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Abstract

Windows† 98 and NT† share a common driver model
known as WDM (Windows Driver Model) and
carefully designed drivers can be binary portable.  We
compare the performance of Windows 98 and Windows
NT 4.0 under load from office, multimedia and
engineering applications on a personal computer (PC)
of modest power that is free of legacy hardware.  We
report our observations using a complementary pair of
system performance measures, interrupt and thread
latency, that capture the ability of the OS to support
multimedia and real-time workloads in a way that
traditional throughput-based performance measures
miss.  We use the measured latency distributions to
evaluate the quality of service that a WDM driver can
expect to receive on both OSs, irrespective of whether
the driver uses thread-based or interrupt-based
processing.  We conclude that for real-time applications
a driver on Windows NT 4.0 that uses high, real-time
priority threads receives an order of magnitude better
service than a similar WDM driver on Windows 98
that uses  Deferred Procedure Calls, a form of interrupt
processing.  With the increase in multimedia and other
real-time processing on PCs the interrupt and thread
latency metrics have become as important as the
throughput metrics traditionally used to measure
performance.

1. Introduction

Real-time computations in multimedia applications and
device drivers are typically performed in response to
interrupts or the completion of previous computations
that were themselves performed in response to
interrupts.  Under the Windows Driver Model (WDM)
[1][21] such computations are typically implemented as
either Deferred Procedure Calls (DPCs)[1][21], a form
of interrupt processing, or in kernel mode threads.  The
ability of applications and drivers to complete their
computations before their respective deadlines is thus a
function of the expected worst-case delay between the
hardware interrupt and the start of the computation.

                                                       
† Third-party brands and names are the property of their
respective owners.

These delays, or latencies, are highly sensitive to the
amount of OS overhead that is incurred to service any
other applications that may be executing concurrently
on the system.  Traditional real-time systems cope with
this problem by strictly limiting the amount of
concurrent non-real-time computation and by using a
real-time OS with tightly bounded service times. This
minimizes the amount of overhead penalty to which any
one computation is subjected.  On personal computer
and workstation platforms the execution environment is
highly dynamic and may include a wide variety of
concurrently executing applications whose nature can
only be estimated in advance.  It is therefore not
practicable to either limit application concurrency or to
use a real-time OS.

Application
(low latency
streaming** )

Buffer size
in ms. (t)

(typ. range)

Number of
buffers (n)
(typ. range)

Latency
Tolerance
(n-1)*t ms.

ADSL 2 to 4 2 to 6 4 to 10

Modem 4 to 16 2 to 6 12 to 20

RT audio** 8 to 24 2 to 81 20 to 601

RT video** 33 to 50 2 to 3 33 to 100

Table 1: Range of Latency Tolerances for Several
Multimedia and Signal Processing Applications,

tolerance range roughly (nmax-1)*tmin to (nmin-1)*tmax ms.

Applications and drivers vary widely in their tolerance
for missed deadlines, and it is often the case that two
drivers with similar throughput requirements must use
very different kernel services (e.g., DPCs and kernel
mode threads).  Before an application or driver misses a
deadline all buffered data must be consumed.  If an
application has n buffers each of length t, then we say
that its latency tolerance is (n-1) * t.  Table 1 gives
latency tolerance data for several applications [5][11].
It is interesting to note that the two most processor-
                                                       
1 8 is the maximum number of buffers used by Micro-
soft’s KMixer and is on the high side.  4 buffers, which
yields a latency tolerance of 20 to 40 milliseconds,
would be more realisitic for low latency audio.



intensive applications, ADSL and video at 20 to 30 fps,
are at opposite ends of the latency tolerance spectrum.
Traditional methodologies for system performance
measurement focus on throughput and average case
behavior and thus do not adequately capture the ability
of a computing system to perform real-time processing.

In this paper we propose a new methodology for OS
performance analysis that captures the ability of a non-
real-time computing system to meet the latency
tolerances of multimedia applications and low latency
drivers for host-based signal processing.  The
methodology is based on a complementary pair of
microbenchmark measures of system performance,
interrupt latency and thread latency, which are defined
in section 2.1.  Unlike previous microbenchmark
methodologies, we make our assessments of OS
overhead based on the distribution of individual OS
service times, or latencies, on a loaded system.  We
present extremely low cost, non-invasive techniques for
instrumenting the OS in such a way that individual
service times can be accurately measured.  These
techniques do not require OS source code, but rely
instead on hardware services, in particular the
Pentium® and Pentium II processors’ time stamp
counters[9][10], and can thus be adapted to any OS.

We use these techniques to compare the behavior of the
Windows Driver Model (WDM) on Windows 98 and
Windows NT under load from a variety of consumer
and business applications.  We show that for real-time
applications a driver on Windows NT 4.0 that uses
either Deferred Procedure Calls (DPCs), a form of
interrupt processing, or real-time priority kernel mode
threads will receive service at least one order of
magnitude better than that received by an identical
WDM driver on Windows 98.  In fact, a driver on
Windows NT 4.0 that uses high, real-time priority
threads will receive service one order of magnitude
better than a WDM driver on Windows 98 which uses
DPCs.  In contrast, traditional throughput metrics
predict a WDM driver will have essentially identical
performance irrespective of OS or mode of processing.

The remainder of this section provides background on
prior work on OS benchmarking and the performance
analysis of real-time systems.  Section 2 presents our
methodology for OS performance analysis, including
definitions of the various latencies in which we are
interested and a description of our tools and
measurement procedures.  Section 3 presents our
application stress loads and test system configuration.
Section 4 presents and discusses our results.  In section
5 we explore the implications of our results for hard
real-time drivers, such as soft modems, on Windows 98
and Windows NT.  Section 6 concludes.

1.1 Macrobenchmarks

Traditional methodologies for system performance
measurement focus on overall throughput.  Batch
macrobenchmarks, whether compute-oriented such as
SpecInt† or application-oriented such as Winstone†

[22], drive the system as quickly as possible and
produce one or a few numbers representing the time
that the benchmark took to execute.  While appropriate
for batch and time-shared applications this type of
benchmarking totally ignores significant aspects of
system performance.  As Endo, et. al. note [7],
throughput metrics do not adequately characterize the
ability of a computing system to provide timely
response to user inputs and thus batch benchmarks do
not provide the information necessary to evaluate a
system’s interactive performance.

Current macrobenchmarks essentially ignore latency
with the result that the resulting throughput analysis is
an unreliable indication of multimedia or real-time
performance.  For multimedia and other real-time
applications, increased throughput is only one of
several prerequisites for increased application
performance.  Because macrobenchmarks do not
provide any information about the distribution of OS
overhead, they do not provide sufficient information to
judge a computing system’s ability to support real-time
applications such as low latency audio and video.

1.2 Microbenchmarks

Microbenchmarks, in contrast, measure the cost of low-
level primitive OS services, such as thread context
switch time, by measuring the average cost over
thousands of invocations of the OS service on an
otherwise unloaded system.  The principal motivations
for these choices appear to have been the limited
resolution of traditional hardware timers and a desire to
distinguish OS overhead from hardware overhead by
using warm caches, etc.  The result, as Bershad et. al.
note [2], is that microbenchmarks have not been very
useful in assessing the OS and hardware overhead that
an application or driver will actually receive in practice.

Most previous efforts to quantify the performance of
personal computer and desktop workstation OSs have
focused on average case values using measurements
conducted on otherwise unloaded systems.  Ousterhout
evaluates OS performance using a collection of
microbenchmarks, including time to enter/exit the
kernel, process context-switch time, and several file I/O
benchmarks [19].  McVoy and Staelin extend this work
to create a portable suite, lmbench, for measuring OS as
well as hardware performance primitives [17].  Brown
and Seltzer extend lmbench to create a more robust,



flexible and accurate suite, hbench:OS, which utilizes
the performance counters on the Pentium and Pentium
Pro processors to instrument the OS [3].

For the purposes of characterizing real-time
performance, all of these benchmarks share a common
problem in that they measure a subset of the OS
overhead that an actual application would experience
during normal operation.  For example, Brown and
Seltzer revise the lmbench measurement of context
switch time so as to exclude from the measurement any
effects from cache conflict overhead due to faulting of
the working set of a new process.  The motivation given
is that by redefining context switch time in this manner
the hbench:OS can obtain measurements with a
standard deviation an order of magnitude less than
those produced by lmbench.  While this accurately
characterizes the actual OS cost to save/restore state,
one must in addition use another microbenchmark to
measure cache performance and then combine the two
measurements in an unspecified manner in order to
obtain a realisitic projection of actual application
performance.  Furthermore, none of these OS micro-
benchmarks directly addresses response to interrupts,
which is of prime importance to low latency drivers and
multimedia applications.

In contrast to the OS microbenchmarks discussed
above, Endo, et. al., develop microbenchmarks based
on simple interactive events such as keystrokes and
mouse clicks on personal computers running Windows
NT and Windows 95 [7].  They also construct activity-
oriented task benchmarks designed to model specific
user actions when using popular applications such as
Microsoft Word.  These benchmarks do address
response to interrupts and detailed distributions are
reported for some of the data.  However, the authors’
focus is on  interactive response times, which for low-
level input events, such as mouse and keyboard, is
generally regarded as being adequately responsive if the
latencies are in the range of 50 to 150 ms. [20] .  As we
have seen above (Table 1), except for video, this is
considerably longer than the latency tolerances of the
low latency drivers and multimedia applications that we
consider here, which have tolerances between 4 and 40
milliseconds, depending on the specific application.

1.3 Real-Time Systems

Efforts to characterize the behavior of real-time
systems, both software and hardware, have focused
largely on worst-case behavior and assumed that the
overall system load is known in advance.  Katcher et.
al., for example, decompose OS overhead into the four
categories of preemption, exit, non-preemption and

timer interrupts [13].  Preemption is the time to preempt
a thread; exit, the time to resume execution of a
previously preempted thread; and non-preemption, the
blocking time due to interrupt handling which does not
result in preemption (i.e., the thread is added to the
ready queue).

For systems with a fixed priority preemptive scheduler,
it is common to use Rate Monotonic Analysis (RMA)
to determine whether each of the system’s threads can
be scheduled so as to complete before its deadline.
Traditionally this has been done by ignoring OS
overhead [15], but recently techniques have been
developed to include worst-case OS behavior into the
analysis [14].  While such models are comprehensive
and adequate for real-time OSs, they are overly
pessimistic for Windows, which has worst case times
for system services, such as context switching, that are
orders of magnitude longer than average case times.

A further complication is that computationally intensive
drivers, such as those for host-based signal processing,
perform significant amounts of processing at "high
priority" (e.g., in an interrupt service routine (ISR)).  As
an example, the datapump2 for a software modem will
typically execute periodically with a cycle time of
between 4 and 16 milliseconds and take somewhat less
than 25% of a cycle (i.e., 1 to 4 milliseconds) on a
personal computer with a 300 MHz Pentium II
processor.  Clearly, multi-millisecond computations in
an ISR will impact both interrupt and thread latency;
they will also render a traditional worst-case analysis
still more pessimistically.  In previous work we have
shown how RMA can be extended to general-purpose
OSs that have highly non-deterministic OS service
times in order to obtain reasonable estimates of real-
time performance [4].  We will return to this subject in
section 5.2.

2. Methodology

We sought a small set of microbenchmarks that would
encapsulate the effects of OS overhead from a real-time
standpoint but could be manageably incorporated into a
performance analysis in order to accurately forecast the
real-time performance of Windows applications and
drivers.  Since our goal was for the benchmarks to be
applicable to a variety of real-time applications, we
avoided task-oriented benchmarks of the type used by
Endo, et. al., [7] in favor of general microbenchmarks.

                                                       
2 The datapump is the modem physical interface layer,
analogous to the OSI PHY layer for networks.



Because user mode applications can be a noticeable
impediment to timely response by the operating system,
we measured latency in the presence of the stress from
unrelated applications.  This approach is valid even for
assessing the performance that real-time portions of
large multimedia applications will receive with no
concurrent applications.  Indeed, from the standpoint of
low level real-time drivers (e.g., a kernel mode soft
modem or low latency soft audio codec) the rest of the
application (e.g., the user mode video codecs or the
GUI display) is, for all practical purposes, an external
application load.

2.1 Latency

Interrupt latency is defined to be the delay from the
assertion of the hardware interrupt, as seen by the
processor, until the first instruction of the software
interrupt service routine (ISR) is executed.  Thus, it
measures the total delay to initial servicing of an
interrupt.  This encompasses the maximum time during
which interrupts are disabled as well as the bus latency
necessary to resolve the interrupt, but does not include
the bus latency prior to the assertion of the interrupt at
the processor.  Figure 1 depicts an idealized timeline
with interrupt latency, thread latency and thread context
switch time marked.

Thread latency is defined to be the delay from the time
at which an ISR signals a waiting thread until the time
at which the signaled thread executes the first
instruction after the wait is satisfied.  Thus, it measures
the worst-case thread dispatch latency for a thread
waiting on an interrupt, measured from the ISR itself to
the first instruction executed by the thread after the
wait.  Thread latency encompasses a variety of thread
types and priorities (e.g., kernel mode high real-time
priority) and includes the time required to save and
restore a thread context and obtain and/or release
semaphores.  It represents the maximum time during
which the operating system disables thread scheduling.
An important point to note is that thread latency

subsumes thread context-switch time since, in the
general case, the proper thread is not executing when an
interrupt arrives.  We distinguish between thread
latency, defined above, and thread interrupt latency,
defined to be the delay from the assertion of the
hardware interrupt until the thread begins execution.

In the Windows Driver Model (WDM) interrupts are
preemptible and are supposed to be very short [1][21].
WDM makes a Deferred Procedure Call (DPC)
available for drivers that require longer processing in
“interrupt context”.  We distinguish between DPC
latency, which is defined to be the delay from the time
at which the software ISR enqueues a DPC until the
first instruction of the DPC is executed, and DPC
interrupt latency, which is defined to be the sum of the
interrupt and DPC latencies, as shown in Figure 2.
Because ordinary DPCs queue in FIFO order, DPC
latency encompasses the time required to enqueue and
dequeue a DPC as well as the aggregate time to execute
all DPCs in the DPC queue when the DPC was
enqueued.  Because drivers are not supposed to do
substantial processing in a WDM ISR, we will measure
WDM thread latencies from DPC to thread, and
concentrate on DPC interrupt latency and thread
latency.

2.2 Latency Measurement Tools

We developed a number of WDM drivers that measure
interrupt and thread latency.  The thread latency driver
is binary portable between Windows 98 and Windows
NT, but the Windows 98 interrupt latency driver uses
an interface unique to Windows 9x to install its own
timer handler and is thus not portable to NT.  The
drivers have simple command line control applications
and use the Pentium processor’s time stamp register
(TSR) for timing information. The latencies are
returned to the application via WDM I/O Request
Packets (IRPs) which the application supplies via a call
to the Win32† ReadFileEx API.  Figure 3 gives an
execution timeline and sections 2.2.1 through 2.2.5
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present pseudocode for the Windows NT DPC interrupt
latency and thread latency tool.

In the case of interrupt latency, because the driver
cannot read the time stamp counter at the instant when
the hardware interrupt is asserted, the driver I/O read
routine reads the time stamp register and sets a timer to
expire in a given number of milliseconds. The interrupt
latency drivers estimate the time stamp at which the
timer expired using the time stamp from the I/O read
routine and record this as the estimated time stamp for
the hardware interrupt.  This approach suffers from
limited resolution (basically +/- the cycle time of the
Programmable Interval Timer (PIT) timer, whose
frequency we have increased to 1 KHz).  Because we
were mainly interested in characterizing the latency
“tail”, which on Windows 98 extends past 10
milliseconds, we accepted this imprecision with only
minor qualms.  To put it another way, we are interested
in the frequency of long latency events, so we care
about the magnitude of long latency events and the
number of short latency events.

Furthermore, on Windows 98 it is possible, using
legacy interfaces, to supply our own timer ISR, whereas
on Windows NT this would require source code access.
Our NT driver thus records only DPC interrupt latency
whereas our Windows 98 driver records interrupt
latency, DPC latency, and DPC interrupt latency.  This
is shown in Figure 3.

As the following pseudocode is highly specific to
WDM, a few definitions and clarifications are in order:

x DPC: Deferred Procedure Call.  In WDM an
ISR can queue a DPC to a FIFO queue to do
time-critical work on its behalf.  DPCs execute
after all ISRs but before paging and threads.
This is similar to the Immediate queue for ISR
“Bottom Halves” in Linux†.

x DriverEntry : This function is called at driver
load time and performs all driver initialization.

x IRP: I/O Request Packet.  Each user mode call
to a Win32 driver interface function (e.g.,
Read) generates an IRP that is passed to the
appropriate driver routine.

x IRP->AssociatedIrp.SystemBuffer: This is
used to transfer data to/from the user mode
application.  We abbreviate it as IRP->ASB
and pretend that it is of type LARGE_INTEGER.

x ISR: Interrupt Service Routine.  In the WDM
paradigm, ISRs queue DPCs to do work on
their behalf.

x PIT : Programmable Interval Timer.  PC
hardware timer.  By default on Windows 98
and NT it fires at a frequency of 67 to 100 Hz
(10 to 15 ms. period).  We reset it to 1 KHz (1
ms. period).

x Real-time Priority : WDM has 16 real-time
priorities, 16 through 31.  24 is the default.

x Single shot timer: An OS timer that fires only
once.  NT 4.0 added periodic OS timers.

x Synchronization Event: An event that auto-
clears after a single wait is satisfied.  Contrast
with a Notification Event, which satisfies all
outstanding waits, as do Unix† kernel events.

2.2.1 DriverEntry Pseudocode

Create a single shot timer gTimer.
Create a Synchronization Event gEvent.
Create a kernel mode thread executing

LatThreadFunc() (section 2.2.4).
Initialize global variable ghIRP

shared by thread, driver functions.
Set PIT interrupt interval to 1 ms.

2.2.2 Driver I/O read Pseudocode

Procedure LatRead(IRP) {

GetCycleCount(&IRP->ASB[0])

// The PIT ISR will enqueue

// LatDpcRoutine in the DPC queue

KeSetTimer (gTimer,

               ARBITRARY_DELAY,

               LatDpcRoutine)

}

2.2.3 Timer DPC Pseudocode

// This is called by the kernel when

// the DPC is dequeued and executed

Procedure LatDpcRoutine(IRP) {

GetCycleCount(&IRP->ASB[1])

ghIRP = IRP

KeSetEvent(gEvent)

}

Prog. Interval Timer
(PIT) Interrupt

Int. Latency
(Windows 98)

Thread
Latency

Time

DPC:
Read TSR,

Signal
(RT) thread

DPC Latency
(Windows 98)

DPC Interrupt Latency
(Windows NT, 98)

PIT ISR:
Read and
save TSR,
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Arbitrary 
Thread

(need not be
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Read TSR,
return TSR

values to
Control App

Control
App:

Calculate,
Output

Latencies

Not shown: Driver I/O read routine
reads Pentium££ Time Stamp Register
(TSR) immediately before setting timer

Figure 3: WDM Interrupt, DPC and Thread Latency
Measurement Tool



2.2.4 Thread Pseudocode

Procedure LatThreadFunc() {

KeSetPriorityThread(

KeGetCurrentThread(),24);

loop (FOREVER) {

WaitForObject(gEvent,FOREVER)

GetCycleCount(&ghIRP->ASB[2])

// This completes the read, sending

// the data to the user mode app

IoCompleteRequest(ghIRP)

     ghIRP = NULL

} /* loop */

}

2.2.5 GetCycleCount code

Because not all versions of the Visual C++† inline
assembler recognize the Pentium RDTSC instruction,
the following function is provided.

//  Name: GetCycleCount

//  Purpose: Read the Pentium® cycle

//           (timestamp) counter

//  Context: Called by driver to get

//           current timestamp

//

// Copyright (c) 1995-1998 by Intel

// Corporation. All Rights Reserved.

// This source code is provided “as

// is” and without warranty of any

// kind, express or implied.

// Permission is hereby granted to

// freely use this software for

// research purposes.

//

GetCycleCount(

LARGE_INTEGER *pliTimeStamp) {

ULONG Lo;

LONG Hi;

_asm {

_emit 0x0f

_emit 0x31

mov Lo, eax

mov Hi, edx

} /* _asm */

pliTimeStamp->LowPart = Lo;

pliTimeStamp->HighPart = Hi;

return;

} /* GetCycleCount */

2.3 Latency Cause Tool

The latency measurement tools, while eminently useful
for assessing the ability of an OS to meet the latency
tolerances of real-time applications and drivers, give
little insight as to the causes of long latency.  We
desired to engage OS and possibly driver vendors in an
effort to improve real-time performance.  A significant
impediment is that in a commercial environment we do
not have access to source code for either OS or any of
the drivers which could be responsible for one or more
of the long latencies.

We began by modifying our thread latency tool to hook
the Pentium processor Interrupt Descriptor Table (IDT)
entry for the Programmable Interval Timer (PIT)
interrupt.  To do this we patch the PIT timer Interrupt
Descriptor Table (Pentium Interrupt Dispatch Table)
entry to point to our hook function.  The hook function
updates a circular buffer with the current instruction
pointer, code segment and time stamp and then jumps
to the OS PIT ISR.  We then modified the thread
latency tool to report only latencies in excess of a preset
threshold and to dump the contents of the circular
buffer when it reported a long latency.  Post mortem
analysis produces a set of traces of active modules and,
if symbol files are available3, functions.  In spite of the
lack of source code the module+function traces are
often quite revealing.  Endo and Seltzer describe a
similar technique for recording information on system
state during long interactive event latencies as part of a
proposed tool suite for Windows NT, but anticipate that
OS source code will be needed for causal analysis [8].

3. Test Procedure

3.1 Application Stress Loads

For each application category we estimated how many
hours per week constitute heavy use for applications
belonging to that category.  As explained below, based
on the estimates we estimated how many hours of data
we needed to collect using each stress application.  To
maximize our breadth of application coverage and
improve reproducibility some stress applications are
actually benchmarks.  These benchmarks are driven by
Microsoft Test (MS-Test) at speeds much faster than
possible for a human, enabling us to collect data over a
shorter period of time than would otherwise have been
the case.  We collected data for periods of hours,
capturing events that occur at frequencies as low as 1 in
100,000 in statistically significant numbers.

                                                       
3 OS symbols are available with a subscription to the
Microsoft Developer’s Network (MSDN) [21].



3.1.1 Office Applications

To represent the class of office applications we used the
Business Winstone 97 benchmark [22], which executes
eight business productivity applications spanning three
categories of business computing:

x Database: Access† 7.0, Paradox† 7.0
x Publishing: CorelDRAW† 6.0, PageMaker†

6.0, PowerPoint† 7.0
x Word Processing and Spreadsheet: Excel 7.0,

Word 7.0, WordPro† 96

Each application is installed via an InstallShield†4

script, run at full speed through a series of typical user
actions and then uninstalled.  On initial launch
Winstone performs a number of hardware checks (e.g.,
interrogation of the floppy drive) which cause a marked
spike in observed OS latencies.  We therefore launched
Winstone, then started our latency measurement tools
and finally launched the benchmark.

The Business benchmark is driven by MS-Test at
speeds in excess of human abilities to type and click a
mouse.  As Endo et. al. observe, this results in an
unnaturally time-compressed sequence of user input
events that should not occur in normal use, resulting in
abnormally large batched requests for OS services [7].
We agree with Endo et. al. that these batched requests
may be optimized away by the OS, resulting in a lower
overall system load during the benchmark than during
equivalent human user activity.  Nevertheless, we note
that long spurts of system activity will still occur
because of, for example, file copying, both explicit and
implicit (e.g., "save as").  In our experience this type of
extended system activity is much more likely to impact
response to interrupts, causing long latencies, than any
of the batched requests discussed by Endo, et. al. might
cause individually or collectively were they not
batched.  Since we are only using the Winstone
benchmark to impose load, we exploit this time-
compression to collect data for a shorter period of time.

Data as to how long a “typical” user would take to
execute the Business Winstone 97 benchmark input
sequence are unavailable [23], but we can derive a
conservative lower bound to the compression ratio
under very weak assumptions.  To do this we assume
that a typing speed of 120 5-character words per minute
(or about 1 character every 100 milliseconds) is the
upper limit of sustainable human input speed.  Based on
the default PC clock interrupt rate of 67 to 100 Hz. (see

                                                       
4 InstallShield is a standard Windows application that
installs and configures other applications.   It is driven
by scripts written by the software vendor.

section 2.2) it is clear that Winstone can drive input at
least ten times as quickly as a human, even without
compensating for the complete absence of "think time"
[20] during the benchmark.  Thus we estimate that
Business Winstone 97 running continuously will
produce at least as much system stress in 4 hours as a
heavy user will produce in a 40-hour work week.

3.1.2 Workstation applications

To represent the class of workstation applications we
used the High-End Winstone 97 automated benchmark
[22], which executes six workstation applications
spanning three categories of workstation computing:

x Mechanical CAD: AVS† 3.0, Microstation† 95
x Photoediting: Photoshop† 3.0.5, Picture

Publisher† 6.0, P-V Wave† 6.0
x S/W Engineering: Visual C++ 4.1 Compiler

As with the Business benchmark, each application is
installed via an InstallShield script, run at full speed
through a series of typical user actions and then
uninstalled.   Again, we first launched Winstone, then
started our latency measurement tools and finally
launched the benchmark.

Workstation applications are inherently more stressful
than business applications, and are CPU, disk or
network bound (i.e., not waiting on user I/O) more of
the time than business applications.  We therefore
assumed a more conservative 5 to 1 ratio of MS-Test
input speed to human input speed.  Thus we estimate
that 6 hours of continuous testing will produce as much
system stress as a heavy user will produce in one work
week of 30 hours, assuming engineers spend 2 hours
daily using non-engineering applications such as email.

3.1.3 Multimedia Applications

We divided the class of multimedia applications into
two subcategories: 3D games and Web browsing with
enhanced audio/video.  In order to compare apples to
apples, we limited ourselves to 3D games that run on
Windows 95/98 and Windows NT.  Two were selected:
Freespace† Descent† and Unreal†. Since game demos
are essentially canned sequences of game play, we do
not assume any speedup when collecting our 3D game
data.  We estimate that game enthusiasts play on the
order of 2 to 3 hours per day, 4 to 6 days per week,
concluding that 12.5 hours of data will capture a week
of game play by an enthusiast.

Web browsing is dominated by download times.  With
a modem on a regular phone line a heavy user is
bandwidth limited.  By using an Ethernet LAN



connection, downloading occurs at speeds far in excess
of those achievable on a regular phone line.  As a result,
the system is stressed more than would actually occur
during normal usage, and it is not necessary to collect
data for as long a period of time as would otherwise be
the case.  Assuming conservatively a 10 to 1 ratio of 10
MBit Ethernet download speed to regular phone line
download  speed,  we  estimate  an  overall  4 to 1 ratio,
given that the user also spends time reading Web pages,
listening to audio and video clips, etc.  We estimate that
a heavy user browses the Web about 3 to 4 hours per
day, 7 days per week.  We conclude that 8 hours of data
while browsing with an Ethernet network connection
should capture about a week of Web browsing over a
regular phone line by a heavy user.

We split our Web testing time between downloading
and viewing files and downloading and playing audio
and video clips.  We used both Netscape
Communicator† and Internet Explorer† 4.0 (IE4).  The
first half consisted of repetitions of the following
sequence:

x Browse with Netscape Communicator to
www.irs.ustreas.gov/prod/cover.html, view
several tax forms with Adobe Acrobat† Reader
and download instructions for each form.

x Browse with Netscape Communicator to
www.cse.ogi.edu and view a random (typically
short) postscript TechReport with Ghostview†.

x Browse with IE4 to www.intel.com and view a
processor manual with Adobe Acrobat Reader.

x Browse to www.research.microsoft.com with
IE4 and view a technical report with Word 97.

In the second half we first browsed with Netscape
Communicator to www.real.com and played news and
music clips using RealPlayer†.  We then browsed with
IE 4.0 to Siskel and Ebert’s Web site and played movie
reviews using Shockwave†.

3.2 Test System Configuration

To minimize the impact of legacy software and
hardware, such as Windows 98 drivers for devices on
the old slow ISA (Industry Standard Architecture) bus,
we configured our system exclusively with PCI
(Peripherial Component Interconnect) bus and USB
(Universal Serial Bus) devices.  To do this we disabled
the ISA Plug and Play Enumerator and motherboard
ISA audio devices in the Control Panel System
Properties menu (98) and Devices menu (NT).

Table 2 gives the full system configuration, with items
that differ between the two systems shaded.  The file
systems used were different but reflect the “typical” file
system for each OS.  The audio solutions were of

necessity different because Windows NT 4.0 does not
support USB, while Windows 98 did not at the time
fully support WDM audio drivers on PCI sound cards.
A key point, easily overlooked, is that both OSs have
been configured to use DMA drivers for the IDE
devices (hard drive and CD-ROM).  For Windows 98
this is a user configurable option accessible via the
System icon on the Control Panel.  For Windows NT
4.0 we used the Intel PIIXBus Master IDE Driver.

OS version Windows NT 4.0 Windows 98

   Optional OS
Components

Service Pack 3 w.
11/97 rollup hotfix

Plus! 98† Pack w/o
opt. Virus Scanner

   Filesystem NTFS FAT32

   IDE Driver Intel PIIXBus
Master IDE Drvr
ver. 2.01.3

Default with DMA
set ON

Processor &
speed

Pentium® II
300 MHz

Pentium II
300 MHz

Motherboard Atlanta (Intel 440
LX)

Atlanta (Intel 440
LX)

  BIOS ver. 4A4LL0X0.86A.0
012.P02

4A4LL0X0.86A.0
012.P02

  Memory 32 MB SDRAM 32 MB SDRAM

Hard Drive Maxtor
DiamondMax†

6.4 GB UDMA

Maxtor
DiamondMax
6.4 GB UDMA

CD-ROM
Drive

Sony CDU 711E
32x

Sony CDU 711E
32x

AGP
Graphics

ATI Xpert@Work ATI Xpert@Work

  Resolution 1024 x 768 x 32bit 1024 x 768 x 32 bit

  3D games 800 x 600 x 32 bit 800 x 600 x 32 bit

Audio
solution

Ensoniq PCI sound
card with Prosonic
speakers

Phillips DSS 350
USB speakers

Network
(only Web
Browsing)

Intel
EtherExpress™
Pro 100 PCI NIC

Intel EtherExpress
Pro 100 PCI NIC

Table 2: Test System Configuration

4. Results

4.1 WDM scheduling hierarchy

For convenience, we abstract the services provided by
the Win32 Driver Model (WDM) into an OS scheduling
hierarchy as shown below.  Each level of the OS
scheduling hierarchy is fully preemptible by the level(s)



with lower numbers on Windows NT, but there are
complications on Windows 98 since the legacy
Windows 95 schedulers continue to exist5.  In pure
WDM (e.g., on Windows NT) the hierarchy is as
follows:

1. Interrupt Service Routines (ISRs)
Execute at IRQLs from DIRQL to HighLevel

2. WDM Deferred Procedure Calls (DPCs)
 FIFO/LIFO queue, three priorities (High ,
Medium, Low Importance ), but DPCs
cannot preempt other DPCs

3. Real-Time Priority Threads
Timesliced, execute at Win32 priorities 16
through 31, can raise IRQL from PASSIVE
(lowest) to arbitrarily high levels (i.e., block
interrupts)

                                                       
5 For example, Windows 98 has Virtual Machines for
DOS boxes [18].

4. Normal Priority Threads
Timesliced, execute at Win32 priorities 1
through 15, can raise IRQL

Our investigations focused on levels one through three
of the scheduling hierarchy.  We present data for the
following:

x ISR latency for the PIT (timer) ISR.
x DPC latency for a “Medium Importance”

WDM DPC enqueued by the PIT ISR.  We
term this the PIT DPC.

x High real-time priority kernel mode thread
latency for a Win32 priority 28 kernel mode
thread signaled by from the PIT DPC.

x Medium real-time priority kernel mode thread
latency for a Win32 priority 24 kernel mode
thread signaled from the PIT DPC.
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Figure 4: Measured Interrupt and Thread Latencies under Load on Windows NT 4.0 and Windows 98



4.2 Overall WDM Latency Profile

Windows 98 OS latency distributions are highly non-
symmetric, with a very long tail on one side, and thus
bear little resemblance to a normal distribution.  In
order to accurately show the latency tail we present our
data as log-log plots in Figure 4.  We present
histograms comparing the latency from a timer interrupt
(Programmable Interval Timer, whose ISR runs at
extremely high IRQL) to the corresponding WDM DPC
and from WDM DPCs to real-time high (28) and
default (24) priority threads waiting on WDM
synchronization events.  We present this data broken
out by application workload so that the latency profiles
under different workloads on the same OS can be
compared.

For NT 4.0 there is almost no distinction between DPC
latencies and thread latencies for threads at high real-
time priority.  The WDM “kernel work item” queue is
serviced by a real-time default priority thread, which
accounts for the large difference between high and
default priority threads under NT 4.0.  For Windows 98,

on the other hand, there is an order of magnitude
reduction in worst-case latencies that a driver obtains
by using WDM DPCs as opposed to real-time priority
kernel mode threads. NT real-time high priority threads
and DPCs exhibit worst-case latencies which are an
order of magnitude lower than those of Windows 98
DPCs and Windows NT real-time default priority
threads.  This view of system performance contrasts
sharply with the view one obtains using traditional
throughput-based benchmarks.

To verify that throughput-based benchmarks would not
reveal the variation in real-time performance that we
see in our plots, we ran the Business Winstone 97
benchmark on Windows 98 and on Windows NT 4.0
using our system configurations as specified in Table 2.
While reporting requirements (and space here) prevent
us from publishing exact figures, the average delta
between like scores was 10% and the maximum delta
was 20%.  In contrast, from a real-time standpoint, we
conclude that NT 4.0 exhibits latency performance at
least an order of magnitude superior to that of Windows
98 and, for kernel mode high real-time priority threads,
two orders of magnitude better.

Observed Hourly, Daily and Weekly Worst Case Windows 98 Latencies (in ms.)

Office Apps Workstation Apps Recent 3D Games Web Browsing

OS Service Max
Per
Hr

Max
Per
Day

Max
Per
Wk

Max
Per
Hr

Max
Per
Day

Max
Per
Wk

Max
Per
Hr

Max
Per
Day

Max
Per
Wk

Max
Per
Hr

Max
Per
Day

Max
Per
Wk

H/W Int. to S/W ISR <1.0 1.4 1.6 2.2 5.6 6.3 8.8 9.7 12.2 1.1 1.7 3.5

S/W ISR to DPC + 0.1 + 0.1 + 0.4 + 0.5 + 0.5 + 0.6 + 0.9 + 2.1 + 2.1 + 0.2 + 0.3 + 0.3

H/W Interrupt to DPC 1.0 1.5 2.0 2.7 6.1 6.9 9.7 12 14 1.3 2.0 3.8

DPC to kernel RT
thread (High Priority)

+ 1.6 + 5.2 + 31 + 21 + 24 + 24 + 35 + 46 + 70 + 14 + 68 + 80

H/W Int. to kernel RT
thread (High Priority)

2.6 6.7 33 24 30 31 45 58 84 15 70 84

DPC to kernel RT
thread (Med. Priority)

+ 3.1 + 6.7 + 31 + 21 + 23 + 24 + 36 + 47 + 70 + 51 + 68 + 80

H/W Int. to kernel RT
thread (Med. Priority)

4.1 8.2 33 24 29 31 46 59 84 52 70 84

Table 3: Windows 98 Interrupt and Thread Latencies with no Sound Scheme on a PC 99 Minimum System



4.3 Windows 98 Detailed Latency Profile

Because Windows 98 has been recently released, we
present a more detailed latency profile in tabular form.
Since our focus is on means of forecasting realizable
application worst-case behavior, we are especially
concerned with the worst-case latency and with
comparative measures of the “thickness” of the tail of
the latency distribution.  We therefore characterized the
distributions for Windows 98 in terms of three expected
worst case values: hourly, daily and weekly.  The
hourly value is for continuous usage, whereas the daily
and weekly values do not represent continuous 24 or
168 hour usage, but rather expected average daily and
weekly use by a heavy user.  The usage patterns are
described in detail in section 3.1.  To briefly recap, for
the Office and Workstation applications a “day” is 6 to
8 hours long and a (work) week has 5 “days”, while for
the 3D games and Web Browsing, a “day” is only 3 to 4
hours but a (consumer) week has 7 “days”.

During the course of our investigation of Windows 98
we discovered the optional Plus! 98† Pack Virus
Scanner and the Windows sound schemes had
significant impacts on thread latency.  The Virus
Scanner is particularly egregious in this regard and the
data for Windows 98 presented in Figure 4 is for an
installation without the virus scanner.  Figure 5 presents
data with the virus scanner installed and active, but with
no sound scheme, and it can be seen that with the virus
scanner 16 millesecond thread latencies occur over two
orders of magnitude more frequently.  Assuming that
long latencies are uniformly distributed over time, with
the virus scanner on we would expect a 16 millisecond
thread latency about every 1000 times that our thread
does a WaitForSingleObject  on a WDM event, or
roughly every 16 seconds for an audio thread with a 16
millisecond period.  In contrast, without the virus
scanner (and with no sound scheme) we would expect a
16 millisecond thread latency only about once in
165,000 waits, or roughly once every 44 minutes for the

same audio thread.  Intel’s audio experts did not find it
surprising that the virus scanner had this effect; they
had remarked for some time that the virus scanner
causes breakup of low latency audio.

4.4 Windows 98 Thread Latency Causes

As we have seen in the previous section, our tools can
successfully predict Quality of Service problems that
impact the end user’s experience.  More importantly, by
defining a simple metric that is easy to automatically
detect at run-time, our tools and techniques give us the
ability to determine the code paths that are responsible
for this behavior.  This, of course, greatly increases the
probability of obtaining a fix from the developers, who
now receive a bug of the form “audio breaks up when
we turn on your application”, but who could receive a
bug report with one or more function call traces.

Before discussing more specific results, some
background is in order.  The Windows 98 Plus! Pack
makes a number of sound schemes available.  These
produce a variety of user-selectable sounds upon
occurrence of various “events”.  These “events” range
from typical things, such as popup of a Dialog Box to
the more esoteric, such as traversal of walking menus
(i.e., EVERY time a submenu appears). As mentioned
above, Winstone uses MS-Test to drive applications at
greater than human speeds, which results in a lot of
sounds being played.  During our testing we restricted
ourselves to the default and “no sound” sound schemes.0.0001%
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Figure 5: Effect of the Virus Scanner on
High Priority Real-Time Thread Latency

Analysis of latency episode number 0
1 samples in VMM function @KfLowerIrqI
1 samples in NTKERN function

_ExpAllocatePool
1 samples in SYSAUDIO function

_ProcessTopologyConnection
2 samples in VMM function

_mmCalcFrameBadness
-------------------------------------------------
5 total samples in episode

Analysis of latency episode number 1
1 samples in SYSAUDIO function

_ProcessTopologyConnection
2 samples in VMM function

_mmCalcFrameBadness
2 samples in VMM function _mmFindContig
1 samples in KMIXER function unknown
-------------------------------------------------
6 total samples in episode

Table 4: Thread Latency Cause Tool Output,
Windows 98 w. Biz Apps, Default Sound Scheme



Table 4 presents two brief sample traces from an
investigation into the causes of long thread latencies
during the Winstone Business benchmark when the
default Windows sound scheme was enabled.  From the
traces we see that with the default sound scheme on
(presumably the normal state of affairs) two moderately
long thread thread latencies were observed.  During
both a SysAudio function ProcessTopologyConnection
was active and the OS appears to have been allocating
contiguous memory, possibly in order to accommodate
“bad”, possibly misaligned, audio frames.  We can also
see that at least part of this operation is taking place at
raised IRQL, which would explain, for example, why
both priority 24 and 28 kernel mode threads are
affected.  Further analysis of these episodes is best left
to the authors of the code, but the reader will see that
this information can be of great use.

5. Analysis

As an example of how detailed latency data can be used
to forecast quality of service for multimedia
applications and low latency drivers, we present a brief
analysis of soft modem quality of service as a function
of the size and the number of buffers (and thus, the
allowable latency in servicing the buffers).  Here we
briefly discuss the Mean Time To Failure (MTTF) plots
that we present in the next section.  The plots are
derived from our tables of latency data by calculating
the slack time for each amount of buffering (i.e., t * (n-
1) – c, where n is the number of buffers, t is the buffer
size in milliseconds and c is the compute time for 1
buffer.).  This number is used to index into the latency
table to determine the frequency with which such
latencies occur, and this frequency is divided by an
approximation of the cycle time (for simplicity, (n-1) *
t).  Thus the calculation is strictly accurate only for
double buffered implementations but is reasonably
accurate if n is small.

5.1 Soft Modem Quality of Service

We now present an analysis of soft modem quality of
service from a timing standpoint.  Figures 6 and 7 show
the mean time to failure (i.e., buffer underrun) for the
datapump of a soft modem as a function of the amount
of buffering in the datapump.  We have estimated that
the datapump requires 25% of a system with a 300
MHz Pentium II processor during data transmission
mode, which is a conservative (high) estimate.  To
interpret the figures, calculate the total buffering in the
datapump.  For example, for a triple buffered
implementation using 6 millisecond buffers, using
Figure 6, we can see that with 12 milliseconds of
buffering the Windows 98 DPC-based datapump will
miss a buffer roughly once every  12 to 15 minutes
(720-900 seconds) while playing an “average” 3D
game.  With 10 millisecond buffers triple buffered (i.e.,
20 milliseconds of buffering), however, the Windows
98 DPC-based datapump would average an hour (3600
seconds) between misses while playing an “average”
3D game6.  Similarly, a Windows 98 thread-based
datapump that uses high-priority, real-time kernel mode
threads will require about 48 milliseconds of latency
tolerance (e.g., four 16 millisecond buffers) in order to
average an hour between misses while playing an

                                                       
6 Note that missed buffers need not be catastrophic
since design techniques exist whereby the datapump
can arrange for hardware to automatically transmit a
dummy buffer in the event that a buffer is missed.  Such
a dummy buffer can be made indistinguishable from
line noise or other bit errors to the receiving modem
and will result in either a retransmission request at the
link layer or a dropped frame.  In either case the overall
impact on modem connection quality can be kept
manageably small relative to the number of buffers
which will be damaged due to line noise.  Similar
considerations (e.g., error correcting codes) apply to
other classes of low latency real-time drivers.
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“average” 3D game.  Since the worst case latencies for
Windows NT are uniformly below the minimum
modem slack time of 3 milliseconds   (= cycle time of 4
ms. – 1 ms. of computation), we forgo the analysis.

5.2 Schedulability Analysis on a Non-
Real-Time OS

As we noted above, the MTTF plots in the previous
section assume implicitly that double buffering is used,
but are reasonably accurate for triple buffering.  A more
accurate method of making the assessment, including
taking into account other “lower level” (i.e., higher
priority) drivers that were not present on the measured,
is described in our earlier work on Schedulability
Analysis [4].  Briefly, the procedure is to use the
information from Table 3 as input to a Schedulability
Analysis tool.  One chooses the worst case latency as a
function of the permissible error rate: for example, one
dropped buffer every five or ten minutes for low
latency audio (video teleconferencing), one dropped
buffer per hour for a soft modem, or one dropped buffer
per day for a more high-reliability device.   The worst-
case is then used to calculate a “pseudo worst-case”
which is input into a standard schedulability analysis
tool such as PERTS [16].  This technique amortizes the
overhead of an unusually long latency over a number of
“average” latencies to enable analysis techniques
designed for deterministic real-time OSs to be applied
on a general purpose OS.

6. Conclusions

We have presented a metric for evaluating the real-time
performance of non-real-time OSs and platforms.  This
metric captures an aspect of performance that is
completely missed by standard batch and throughput-
based benchmarking techniques commonly in use
today.  The techniques that we have described are
destined to grow in importance as emerging workloads
such as audio, video and other multimedia presentations
are ever more widely deployed and as low latency hard
real-time drivers are migrated off of special purpose
hardware onto host processors.  This process is already
well advanced, with applications such as soft MPEG
and DVD already under development and soft audio
and soft modems already being routinely deployed by
vendors of low-cost personal computers.  It is likely
that this trend will accelerate in the future, further
increasing the importance of the latency metric.

Our analysis revealed that the two implementations of
the Windows Driver Model, although functionally
compatible, are very different in their timing behavior.
Using the interrupt and thread latency metrics we are

able to characterize the behavior that applications and
drivers will experience on Windows 98 even before
those applications and drivers are fielded.  Our analysis
indicates that many compute-intensive drivers will be
forced to use DPCs on Windows 98, whereas on
Windows NT high-priority, real-time kernel mode
threads should provide service indistinguishable from
DPCs for all but the most demanding low latency
drivers.  When one considers the difficulties of
“interrupt-level” (i.e., WDM DPCs) driver development
and the multitude of benefits obtained from using
threads, it is apparent that analyses such as the one we
have just presented will become increasingly important
from a Software Engineering standpoint.

6.1 Future Work

We have completed evaluations of Windows 98 [5] and
Windows NT 4.0 and continue to monitor the
performance of Beta releases of Windows 20007.  We
have also developed a tool that models periodic
computation at configurable modalities (e.g., threads,
DPCs) and priorities within modalities, and reports the
number of deadlines that have been missed.  With this
tool we can model a soft modem and examine its
impact on other kernel mode services.  We will also be
able to use the tool to validate our quality of service
predictions in this paper and expect to report on this
work at the conference.

In addition to this work, the latency cause analysis tool
is under active development.  First, we plan to enhance
it to hook non-maskable interrupts caused by the
Pentium II performance monitoring counters instead of
the PIT interrupt.  By configuring the performance
counter to the CPU_CLOCKS_UNHALTED event we
will be able to get sub-millisecond resolution during
both thread and interrupt latencies.  Second, we would
like to enhance the hook to “walk” the stack so as to
generate call trees instead of isolated instruction pointer
samples.  This would give much more visibility into the
actual code paths under execution, greatly increasing
the utility of the data.
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