
USENIX Association

Proceedings of the
11th USENIX Security

Symposium

San Francisco, California, USA
August 5-9, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Flexible Containment Mechanism for Executing Untrusted Code

David S. Peterson, Matt Bishop, and Raju Pandey
Department of Computer Science
University of California, Davis�

peterson, bishop, pandey � @cs.ucdavis.edu

Abstract

A widely used technique for securing computer systems
is to execute programs inside protection domains that
enforce established security policies. These contain-
ers, often referred to as sandboxes, come in a variety
of forms. Although current sandboxing techniques have
individual strengths, they also have limitations that re-
duce the scope of their applicability. In this paper, we
give a detailed analysis of the options available to de-
signers of sandboxing mechanisms. As we discuss the
tradeoffs of various design choices, we present a sand-
boxing facility that combines the strengths of a wide va-
riety of design alternatives. Our design provides a set
of simple yet powerful primitives that serve as a flexible,
general-purpose framework for confining untrusted pro-
grams. As we present our work, we compare and con-
trast it with the work of others and give preliminary re-
sults.

1 Introduction

The standard UNIX security model provides a basic
level of protection against system penetration. However,
this model alone is insufficient for security-critical ap-
plications. The security of a standard UNIX system de-
pends on many assumptions. File permissions must be
set correctly on a number of programs and configura-
tion files. Network-oriented services must be configured
to deny access to sensitive resources. Furthermore, sys-
tem programs must not contain security holes. To main-
tain security, one must constantly monitor sites such as
CERT and SecurityFocus, install new patches, and hope
that holes are patched before an attacker discovers them.

This research is supported in part by NSF grants CCR-00-82677
and CCR-99-88349.

Since potentially vulnerable system programs often exe-
cute with root privileges, attacks against them often lead
to total system compromise. The typical UNIX system
is therefore characterized by many potential weaknesses
and is only as secure as its weakest point.

The limitations of the UNIX security model have created
much interest in alternate paradigms. This has drawn at-
tention to a wide variety of mechanisms. Examples are
capabilities[1], access control lists (ACLs), domain and
type enforcement (DTE)[2, 3], and sandboxing mecha-
nisms. Sandboxes are attractive because they provide a
centralized means of creating security policies tailored
to individual programs and confining the programs so
that the policies are enforced. They therefore provide
great potential for simplifying system administration,
preventing exploitation of security holes in system pro-
grams, and safely executing potentially malicious code.
Their value as security tools increases as computing en-
vironments become more network-centered and execu-
tion of downloaded code becomes more common.

A number of methods have been proposed for confining
untrusted programs. Although these techniques have in-
dividual strengths, they also have limitations that narrow
the scope of their applicability. In this paper, we sys-
tematically explore the range of options available to de-
signers of sandboxing mechanisms. As we discuss var-
ious design choices and their consequences, we present
a sandboxing facility that combines the advantages of
a number of alternatives. Our sandboxing mechanism
is implemented as a system call API that serves as a
general-purpose framework for confining untrusted pro-
grams. Our goal is to provide primitives that are sim-
ple yet powerful enough that system administrators, in-
dividual users, and application developers may use them
to specify and enforce security policies that are custom-
tailored to satisfy their diverse needs.

In the next section, we present the design of our sand-
boxing facility within the context of various design alter-
natives and the motivations behind them. Section 3 pro-

vides details of how privileges are represented in our de-
sign. In Section 4, we give preliminary performance re-
sults from a partially completed implementation within
the Linux kernel. Section 5 contains an overview of re-
lated works and how they differ from our design. Finally,
we present conclusions in Section 6.

2 Design Alternatives

The design of a sandboxing mechanism may be viewed
from a number of angles. We have identified the follow-
ing issues:

1. Sandboxes may grant or deny various privileges to
the programs that they contain. How are these priv-
ileges represented and organized?

2. Where are the mechanisms located that enforce
sandbox-imposed restrictions?

3. Are restrictions enforced by passive or active enti-
ties1?

4. Are sandboxes global entities that enforce sys-
temwide constraints or more localized entities that
confine individual programs or perhaps groups of
related programs? What criteria are used to group
programs into sandboxes?

5. Do sandboxes enforce mandatory or discretionary
access controls?

6. How are access privileges determined for inspec-
tion and manipulation of sandbox configurations?

7. Are sandboxes static or dynamic entities? In other
words, are their configurations fixed or subject to
change? If sandboxes are reconfigured in response
to changing security policies, how do the changes
propagate throughout a running system?

8. Are sandboxes generic entities for entire classes of
programs, or are they narrowly customized for spe-
cific programs?

9. Are sandboxes transient or persistent entities? Do
they function as lightweight, disposable containers,
or do they maintain relatively static long-term asso-
ciations with programs and other objects that they
may contain?

1Active entities are separate processes or threads that monitor the
activities of sandboxed programs. Passive entities are variables or data
structures maintained by the sandbox that are examined as part of the
privilege checking steps that occur when a program attempts some ac-
tion.

10. How do sandboxes interact with other security
mechanisms?

Before giving detailed consideration to each of these
questions, we first give a brief introduction to our sand-
boxing facility and a few of its properties. This will
clarify our subsequent discussion of the design space
and where our mechanism stands in relation to each of
the above issues. As the discussion progresses, we will
present additional aspects of our design and the motiva-
tions behind them.

We have developed a kernel-based mechanism that pro-
vides a general-purpose system call API for confining
untrusted programs. Processes may create their own
sandboxes, launch arbitrary programs inside them, and
dynamically reconfigure the sandboxes as programs ex-
ecute inside. Unprivileged processes may safely create
and configure sandboxes because our mechanism fol-
lows the principle of attenuation of privileges. Specif-
ically, a sandbox can never grant privileges to a program
beyond what the program would normally have if it were
not executing inside the sandbox. Consider the follow-
ing example of how our facility might typically be used:

1. A process creates a new sandbox by making an
sbxcreate() system call. The newly created
sandbox is assigned a numeric identifier that is con-
ceptually similar to a filename. The creator receives
a numeric handle that is essentially the same as a
file descriptor. Initially, only the creator can access
the sandbox.

2. The process configures the sandbox using addi-
tional system calls.

3. The process forks and the child inherits a copy of
the parent’s sandbox descriptor.

4. The child applies the sandbox to itself by making
an sbxapply() system call. This can be done in
one of two ways:

(a) No options are specified when calling
sbxapply(). On return, the sandbox is ap-
plied to the child. The apply operation auto-
matically closes any sandbox descriptors held
by the child. The child therefore gives up con-
trol of all sandboxes it formerly controlled, in-
cluding the one that now contains it.

(b) The ”apply on exec” option is passed to
sbxapply(). The child then performs an
execve() system call. If execve() suc-
ceeds, the sandbox is applied to the child and

all of its sandbox descriptors are closed. On
failure, the sandbox is not applied. Thus the
child retains any privileges necessary for error
handling.

5. The parent retains full control over the sandbox
and may reconfigure it while the child executes in-
side. The parent may also launch additional pro-
grams inside the sandbox. Alternately, it may close
its sandbox descriptor, giving up all access rights
and eliminating itself as a potential point of attack.
The sandbox is now unchangeable by any process,
even those with root privileges. Although the child
is trapped in the sandbox for the rest of its life-
time, outside processes can still suspend or termi-
nate it. Sandboxes only impose restrictions on the
processes they contain. They never place limits on
what outside processes can do relative to processes
executing within.

6. All of the child’s descendants inherit its sandbox.
A process may be sandboxed only by applying a
sandbox to itself or inheriting its parent’s sandbox.

7. There is no explicit destroy operation for sand-
boxes. The kernel manages their destruction
through reference counting.

Now that our sandboxing facility has been introduced,
we continue with a discussion of the design space that
individually addresses each of the previously mentioned
questions.

2.1 Representation and Organization of Privi-
leges

The question of how to represent and organize sandbox-
related privileges is open-ended. There are a multitude
of potential options, and any attempt to thoroughly dis-
cuss every possibility is almost certain to leave out many
alternatives. We therefore focus on two key issues: ex-
tensibility and expressiveness.

As computer systems evolve to serve new purposes, new
features are added to operating systems. A sandbox-
ing mechanism should therefore be easy to extend so
that it may enforce security policies governing access to
new types of system resources. With this requirement in
mind, we have divided system functionality into several
categories, each represented by a different component
type. As new features are added to operating systems,
our mechanism may be extended by creating additional
component types. To facilitate their development, we

have structured our implementation in a modular fash-
ion. Our current design specifies the following seven
types of components:

� Device component: Specifies access privileges for
devices according to device number.

� File system component: Specifies access privileges
for files according to directory path.

� IPC component: Specifies access privileges for IPC
objects such as semaphores, message queues, and
shared memory segments.

� Network component: Specifies ranges of IP ad-
dresses to which sandboxed processes may open
connections. Also specifies ranges of ports from
which incoming connections may be received.

� ptrace() component: Specifies which processes
a sandboxed process may ptrace().

� Signal component: Specifies processes to which a
sandboxed process may send signals.

� System management component: Specifies privi-
leges for administrative actions such as rebooting
and setting system date/time.

The creator of a sandbox specifies allowed privileges by
creating components and attaching them to the sandbox.
A component may be attached to several sandboxes si-
multaneously, but a given sandbox may be attached to
at most one component of each type at any given in-
stant2. The creator of a sandbox may change the set of
attached components or adjust their settings while pro-
cesses execute inside. When a component is first cre-
ated, it initially denies all privileges that it governs. The
creator must then specify explicitly which privileges are
allowed. If no component of a particular type is attached
to a given sandbox, then all privileges associated with
that component type are implicitly denied. Therefore,
existing programs that use our mechanism will deny ac-
cess to new areas of system functionality by default.
Since privileges are denied by default, our design ex-
hibits the principle of fail-safe defaults as described by
Saltzer and Schroeder[4].

To permit flexible specification of fine-grained security
policies, privileges must be specified in a highly expres-
sive manner. With this goal in mind, we divide privi-
leges into two categories: binary privileges and quan-
titative privileges. A binary privilege may be assigned

2Actually, a sandbox has two sets of attachment points for the var-
ious component types. The purpose of the second set of attachment
points will be described later.

one of two possible values: allow or deny. An exam-
ple is the ability to read the contents of /etc/passwd.
A quantitative privilege may be assigned numeric values
such as 50 or 100. For example, the total memory allo-
cated to a program might be restricted to a maximum of
4 megabytes.

Our current design only deals with binary privileges.
Quantitative privileges address issues regarding denial
of service. The addition of features that guard against
these types of attacks is an area of future work. We in-
tend to study solutions that others have developed[5, 6]
and incorporate them into our design.

The two possible values of a binary privilege may be
viewed as membership in or exclusion from a set of al-
lowed operations. This insight suggests the following
approach: Represent sets of privileges as first-class ob-
jects and provide primitives for manipulating them us-
ing set-theoretic transformations. Our components are
designed to behave in exactly this manner. Specifically,
given two components � and � of a given type, we pro-
vide the following operations:

� Create union: Create a new component � that rep-
resents the union of the privileges given by � and
� .

� Create intersection: Create a new component � that
represents the intersection of the privileges given
by � and � .

� Create complement: Create a new component �
that represents the complement of the privileges
given by � .

� Union with self: Modify � so that it represents the
union of � with its prior value.

� Intersect with self: Modify � so that it represents
the intersection of � with its prior value.

� Complement self: Modify � so that it represents the
complement of its prior value.

Our set-oriented approach to creating and manipulating
privileges associated with protection domains represents
a unique perspective. As an example application, con-
sider an employee Bob who initially works in the per-
sonnel department of some company and then transfers
to the finance department. Let � represent the privileges
that Bob’s sandbox initially allows. Let � represent
the privileges required for Bob’s personnel-related du-
ties and let � represent the privileges required for Bob’s

finance-related duties. The transition between depart-
ments may then be accomplished by manipulating Bob’s
sandbox as follows:

�
	������� �������

Suppose that Bob then starts working on a project that
requires collaboration with another employee George.
He therefore needs to access some of George’s files. Let�

represent George’s files and let
���

represent a sub-
set of George’s files that are confidential and should not
be shared with Bob. The necessary sharing may then be
allowed by making the following change to Bob’s sand-
box:

�
	������� � � ��� �

As our discussion continues, we will mention other ap-
plications that may benefit from a set-oriented view of
privileges. In general, the ability to manipulate compo-
nents using set operations has several advantages:

� Set operations are very expressive. They allow
components to be constructed that satisfy asser-
tions relative to each other given by arbitrary set-
theoretic expressions.

� Set theory is well-understood. Therefore, so are re-
lationships among components.

� Set operations provide a means of manipulating
privileges that is uniform across all component
types. This exemplifies the principle of economy of
mechanism presented by Saltzer and Schroeder[4]
and is likely to simplify programs that use our sand-
boxing API.

� Set operations provide a means of answering ques-
tions such as ”Which privileges are granted to user�

or user � but denied to user � ?” This informa-
tion may be useful if we wish to know how much
damage user � can inflict if he successfully bribes
users

�
and � . In general, a convenient means of

answering such questions allows one to easily un-
derstand implications of various sandbox configu-
rations.

� By clarifying relationships between sandbox-
associated privileges, set operations provide a
means of verifying that security policies are cor-
rectly enforced.

� Providing users with simple yet powerful mecha-
nisms often results in the development of new and
useful applications.

We therefore believe that the inclusion of set-oriented
primitives in our model is a prudent design decision.

2.2 Location of Enforcement Mechanisms

Sandboxing mechanisms may be implemented in any of
the following locations:

� runtime environment

� sandboxed program

� user space3

� OS kernel

We will now consider each of these alternatives, focus-
ing on their advantages and disadvantages.

2.2.1 Runtime Environment

In this arrangement, the sandboxed program executes
within a specialized runtime environment that provides
complete mediation between the program and underly-
ing system resources. The runtime system can therefore
prohibit actions that violate established security policies.
A well-known example of this type of sandbox is the
Java virtual machine[7]. This option is attractive be-
cause it allows security policies to be tailored to the run-
time environment. For example, an object-oriented sys-
tem could restrict access to individual method invoca-
tions. Furthermore, protection mechanisms may be very
fine-grained. Pointer use may be completely eliminated,
or pointer dereferences may be individually validated at
runtime. However, this approach is only applicable to
programs that execute within a particular runtime envi-
ronment. It is therefore not suitable as a general-purpose
mechanism.

2.2.2 Sandboxed Program

An alternate approach is to embed the sandboxing mech-
anism within the sandboxed program. Proof-carrying

3Here, we mean separate from the sandboxed program and any run-
time environment in which it may be executing.

code[8] is an example of this technique. In this scheme,
a binary executable contains a mathematically rigorous
proof that it satisfies a given security policy. Before the
program executes, a verifier checks the correctness of
the proof. If the proof is incorrect or does not satisfy
the security policy, then the program is denied the privi-
lege to execute. It is also possible to instrument a binary
executable with additional machine instructions that ver-
ify compliance with a security policy[9]. Both of these
types of sandboxes have the advantage of being able to
enforce fine-grained security policies at the level of indi-
vidual machine instructions. However, the need to mod-
ify binary executables makes these techniques inconve-
nient. Furthermore, they are not generally applicable to
all types of programs (such as shell scripts, for instance).
They are therefore not suitable as general-purpose mech-
anisms.

2.2.3 User Space

Another option is to implement sandboxes as separate
processes that execute in user space. This requires some
type of OS-provided mechanism that allows one pro-
cess to control the execution of another process. Several
mechanisms of this variety[10, 11, 12] use the /proc
process tracing facility of Solaris for system call inter-
ception. This type of design is advantageous because
it may be easily deployed in existing systems. Binary
executables do not require modification, and the mech-
anism may be applied to arbitrary types of programs
such as shell scripts. A disadvantage is that the Solaris
process tracing facility is not applicable to setuid pro-
grams. If setuid programs were traceable in this manner,
an unprivileged user could perform arbitrary operations
as root simply by tracing a setuid program and modify-
ing parameters to system calls as they are invoked. This
approach adds overhead, since it requires additional pro-
cesses for monitoring. Furthermore, monitoring requires
interprocess context switches, and the monitoring pro-
cess must typically fork() each time the sandboxed
process forks.

2.2.4 OS Kernel

The OS kernel is another potential place where sand-
boxing mechanisms may reside. This location allows
placement of privilege checking hooks and other func-
tionality at points deep within the kernel. It therefore
provides essentially unlimited options for restricting
access to system resources and fundamentally changing

how the system as a whole behaves. Furthermore, the
strict isolation of the kernel from user space entities is
likely to make kernel-resident sandboxing mechanisms
less vulnerable to attack. However, kernel modification
requires access to source code unless the sandboxing
mechanism is implemented as a loadable kernel module
(LKM). Another disadvantage is that kernel code is
difficult to write and debug, and must be fully trusted.
Bugs or design flaws may create systemwide vulnera-
bilities or cause system crashes.

We have chosen to implement our sandboxing mecha-
nism within the OS kernel. The kernel-resident status
of our implementation allows us to export a universally
accessible system call API that may be applied to
both privileged and unprivileged programs, regardless
of what language they were written in. Our system
call API is designed to be policy-neutral and highly
flexible. It provides a minimal set of primitives that are
designed to serve a wide variety of purposes. Thus,
application-dependent aspects of sandbox manipulation
are pushed into user space where they belong. The
general-purpose nature of our design mitigates the
disadvantages of kernel code being difficult to develop
and debug.

2.3 Passive vs. Active Monitoring

Sandbox-imposed restrictions may be enforced by pas-
sive data structures that are examined whenever a pro-
gram attempts to perform some operation. For exam-
ple, the kernel’s implementation of the open() sys-
tem call might be modified so that sandbox-related data
structures are consulted before open() is allowed to
proceed. We refer to this as passive monitoring. Al-
ternately, restrictions may be enforced by separate pro-
cesses or threads that monitor programs as they execute.
We refer to this as active monitoring. An advantage of
active monitoring is its flexibility. Monitoring processes
are not restricted to making policy decisions based on
relatively static data structures. Instead, they may im-
plement security policies defined by complex state ma-
chines. The disadvantage of active monitoring is the
high overhead it requires. Monitoring processes must
be created and individual privilege checks require in-
terprocess context switches. Furthermore, most designs
require the monitoring process to fork() each time a
sandboxed process forks.

To address this design issue, we have developed a novel
mechanism that allows monitoring to be purely passive,
purely active, or anywhere in between. Thus, programs

Process p
(controls Sandbox S)

d1 f1 ...
d2 f2 ...

D2

D1 F 1

Sandbox S

Process q

Figure 1: Blocking mechanism

may benefit from the best aspects of both alternatives.
We achieve these benefits through a mechanism that al-
lows privileges to be determined interactively at runtime.
Specifically, a sandbox may be configured so that at-
tempting certain actions will cause a sandboxed process
to block instead of being immediately denied the privi-
lege to perform the action. When a process blocks in this
manner, an event is generated and placed in the event
queue of the sandbox where the blocking occurred. A
process that has ownership over the sandbox uses the
sbxwait() system call to wait for and obtain events.
An event may be examined to determine which pro-
cess generated it and what action was attempted. The
sbxdecide() system call is then used to unblock the
process that triggered the event and decide whether to
allow the attempted action.

Our design permits application of the blocking mecha-
nism in a fine-grained manner. Figure 1 illustrates how
this works. Each sandbox has two sets of attachment
points for the various component types. Sandbox � has
device components "! and $# attached at points %&!
and %'# . File system component �(! is attached at point) ! . Process * controls sandbox � while + executes in-
side. When + attempts to access a device, the sandbox-
ing mechanism first examines "! . If ,! allows the re-
quired privilege then the operation will succeed4. Other-
wise, # is examined. If # allows the privilege, then +
blocks and * decides whether to allow the operation. If
 # denies the required privilege, then the operation will
fail. If + attempts to access some file, the sandboxing
mechanism examines component � ! . If � ! allows the
required privilege, then the operation is allowed. Other-
wise, the operation is immediately denied, since no com-

4This assumes that file permission bits and other applicable secu-
rity mechanisms also allow the operation.

CGI programCGI program

C1 C2

Alice’s login shell

downloaded game

web serverBob’s login shell

X

A (Alice’s sandbox) W (sandbox for web server)

G (global sandbox)

B (Bob’s sandbox)

Figure 2: Nested sandboxes

ponent is attached at point
) # .

A potential use of this feature is intrusion detection. For
example, a telnet daemon could place a user’s login shell
inside a sandbox and use the blocking feature to monitor
aberrant behavior. If such behavior is detected, the sys-
tem can make fine-grained adjustments to the set of ac-
tions that it monitors. In response to suspicious behavior,
the system may tighten sandbox-imposed constraints, or
perhaps perform other actions such as notifying a system
administrator.

2.4 Scope of Application: Global vs. Local

In principle, sandboxes may be used to confine individ-
ual users, groups of users, individual programs, or per-
haps groups of programs that cooperate to serve com-
mon purposes. One might even imagine a global sand-
box that enforces certain restrictions on all programs.
These alternatives raise the question of where sandboxes
should be deployed on the spectrum from global to lo-
cal. Also, what criteria should be used for grouping pro-
grams into sandboxes?

We believe that there is no single best answer to these
questions. Therefore our design allows system adminis-
trators, users, and application developers to create sand-
boxes that enforce security policies at any level of gran-
ularity. To permit simultaneous enforcement of access
controls at multiple levels, our design provides the abil-
ity to create hierarchically nested sandboxes, as shown
in Figure 2.

In this example, sandbox
�

is a global sandbox that con-
tains all processes.

�
enforces global policies such as

the restriction that no process should be able to mod-
ify system programs in locations such as /bin and
/usr/bin. At system startup time, /sbin/init cre-
ates

�
and applies

�
to itself before it forks any child

processes. To override the restrictions imposed by
�

, an
administrator with physical access to the system console
must reboot the system with a kernel in which sandbox-
ing functionality has been disabled.

At a more localized level, programs such as telnet dae-
mons, ftp daemons, and the standard login program may
be modified to place restrictions on individual users.
Sandboxes

�
and � restrict the login shells of users Al-

ice and Bob in this manner.

Users may selectively delegate their privileges by creat-
ing sandboxes for individual applications. For instance,
user Alice has downloaded a video game from an un-
trusted source. To protect against Trojan horses, she ex-
ecutes the program inside sandbox - .

Finally, an application program that is aware of the sand-
boxing mechanism may use it as a flexible means of
dropping privileges when performing sensitive opera-
tions. The web server executing in sandbox . uses our
mechanism in this manner by executing CGI programs
in sandboxes � ! and � # .
If the blocking mechanism is used in combination with
nested sandboxes, an attempted action by a sandboxed
process may cause it to block sequentially at multiple
levels. For instance, if the downloaded game in sandbox
- attempts to open some file, the privilege checking op-

eration performed at sandbox - may cause it to block. If
a process in sandbox

�
decides to allow the action, then

a privilege check will be performed at sandbox
�

. De-
pending on how

�
is configured, this may also cause the

process to block, providing an opportunity for a process
in sandbox

�
to allow or deny the action. The same be-

havior could also take place at sandbox
�

if it were con-
figured appropriately, although this would require some
process outside

�
to be responsible for monitoring

�
. In

practice, we believe that sandboxes will rarely be nested
at depths of more than three or four levels. Therefore the
overhead required to perform privilege checks at multi-
ple levels should be reasonably low.

2.5 Mandatory vs. Discretionary

Security policies may be enforced by either mandatory
or discretionary access controls. Mandatory access con-
trols are useful because they are based on systemwide
rules beyond the control of individual users. They there-
fore provide a high degree of assurance that systemwide
security policies are not violated. Discretionary access
controls are useful because they allow individual users
to define their own security policies. These two alterna-
tives raise the question of whether sandboxes should be
mandatory or discretionary in nature.

Our design provides both options. One means of provid-
ing mandatory access controls is to place /sbin/init
in a sandbox at system startup time. Additionally, sand-
boxes may enforce mandatory access controls at the
level of individual users. Since our mechanism follows
the principle of attenuation of privileges, unprivileged
users may employ it to create discretionary sandboxes.

As future work, we intend to add a mechanism that al-
lows transitions between sandboxes when certain pro-
grams are executed. This would make sandboxes more
similar to the domains provided by DTE[2, 3]. How-
ever, the use of components to define privileges granted
to domains is a different approach from using types. Us-
ing our mechanism, a core set of components may be
defined that serve the same purpose as types. Additional
types can be derived using set-theoretic transformations.
Permitting dynamic creation of types at runtime may
also be useful. For instance, executing a certain program
might cause creation of a new type that is a function of
the user’s previous type and possibly other variables.

2.6 Inspection and Manipulation of Sandboxes

An effective sandboxing mechanism must provide some
means of guarding access to sandbox-related objects. In
this discussion, the term object refers to a sandbox, com-
ponent, or pool5. If anyone may reconfigure a sandbox,
then the restrictions it imposes are easily circumvented.
Furthermore, one might create a sandbox that denies ac-
cess to some resource whose existence must remain hid-
den. Allowing anyone to examine a sandbox configura-
tion may therefore cause unacceptable leakage of infor-
mation.

The question of how access to sandboxes should be gov-
erned is open-ended and depends on the details of the
mechanism being considered. We have taken a conser-
vative approach in which access is strictly limited. A
descriptor with read privilege is required for examining
the configuration of an object. Likewise, a descriptor
with write privilege is required for calling sbxwait()
on a sandbox or modifying an object. Descriptors may
be obtained only as follows:

� The creator of an object receives a descriptor with
both read and write privileges for the new object.

� When a process forks, the child inherits all of
the parent’s descriptors along with their associated
privileges.

� If a process inside a sandbox creates an object, it
may specify that a link is created for the new object.
Other processes in the same sandbox may then use
the sbxopen() system call to open descriptors
for the new object. This is analogous to access-
ing files with the open() system call. Processes
inside a given sandbox may therefore have shared
access to child objects.

� There is only one circumstance in which processes
not within the immediate boundaries of a given
sandbox may open descriptors for its child objects.
When creating a component, a process may label
it as public. In this case, processes in descendant
sandboxes may open descriptors for the component
with read-only access.

Our design provides a system call for dropping read and
write privileges associated with descriptors. An object
that is linked may also be unlinked, or the read and write

5Pools are collections of sandboxes. They will be described in
more depth later.

privileges associated with the link may be dropped in-
dividually. Thus, access privileges may be irreversibly
dropped in order to eliminate potential points of attack.
We may eventually consider extending our model to al-
low more flexible specification of privileges. One possi-
bility is to define a new type of component that controls
access to the sandboxes and components themselves.
Although there is a certain elegance in this approach, it
creates additional complexity that may be undesirable.

2.7 Static vs. Dynamic

Security policy enforcement mechanisms may be static
or dynamic in nature. If the policy seldom changes, then
a static mechanism is best because it excludes the pos-
sibility of unauthorized tampering. However, a dynamic
mechanism may be preferable if the policy changes fre-
quently. Our mechanism provides both options. Sand-
boxes and components are dynamic by default, but drop-
ping write privileges causes them to become static.

When adjustments to security mechanisms are made,
they should ideally have an immediate effect on all rele-
vant aspects of system behavior. Our implementation of
nested sandboxes was designed with this consideration
in mind. Since privilege checks are done individually
at each level, reconfiguration of a sandbox immediately
effects all of its descendants.

File descriptors represent a similar area of concern. For
instance, suppose that a process opens some file and
its sandbox is then adjusted so that access to the file
is denied. Under our current implementation, the pro-
cess may continue to access the file through its previ-
ously opened file descriptor. Adding the ability to re-
voke privileges stored in file descriptors would be rel-
atively easy. This may be done by attaching sandbox-
related tags to file descriptors and performing additional
privilege checks during read() and write() system
calls. Although this option has little value for guarding
confidentiality, it may still be useful as a damage control
mechanism for protecting data integrity. We may there-
fore eventually implement this feature.

2.8 Generic vs. Specific

When specifying privileges for sandboxed programs,
two alternative strategies are possible. One option is
to grant privileges that are custom-tailored to individual
programs. This approach is advantageous because it fol-
lows the principle of least privilege. Since each program

is only allowed to perform actions that are necessary
for proper functioning, the potential for abuse of priv-
ileges decreases. However, creating specialized policies
for many applications is labor-intensive. It is also error-
prone, since required privileges may be hard to predict in
advance. Applications may therefore fail unexpectedly
if their sandboxes constrain them too tightly.

To address these problems, one may create generic
protection domains for groups of programs with sim-
ilar behavior. A sandboxing mechanism known as
MAPbox[11] employs this technique. Although this ap-
proach may simplify sandbox construction, appropriate
behavior classes may be difficult to create. If privileges
are defined too conservatively, then the scope of applica-
bility of each behavior class becomes unacceptably nar-
row. However, loosely specified behavior classes stray
from the principle of least privilege. Some application-
specific differences among programs within a behavior
class may be handled by a technique that MAPbox refers
to as parameterization. For instance, a group of network-
oriented services may function in a similar manner but
differ in the ports from which they receive incoming con-
nections. In this case, their behavior class may take a
port number as a parameter.

Using our facility, behavior classes could potentially be
represented as groups of components. Set operations
could then be employed to create customized versions
for individual programs in a manner somewhat similar
to parameterization.

Alternately, our blocking mechanism may be used to
create custom-tailored sandboxes for individual applica-
tions. For example, consider the following sequence of
events:

1. A user executes a program inside a sandbox. The
user has no way of knowing ahead of time what
privileges it will require. Therefore the sandbox is
made initially very restrictive.

2. When the program attempts to perform a denied ac-
tion, it blocks and the user learns exactly what hap-
pened. The user can then decide to allow or deny
the action. To allow all future operations of this
type, the user may adjust the appropriate compo-
nent.

3. When the sandboxed program terminates, the user
may save the final sandbox configuration to be
reused when executing the program in the future.

This technique makes sandbox construction less labor-

intensive, since privileges may be granted interactively.
Attempted actions that might otherwise cause a sand-
boxed program to fail may therefore be allowed at the
time they are attempted. This eliminates the need to ex-
ecute the program multiple times, making incremental
changes to its sandbox after each execution. Further-
more, programs may be constrained very tightly with-
out adverse consequences. Additional privileges may be
granted at runtime as they are needed.

2.9 Transient vs. Persistent

Sandboxes may be implemented as lightweight, dispos-
able containers or as persistent entities that maintain
relatively static, long-term associations with files that
they contain. Our current design only provides transient
sandboxes. We chose this option because they require
substantially less implementation effort than persistent
sandboxes. However, if time permits, we may eventu-
ally extend our facility to provide both options.

WindowBox[13], a sandboxing system implemented
within the Windows NT kernel, is a design in which
sandboxes are persistent entities. It consists of a set of
desktops that are completely separate from each other
and from the rest of the system. Users may give some
desktops more privileges than others. They may also
place individual programs and other files within a given
desktop. The association between a file and its desk-
top persists until the user either deletes the file or moves
it to a different desktop. This feature is useful because
a given program is automatically confined to its desk-
top whenever the user executes it. Therefore, the se-
curity policy associated with the desktop is consistently
enforced. Associations between files and their desktops
also provide an alternate means of defining privileges.
Specifically, access may be granted because a file resides
in the same desktop as the program attempting to open
it.

A potential advantage of defining sandboxes as transient
entities is that they may be efficiently discarded when no
longer needed. Our design provides a feature that elim-
inates unnecessary overhead for creating and destroying
sandboxes. With this option, a server may create pools
of sandboxes for different types of client connections.
The server does the following for each client connection:

1. The server forks a child process. The child inher-
its the parent’s descriptors for the various sandbox
pools that the server created.

2. The child makes an sbxapply() system call,
passing in a descriptor for the appropriate pool. If
the pool is not empty, this causes a sandbox to be
removed from the pool. Otherwise, a new sandbox
is created and associated with the pool. The newly
obtained sandbox is applied to the child, which then
handles the client request.

3. When the child dies, the reference count on its
sandbox drops to zero. Instead of being destroyed,
the sandbox is returned to the pool for later reuse.

Creation of a sandbox pool requires specification of a
maximum capacity. If the pool becomes full, additional
sandboxes will be destroyed instead of being returned to
it. A pool’s creator may adjust its capacity value, find
out how many sandboxes the pool contains at a given
instant, or make adjustments to the current number of
sandboxes in the pool.

2.10 Interaction with Other Security Mecha-
nisms

Our facility is designed to be implemented within exist-
ing systems. It must therefore peacefully coexist with
other security mechanisms. This consideration may be
viewed from the following two perspectives:

1. Can other mechanisms override the denial of a priv-
ilege by a sandbox?

2. If a sandbox grants a given privilege, can other
mechanisms override this decision?

The answer to the first question is ”no.” In particu-
lar, root has no special privileges that allow sandbox-
imposed constraints to be bypassed. This property en-
hances the security of our mechanism. It also permits
construction of sandboxes that confine root programs to
a subset of the privileges that they normally have. The
answer to the second question is ”yes.” This property al-
lows sandboxes to coexist with other mechanisms with-
out compromising their effectiveness.

3 Specification of Privileges

We now present the details of how privileges are repre-
sented in our design. Although the various component

Before:

After:

3

3

include (8, 12)

7 10 15

15

Figure 3: Include operation

types have individual differences, several common ele-
ments are shared among them. One shared feature is
support for the set operations of intersection, union, and
complement. Additionally, the components employ the
following two common mechanisms:

� Interval lists allow specification of intervals of val-
ues over a fixed range. For instance, we could use
an interval list to represent all integers between 10
and 100, the value 250, and all integers between
400 and 500. The components use this data struc-
ture in several places.

� Sandbox sets specify privileges that allow sand-
boxed processes to perform actions relative to other
processes. The ability to send signals is an example
of this type of privilege.

These two shared building blocks simplify the imple-
mentation of the components that use them. They
also facilitate the construction of new component types.
Next, we give a more detailed presentation of their de-
sign. This is followed by descriptions of how the indi-
vidual component types are constructed.

3.1 Interval Lists

Interval lists provide a convenient way of specifying and
manipulating sets of unsigned integers. They support the
following operations:

� Include: Figure 3 illustrates the include operation.
In this example, an interval list initially specifies
the intervals

� �/&0213�2046547&085:9;�2� . The interval =<&0>54?@�
is then included. This produces the interval list

Before:

After:

exclude (6, 12)

5

5

7 9 11 15

13 15

Figure 4: Exclude operation

� =/&0>549@�A� . Notice that this result is obtained rather
than

� �/&0213�204=<B08549@�A� or
� =/B0A13�C0>�<&085:?;�C0>6547&0>549;�2� .

Interval lists always merge intervals together so that
no two intervals are overlapping or immediately ad-
jacent to each other. This yields the simplest possi-
ble representation.

� Exclude: Figure 4 illustrates the exclude opera-
tion. In this example, we start with the interval
list

� �9&0A13�C0>�D&0ED'�20465;5@085:9;�A� . The interval �F&085:?;�
is then excluded. This produces the interval list� �9G0A9;�C0>654/&0>549;�2� .

� Intersection: This operation takes two interval lists
as operands and produces a new interval list repre-
senting the intersection of the sets of integers they
specify. The intervals contained in the result are all
nonoverlapping and separated by at least one inte-
ger value.

� Union: This operation is similar to intersection, ex-
cept that the union is computed.

� Complement: This operation takes an inter-
val list and produces its complement. For
instance, the complement of

� �9G0>5>7'�A� is� =7&0EH'�C0>65@5;0UINT MAX �2� .
� Query point: This operation takes an integer as a

parameter and returns a Boolean value indicating
whether any interval in the list contains it.

We will also provide a mechanism for iterating through
an interval list and examining its contents, although this
has not yet been implemented.

S2

S1 S9

S3

S5 S6 S7

S10

S8

C3

p

S S6 7

S9

S9S3

C2

1C

S4

X

Y

Z

Figure 5: Behavior of sandbox sets

3.2 Sandbox Sets

Some privileges govern what a process may do relative
to other processes. For example, we may wish to allow a
sandboxed process to send signals to some processes but
not others. One way of accomplishing this is to specify
privileges individually for every existing process. How-
ever, this is clearly not practical. Therefore processes
must be grouped together in some manner. Our design
employs sandboxes as the basic unit of organization for
assigning privileges relative to processes. For example,
signal components specify sets of sandboxes containing
processes that may be signaled. We chose sandboxes as
the unit of grouping because this is the simplest option.
Introducing some other abstraction would create addi-
tional complexity without any clear benefits.

Figure 5 illustrates how sandbox sets operate. Signal
components � ! , � # , and �JI are attached to sandboxes
� ! , � # , and ��K respectively. � ! allows � ! to signal pro-
cesses in ��L , � # allows � # to signal processes in ��I and
�ML , and �JI allows �MK to signal processes in ��N and �MO .
Process * created and initialized � ! , �ML , and � ! . The
following rules govern the behavior of components im-
plemented using sandbox sets:

� A process in a given sandbox is always allowed to
access other processes in its own sandbox or any
descendant sandboxes. For example, a process in
�M# may signal any process in ��# , � K , � N , or � O re-
gardless of how �P# is configured.

� If a component grants access to a given sandbox,
then access is also granted to all of the sandbox’s

descendants. For instance, processes in �Q! can sig-
nal processes in � !6R since � ! grants access to ��L
and � !6R is a descendant of ��L . The motivation for
this behavior may be understood by considering the
viewpoint of process * . Clearly, * is aware of the
existence of ��L . However, * can not in general be
expected to keep track of actions, such as creating
child sandboxes, that may be performed by pro-
cesses in � L . All * cares about is that processes in
�S! are granted access to all processes that � L gov-
erns. Thus this rule allows processes to manipulate
components without needing to be aware of details
that are outside their scope of concern.

� A process in a given sandbox may delegate to child
sandboxes any access rights to other sandboxes that
it possesses. For example, � ! has adjusted � # so
that its privilege for signaling processes in �SL is
passed down to � # . Similarly, � # may adjust �JI
so that processes in ��K can signal processes in ��L .
However, �M# may not adjust � I so that processes in
� K are granted access to �T! , �M# , or �VU . This is be-
cause ��# does not have access to �T! , �M# , or �VU . In
general, any sandboxes in shaded area - could po-
tentially appear in �W! . However, �X! can not specify
�S!6R directly because �T!6R is outside �X! ’s scope of
concern. Likewise, any sandboxes in shaded areas
- or Y but not Z could potentially appear in �P# .

� All processes that are not in any sandbox are
grouped together as if they are all inside a common
sandbox that imposes no restrictions. This can be
thought of as the ”null sandbox”, and may be spec-
ified in a sandbox set just like any other sandbox.

� It is possible to compute the complement of a sand-

box set. For instance, the complement of the set
given by � I would be a set that grants access to
all sandboxes (including the null sandbox) except
�MN and ��O . Likewise, intersections and unions of
sandbox sets may be computed.

Sandbox sets are implemented internally using a global
matrix. Columns represent sandboxes and rows repre-
sent components that are implemented as sandbox sets.
Adjusting a component � so that it grants access to a
sandbox � is accomplished by adding an entry to the ma-
trix at position ��[0A�(� . When a component is destroyed,
its corresponding row is removed from the matrix. Like-
wise, destruction of a sandbox results in the removal of
its associated column. This ensures that components do
not refer to sandboxes that no longer exist.

3.3 Signal, ptrace(), and IPC Components

Signal components specify processes to which a sand-
boxed process may send signals. Likewise, ptrace()
components specify which processes a sandboxed pro-
cess may ptrace(). Both of these component types
are implemented as sandbox sets. IPC components spec-
ify which IPC objects6 a sandboxed process may access.
If a process executing in sandbox � creates an IPC ob-
ject - , then � is viewed as owning - . Suppose that
� has a parent sandbox \ , and � is subsequently de-
stroyed while - still exists. In this case, ownership of
- is transferred to \ . If � has no parent, then own-
ership of - is transferred to the null sandbox when �
is destroyed. Given this notion of ownership, sandbox
sets may be used to implement IPC components. For in-
stance, suppose that the components shown in Figure 5
are IPC components. Then �W! allows processes in �Q! to
access IPC objects owned by � L or �S!6R , since �T!]R is a
descendant of � L .

3.4 File System Component

File system components specify file-related privileges.
They are represented as trees of directory paths with la-
bels that specify privileges at each node. The following
types of privileges are defined:

�_^ : For a normal file, this privilege allows the file to
be opened for reading. For a directory, it allows the
directory contents to be listed.

6semaphores, message queues, and shared memory segments

n1

n2 n3

n6n5n4

...

T

S

U

......
Figure 6: Directory subtree

�_` : For a normal file, this privilege allows the file to
be opened for writing. For a directory, it allows files
in the directory to be created, unlinked, or renamed.

� � : For a normal file, this privilege allows the file to
be executed. For a directory, this privilege has no
meaning.

� * : For both normal files and directories, this
privilege allows permission-related settings to be
changed. Specifically, it allows use of chmod(),
chown(), and chgrp().

�_a : For both normal files and directories, this privi-
lege allows changing access and modification times
using utime().

�cb : For a directory, this privilege allows opening
files in the directory, accessing subdirectories, and
moving into the directory using chdir(). For a
normal file, this privilege has no meaning.

For each of these privileges, a set of three labels is at-
tached to each node. Figure 6 illustrates the meanings
of the labels. Set � consists of the entire subtree rooted
at directory dQ! . Set \ consists of dQ! and all of its chil-
dren. Set e consists only of dQ! . Given these definitions,
the three labels attached to dQ! for a given privilege are
defined as follows:

� self: This label represents set e (consisting of only
dT!).

� children: This label represents the set of nodes de-
fined by \gf_e (dS# and d I in the figure).

� grandchild subtrees: This label represents the set
of nodes defined by �_fh\ (d U , d�K , d�N , and all of
their descendants).

Each label may be assigned one of three values: allow,
deny, or unspecified. Labels are ordered according to
two simple precedence rules. Labels with higher prece-
dence override the settings of labels with lower prece-
dence. The rules are as follows:

� A label at a node has higher precedence than labels
at any of its ancestors.

� There is no ordering among the three labels at a
node. This is because the labels represent disjoint
sets of nodes.

A label of unspecified on a node imposes no particular
setting on it or its descendants. Settings are instead de-
termined by labels of higher precedence. A file system
component consisting of an empty tree denies all file-
related privileges.

Figure 7 illustrates a file system component. It shows
labels only for the ` privilege. Labels for the other five
privileges have been omitted for simplicity. Given the
above rules, this file system component is interpreted as
follows:

� Write access to the root directory is allowed, since
its self label has a value of allow.

� Write access is denied for all files in the root direc-
tory except /a. Since the children label of the root
directory is unspecified, it takes on the default value
of deny that denies all file-related privileges for an
empty tree.

� Write access is also denied to /a. Since its self
label and the root directory’s children label are both
unspecified, it takes on the default value of deny
that denies all file-related privileges for an empty
tree.

� For all files in /a except /a/b, write access is de-
nied. This is due to the setting of the children label
for /a.

� Write access is allowed for the file /a/b, since its
self label has a value of allow.

= deny

= allow

= unspecifiedu

a

b

/

u

self

children

children

grandchild subtrees

grandchild subtrees

children

u

u

u

grandchild subtreesu

self

self

Figure 7: File system component

� Write access is allowed for all descendants of
/a/b. This is because the grandchild subtrees la-
bel of the root directory is not overridden by any la-
bels with higher precedence that affect descendants
of /a/b.

Before file-related privilege checks are performed,
names of files are converted to absolute pathnames that
contain no symbolic links. Therefore symbolic links do
not affect the behavior of file system components. How-
ever, the file system component must do extra privilege
checking when a sandboxed process attempts to create
a hard link. Before allowing this type of operation to
proceed, the file system component computes the file-
related privileges that the link would have if it existed.
If these privileges exceed the privileges of the pathname
being linked to, then the operation is denied. This pre-
vents a sandboxed process from gaining unauthorized
access to files simply by creating links to them in direc-
tories with more permissive settings. It can be shown
that the set of all possible file system components is
closed under the operations of union, intersection, and
complement. However, we omit the proof for the sake
of brevity.

3.5 Network Component

A network component consists of two interval lists that
specify IP addresses that sandboxed processes may open
connections to and ports that sandboxed processes may
receive incoming connections from.

fork() execve() exit() wait()
total latency (i sec.) 169 375 145 —
overhead (i sec.) 6.8 1.2 5.9 11.2
overhead (% of total) 4.0 0.3 4.1 —

Table 1: Performance impact of sandboxing mechanism

3.6 Device Component

A device component consists of three interval lists that
specify read(), write(), and ioctl() privileges
for various device numbers.

3.7 System Management Component

In its current implementation, the system management
component is simply a set of Boolean flags that govern
administrative actions such as rebooting and setting sys-
tem date/time. The set of operations currently governed
by this component type is not comprehensive, and will
eventually be extended.

4 Performance

In order to be practical, a security mechanism must not
require an unreasonable amount of performance over-
head. To demonstrate the feasibility of our design, we
have therefore performed several microbenchmarks.

Our implementation involves modifying fork(), ex-
ecve(), exit(), and wait(). We have therefore
measured the amount of overhead that our mechanism
adds to each of these system calls. All experiments were
performed on a uniprocessor 266 MHz Pentium II PC
with 96 Mb of memory. The Linux kernel we used is an
SMP build of version 2.4.1. Each value in Table 1 rep-
resents the mean value from 10000 separate system call
invocations. As shown, our modifications typically add
several microseconds to each call.

During a fork(), sandbox-related state information
must be copied from the parent process to the child.
On execve(), a check is performed to see if a sand-
box must be applied due to a previous invocation of
sbxapply() with the ”apply on exec” option speci-
fied. The values in Table 1 reflect the typical case in
which no sandbox is applied. We measured separately

the latency of an sbxapply() system call (without
”apply on exec” specified) and found that value to be
56 microseconds.

During an exit() system call, our implementation
closes any open descriptors for sandboxes and compo-
nents. It then releases the reference to any sandbox
the process may be executing within and does a partial
cleanup of the sandbox if the reference count drops to
0. Additional cleanup of sandbox-related state is per-
formed during wait()when the zombie process is col-
lected. At this time, the expired sandbox is queued so
that a kernel thread may perform the final cleanup. The
values for exit() and wait() in Table 1 represent
the case in which this cleanup activity occurs for a sin-
gle expired sandbox. The purpose of the kernel thread
is to remove the sandbox from the global matrix de-
scribed in Section 3.2 and free the memory that it oc-
cupies. The thread is awakened periodically when the
number of expired objects on its queue reaches a certain
threshold. It then deletes all of them in a single oper-
ation. We measured the time required to delete 1024
expired sandboxes, and found that this operation takes
2829 microseconds (2.8 i sec. per sandbox). This repre-
sents the mean for 10 separate invocations of the kernel
thread. Adding the per-sandbox value to the overhead
values in Table 1 for exit() and wait() provides a
rough idea of the total overhead required for destroying
a sandbox.

Additionally, we measured the latency of the kill()
system call when executed by a sandboxed process. The
results are shown in Figure 8. For this experiment, we
configured the sandbox of the sending process * so that
its sandbox allows sending signals to the receiving pro-
cess + , which has been placed within a separate sandbox.
The values represent latencies when * is placed in sand-
boxes nested at various depths. For instance, the value
3 on the horizontal axis represents the case in which
the sandbox enclosing * has a parent and a grandpar-
ent. Therefore, privilege checks occur at three separate
levels. The value 0 on the horizontal axis indicates the
case in which * is not inside a sandbox and therefore
no privilege checks occur. As the graph shows, a single
privilege check incurs approximately 5 microseconds of
overhead. When sandboxes are nested, additional privi-

k
i
l
l
(
)

se
c.

)
µ

La
te

nc
y

(

0 1 2 3 4 5 6 7 8

16

14

12

10

8

6

4

2

0

Sandbox Nest Depth

Figure 8: Latency of kill() executed by sandboxed process

lege checks incur approximately 1 microsecond each.

5 Related Work

Access control lists (ACLs) are a commonly used mech-
anism for enhancing system security. They associate
detailed access rights with objects such as files. The
main difference between sandboxes and ACLs is that
they take opposite points of view. ACLs associate priv-
ileges with objects while sandboxes associate privileges
with subjects. The centralized location of the controls on
sandboxes makes the correctness of their settings easy to
verify. Sandboxes impose strict upper bounds on privi-
leges without depending on assumptions such as settings
of file permissions throughout the system. They permit
easy creation of customized protection domains without
having to change settings on a wide variety of system ob-
jects. However, our sandboxing mechanism is designed
to complement alternatives such as ACLs rather than re-
placing them. Sandboxes may be used in combination
with other mechanisms to implement policies not easily
enforceable using any single mechanism by itself.

Capabilities[1] are another alternative to sandboxes. A
capability has two primary characteristics:

� A subject that holds a capability is granted access
to the privilege it specifies.

� A subject that lacks a capability is denied access to
the privilege it specifies.

A sandbox exhibits the second property but not the first
one. This aspect of sandboxes allows their controls to be
safely manipulated by untrusted users. The centralized
location of the controls on a sandbox makes sandbox-
granted privileges easy to track and revoke. In contrast,
complete revocation of a capability � held by process
� requires revocation from both � and all processes to
which � has been delegated by � . The ability to create
nested sandboxes provides a mechanism for delegation
of privileges in a manner somewhat similar to delega-
tion of capabilities. Opening files represents an inter-
esting area of interaction between sandboxes and capa-
bilities, since a file descriptor may be viewed as a ca-
pability for accessing a file. In our current design, a
sandbox cannot revoke a previously granted file access

privilege once the sandboxed process has obtained a file
descriptor. However, this limitation may be removed
by attaching sandbox-related tags to file descriptors and
performing additional privilege checks during read()
and write() system calls. Although this requires ex-
tra overhead, the creator of a sandbox could be given the
option of disabling the feature to increase performance.

Domain and type enforcement (DTE)[2, 3] is a useful
tool for implementing mandatory access controls. This
technique groups subjects into domains and objects into
types. Rules are provided that specify which domains
are granted access to which types. In addition, the sys-
tem may be configured so that execution of certain pro-
grams causes transitions between domains. A major dif-
ference between DTE and our sandboxing mechanism
is that DTE is geared toward implementing systemwide
mandatory access controls. A trusted security adminis-
trator defines the domains and types, along with the rules
governing their interactions. In contrast, sandboxes are
lightweight entities that may be created, configured, and
destroyed by untrusted users. Our implementation al-
lows them to enforce either mandatory or discretionary
access controls. We plan on extending their functionality
by allowing transitions between sandboxes when certain
programs are executed.

A variety of sandboxing techniques have been previ-
ously implemented. One approach is to build protec-
tion mechanisms into programming languages such as
Java[7]. Since this option ties the sandbox to a particu-
lar language or runtime environment, it is not suitable as
a general-purpose mechanism. However, it is still useful
as a special-purpose technique, since security policies
may be tailored to the language or runtime environment.

Alternately, the sandbox may be embedded within the
sandboxed program. Proof-carrying code[8] is one ex-
ample of this type of approach. Another option is to
instrument an existing binary with additional machine
instructions that verify compliance with a security pol-
icy as a program executes[9]. However, these alterna-
tives are inconvenient because they require modification
of binaries. Furthermore, they are not useful as general-
purpose techniques since they do not apply to all types
of programs (such as shell scripts, for instance).

A sandboxing system known as Janus[10], along with
two similar mechanisms[11, 12], employs user-space
monitoring processes for interception of system calls
made by sandboxed programs. The monitoring pro-
cesses use the /proc process tracing facility of Solaris
for system call interception. This approach limits the
scope of applicability of these techniques, since it may

not be used with setuid programs. It also has substan-
tial overhead because the monitoring agent is a separate
process and interprocess context switches are therefore
required for monitoring. Furthermore, the monitoring
process must fork() each time the sandboxed process
forks. The fact that the monitoring agent runs in user
space may also create vulnerabilities.

To overcome the limitations of user-space mechanisms,
sandboxes may be implemented as loadable kernel
modules[14, 15]. Placing sandboxes inside the kernel
may enhance their security by providing increased iso-
lation from potentially malicious entities. Since kernel-
based sandboxes may be implemented as passive enti-
ties, context switching overhead is not required for priv-
ilege checking. A disadvantage of this approach is that
creating a new sandbox requires loading a kernel mod-
ule. The module must be fully trusted, and a trusted user
must perform the module loading operation.

A design known as ChakraVyuha (CV)[16] implements
a kernel-based sandboxing mechanism. In this system,
sandboxes for individual applications are defined using
a domain-specific language. Sandbox definitions are
stored in a secure location somewhere in the file system.
When a given program is executed, its sandbox defini-
tion is passed to a kernel-resident enforcer. This entity
enforces restrictions by matching system call parameters
against the sandbox definition. Therefore, problems as-
sociated with implementing sandboxes as loadable ker-
nel modules are avoided.

One difference between ChakraVyuha and our design is
the level at which its external interfaces are specified.
To confine a program with ChakraVyuha, it must first be
installed using a specialized installer program. The in-
staller generates a configuration file that specifies a de-
fault sandbox for the new program. If users wish to cre-
ate customized sandboxes, they must do so using config-
uration files that follow a specific format. Our external
interface is at a much lower level. We export a general-
purpose system call API that application programs may
use for their own purposes. This approach widens the
scope of applicability of our design.

A second advantage of our model is the ability to
dynamically reconfigure sandboxes at runtime. With
ChakraVyuha, users may customize sandboxes, but the
sandboxes are fixed once the sandboxed programs start
executing. Other advantages of our model include nested
sandboxes and our treatment of privilege sets as first
class objects that may be manipulated using set-theoretic
primitives.

Another solution, known as WindowBox[13], imple-
ments a sandboxing mechanism within the Windows NT
kernel. The emphasis here is on providing an easy to
use mechanism that is simple enough for unsophisticated
users. The design consists of a set of desktops that are
completely separated from each other and from the rest
of the system. Users can give some desktops more priv-
ileges than others. As a user’s level of trust increases,
a program may be gradually moved to more privileged
desktops. However, the desktops are relatively static en-
tities. They are not designed to function as lightweight
containers for individual programs.

Finally, a sandboxing mechanism somewhat similar
to ours has been added to the ULTRIX operating
system[17]. This mechanism, known as TRON, is simi-
lar to our design in some ways but more limited in scope,
since it only deals with file-related privileges. Like our
sandboxing mechanism, TRON allows creation of sand-
boxes by untrusted users. However, it does not provide
a blocking mechanism for interactive privilege determi-
nation at runtime.

TRON does allow nesting of sandboxes, although this
feature behaves differently from our design. When sand-
boxes are nested, our mechanism performs privilege
checks at each level individually. However, TRON ver-
ifies at creation time that a nested sandbox contains a
subset of its parent’s privileges. It then checks privileges
against only the innermost sandbox. Although TRON’s
approach reduces performance overhead, we chose our
method for two reasons. First of all, our design allows
changes in a sandbox configuration to affect all sand-
boxes nested below it. This behavior is necessary for
interactive manipulation of sandboxes to function prop-
erly when sandboxes are nested. Secondly, our design
allows a sandboxed process to create a nested sandbox
without any awareness of how its own sandbox is config-
ured. The child sandbox is not cluttered with restrictions
imposed by its parent and therefore maintains a precise
representation of the policies its creator wishes to en-
force. Furthermore, restrictions imposed by the parent
sandbox may be kept secret from its inhabitants.

The method that TRON employs for specifying access
controls is less expressive than our file system compo-
nent. When privileges are assigned to a directory, they
automatically extend to all files it contains. It is not
possible to grant privileges only for the directory with-
out extending them to all of its files. However, a sub-
tree option does exist that is equivalent to the union of
self, children, and grandchild subtrees in our file sys-
tem component. One feature that TRON omits is the
ability to specifically deny access to files. It is therefore

not powerful enough to support composition of privilege
sets through union, intersection, and complement opera-
tions.

6 Conclusions

In summary, we have presented a general-purpose sys-
tem call API for confinement of untrusted programs. We
have described our design within the context of a sys-
tematic exploration of the design space for confinement
mechanisms. Our approach is distinguished by its flex-
ibility and provision of a relatively simple set of primi-
tives that permit a wide scope of applicability. Prelimi-
nary performance results are encouraging, although we
still need to perform more extensive testing.

Availability

At the time of this writing, we are still finish-
ing the implementation of the sandboxing API. The
latest version of the code may be obtained from
http://seclab.cs.ucdavis.edu/projects/sandbox.html. As
our work progresses, we will make updates available at
this location.

References

[1] Dennis, J., and VanHorn, E. Programming seman-
tics for multiprogrammed computations. Commu-
nications of the ACM, 9:143–155, Mar. 1966.

[2] Walker, K., Sterne, D., Badger, L., Petkac,
M., Shermann, D., and Oostendorp, K. Confining
root programs with domain and type enforcement
(DTE). In Proceedings of the Sixth USENIX Secu-
rity Symposium, Jul. 1996.

[3] Security-enhanced linux .
http://www.nsa.gov/selinux/.

[4] Saltzer, J., and Schroeder, M. The protection of
information in computer systems. Proceedings of
the IEEE, 63(9):1278–1308, Sep. 1975.

[5] Chang, F., Itzkovitz, A., and Karamcheti, V. User-
level resource-constrained sandboxing. In Pro-
ceedings of the 4th USENIX Windows Systems
Symposium, Aug. 2000.

[6] Lal, M., and Pandey, R. A scheduling scheme for
controlling allocation of cpu resources for mobile
programs. Autonomous Agents and Multi-Agent
Systems, 5(1):7–43, Mar. 2002.

[7] Gong, L., Mueller, M., Prafullchandra, H., and
Schemers, R. Going beyond the sandbox: An
overview of the new security architecture in the
java development kit 1.2. In Proceedings of the
USENIX Symposium on Internet Technologies and
Systems, Dec. 1997.

[8] Necula, G., and Lee, P. Safe kernel extensions
without run-time checking. In Proceedings of the
USENIX 2nd Symposium on Operating Systems
Design and Implementation, Oct. 1996.

[9] Small, C. A tool for constructing safe extensible
C++ systems. In Proceedings of the Third USENIX
Conference on Object-Oriented Technologies and
Systems, Jun. 1997.

[10] Goldberg, I., Wagner, D., Thomas, R., and Brewer,
E. A secure environment for untrusted helper ap-
plications (confining the wily hacker). In Proceed-
ings of the Sixth USENIX Security Symposium, Jul.
1996.

[11] Acharya, A., and Raje, M. MAPbox: Using param-
eterized behavior classes to confine applications.
In Proceedings of the 9th USENIX Security Sym-
posium, Aug. 2000.

[12] Alexandrov, A., Kmiec, P., and Schauser,
K. Consh: Confined execution en-
vironment for internet computations.
http://www.cs.ucsb.edu/˜berto/papers/99-usenix-
consh.ps.

[13] Balfanz, D., and Simon, D. WindowBox: A sim-
ple security model for the connected desktop. In
Proceedings of the 4th USENIX Windows Systems
Symposium, Aug. 2000.

[14] Fraser, T., Badger, L., and Feldman, M. Hardening
COTS software with generic software wrappers. In
Proceedings of the 1999 IEEE Symposium on Secu-
rity and Privacy, May 1999.

[15] Mitchem, T., Lu, R., and O’Brien, R. Using kernel
hypervisors to secure applications. In Proceedings,
13th Annual Computer Security Applications Con-
ference, Dec. 1997.

[16] Dan, A., Mohindra, A., Ramaswami, R., and
Sitaram, D. Chakravyuha (CV): A sandbox oper-
ating system environment for controlled execution
of alien code. Technical Report 20742, IBM T.J.
Watson Research Center, 1997.

[17] Berman, A., Bourassa, V., and Selberg, E. TRON:
Process-specific file protection for the UNIX oper-
ating system. In Proceedings of the 1995 Winter
USENIX Conference, Jan. 1995.

