. Y. Kain, “A
Practical Alternative to Hierarchical
Integrity Policies,” Proceedings of
the 8th National Computer Security
Conference, pp. 18-27, Gaithersburg,
MD, September 1985.

[CORB] CORBA Services: Common Object
Services Specification, Chapter 15,
Security Service Specification,
November 1997 Object Management
Group, Inc.

[DENG] R. H. Deng, S. K. Bohnsle, W. Wang,
A. A. Lazar, “Integrating Security in
CORBA-Based Object
Architectures”, 1995 IEEE
Symposium on Security and Privacy,
page 50.

[DOWN] D. Downs, J. Rub, K. Kung, C.
Jordan, “Issues in Discretionary
Access Control”, 1985 IEEE
Proceedings of the Symposium on
Security and Privacy, page 208.

[HU] W. Hu, DCE Security Programming,
1995, O'Reilly & Associates, Inc.

[DIERK] T. Dierks, C. Allen, The TLS
Protocol Version 1.0, Internet
Engineering Task Force, RFC 2246,
January, 1999.

[KUHN] D. Kuhn, J. Barkley, A. Cincotta, D.
Ferraiolo, S. Gavrila, “Role-Based
Access Control for the World Wide
Web”, 20th National Information
Systems Security Conference, page
331.

[NICO] V. Nicomette and Y. Deswarte, “An
Authorization Scheme for Distributed
Object Systems”, 1997 IEEE
Symposium on Security and Privacy,
page 21.

[OSG] Orbix Security Guide, 1991, IONA
Technologies PLC.

[RMISEC] Java RMI Security Extension, Early
Look Draft, Sun Microsystems, Palo
Alto CA, 1999
http://java.sun.com/products/jdk/rmi/r
mi-security.pdf

[SALT] J. Saltzer and M. Schroeder, “The
Protection of Information in
Computer Systems”, IEEE
Proceedings, 63(9), March 1975.

[SHER] D. Sherman, D. Sterne, L. Badger, S.
Murphy, K. Walker, S. Haghighat,
“Controlling Network
Communication with Domain and
Type Enforcement”, 18th National
Information Systems Security
Conference, October 1995, page 211.

[TALL] G. Tally, D. F. Sterne, C. D.
McDonell, “Sigma Project: DTEL++
Language Specification”, Trusted
Information Systems, September
1998.

[THOM] D. Thomsen, R. C. O'Brien, J. Bogle.
"Role Based Access Control
Framework for Network Enterprises,"
Proceedings of the 14th Annual
Computer Security Applications
Conference, pp. 50-58, December
1998.

[WALK] K. W. Walker, D. F. Sterne, M. L.
Badger, M. J. Petkac, D. L. Sherman,
and K. A. Oostendorp. Confining
Root Programs with Domain and
Type Enforcement. Proceedings of
the 6th USENIX Security Symposium,
San Jose, CA, 1996.

