
●

C

O
N

FE
RE

N
C

E
RE

PO
RT

S4th Symposium on Operating
Systems Design and
Implementation (OSDI 2000)
OCTOBER 23–25, 2000
SAN DIEGO, CALIFORNIA, USA
KEYNOTE ADDRESS

SYSTEMS ISSUES IN GLOBAL INTERNET

CONTENT DELIVERY

Daniel Lewin, Akamai Technologies, Inc.

Summarized by Darrell Anderson

Daniel Lewin started his talk with a brief
introduction to the development of the
Internet, emphasizing how it is really
built, and how that influences what his
company does. In the beginning, the Web
was very simple: content providers on
one side of the “Internet,” users on the
other. In between, network providers
made sure there was a path from every
user to every content provider, and vice
versa. This scheme has four bottlenecks:
the first mile, peering points, the network
backbone, and the last mile.

The first mile includes the content
provider’s databases, application servers,
Web servers, load balancers, switches,
routers, and bandwidth. This centralized
traffic creates an inherent bottleneck.

Around 7,000 networks account for up to
95% of the access traffic, and the number
of those networks is growing. The edge of
the Internet is becoming more diverse,
with many small ISPs.

Peering is critical to how the Internet
works. Peering is a bottleneck because
there’s no incentive to peer well — net-
works compete. Also, the technology for
peering is inadequate: pipe size is limited,
and it is difficult to peer two networks at
more than five to 10 places simultane-
ously.

The third bottleneck is the backbone.
Backbones are difficult to build and are
very expensive. The business model of a
backbone requires high utilization to
drive down costs. Though capacity is

11June 2001 ;login: OSDI 2000 ●

increasing, it cannot keep up with
demand. Peak utilization of the backbone
is around 200Gbps (usage data from for-
ward proxy logs), close to the “useful”
capacity of the network. Demand can
increase faster than capacity.

The last mile presents the final bottle-
neck. Once the last mile gets fast, one
would expect that the whole Internet will
get faster. However, if you gave everybody
a cable modem, the current infrastruc-
ture of the Internet would collapse. The
bottom line is, centralized delivery is
slow and unreliable.

At a very high level, Akamai does “edge
distribution,” deploying servers inside
many networks. The goal is to infuse all
7,000 networks that matter, distributing
data from the content provider to these
servers, serving content from as close to
the end users as possible. Edge distribu-
tion bypasses most bottlenecks (first
mile, peering, and backbone), improving
performance, reliability, and capacity.
Akamai provides network monitoring
tools, and its servers are free.

Akamai estimates speeds on average are
between two and 46 times faster, with an
86% reduction in download times. In
addition, edge distribution improves
consistency and availability.

Lewin then posed the following ques-
tions: How should a content distribution
network organize servers? Storage? What
data do we need to predict performance?
How can we gather this data reliably and
in real time?

This data enables resource management/
server selection. Data gathering and
server selection must be distributed and
fault tolerant, and must work with
imperfect information and in an unreli-
able setting. Also, system monitoring and
management need to represent data visu-
ally to alert and allow humans to interact
with the system. Object distribution and
invalidation introduce problems in
maintaining consistency in a massively

distributed system. A content distribu-
tion system must provide access informa-
tion the same way a centralized server
would.

Later, Lewin described the “common
point” metric, estimating the latency
between end users and servers. Rather
than measure actual latency between
users and servers, measure latency of seg-
ments of routes, ending in a common
point and enabling correlation. As a set
coverage problem, common points
reduce the set size from 200K to 6K,
enabling feasible measurement. Pulling it
together, the system computes the com-
mon point sets, gathers network data,
distributes data, and performs server
selection.

Akamai uses the DNS hierarchy to break
up resource management and server
selection into usable chunks.

Lewin concluded that the Internet is an
evil place, subject to the Heisenberg
uncertainty principle. It is difficult to
predict popularity, distributions, and
capacity. Server selection wants informa-
tion quickly and accurately, and even in
the face of inaccuracies, should not over-
load available resources. This is a hard
problem.

Akamai’s solution makes a few simple
(and sometimes wrong) assumptions:
that utilizations converge, popularities
are poison, and the number of active
users behind any particular DNS server is
never too large. When these assumptions
fail, servers or links may be overcommit-
ted. The problem is easily parallelized
because groups of users may be split.

For more information, see
<http://www.akamai.com>.

http://www.akamai.com>.

12 Vol. 26, No. 3 ;login:

SESSION: APPLYING LANGUAGE TECH-

NOLOGY TO SYSTEMS

CHECKING SYSTEM RULES USING

SYSTEM-SPECIFIC, PROGRAMMER-WRITTEN

COMPILER EXTENSIONS

Dawson Engler, Benjamin Chelf, Andy
Chou, and Seth Hallem, Computer Sys-
tems Laboratory, Stanford University

Summarized by David Oppenheimer

Dawson Engler described a compiler
extension system that allows compile-
time checking of application-specific
rules. The extensions are written in a
state-machine language called metal,
which somewhat resembles the yacc
specification language, and are dynami-
cally linked into a modified version of
g++ called xg++. The metal specification
describes patterns in the source language
that, at compile time, cause state transi-
tions in the state machine described by
the metal specification. At the time xg++
translates a function into the compiler’s
internal representation, it applies the
metal extensions down every code path
in the function. States corresponding to
rule violations signal a potential rule vio-
lation in the source program. This system
is one instantiation of a general concept
Engler calls Meta-Level Compilation
(MC), which raises compilation from the
level of the programming language to the
“meta level” of the code itself (e.g., inter-
faces, components, and system-level
properties), allowing the checking, opti-
mization, and transformation of systems
at a high level much as is done for low-
level code by compilers for code written
in traditional programming languages.

Engler argued that MC offers benefits
over traditional techniques for detecting
violations of system rules. Specifically, he
suggested that MC rules are significantly
easier to write than formal specifications
(verification), scale much better with
code size (testing), and don’t require dif-
ficult reasoning about the code (manual
inspection). By informing the compiler
of system-specific rules about the code,

MC allows automated checking of many
system-level properties at compile time.

Engler applied an MC system consisting
of metal specifications that extend the
xg++ compiler, to Linux, OpenBSD, the
Stanford FLASH machine’s protocol
code, and the Xok exokernel. By checking
rules, Engler’s system found over 600
bugs in these systems. Most extensions
were written in fewer than 100 lines of
code and by individuals unfamiliar with
the MC system itself.

During Q&A, several conference partici-
pants asked about opportunities to
improve the system in areas such as
reducing the number of false-positive
errors reported, handling function point-
ers, and automatically deriving rules
from code by looking at what the code
“usually” does (from a static code path
perspective). In response to a question
about the feasibility of using the tool
throughout the software development
process, Engler indicated that this
sounded like a potentially good idea, and
he pointed out that the system’s useful-
ness is improved when programmers
structure their code to be as simple as
possible, so that it is more amenable to
compiler analysis.

For more information, see
<http://www.stanford.edu/~engler/>.

DEVIL: AN IDL FOR HARDWARE

PROGRAMMING

Fabrice Mérillon, Laurent Réveillère,
Charles Consel, Renaud Marlet and
Gilles Muller, Compose Group,
IRISA/INRIA

Summarized by David Oppenheimer

Gilles Muller described Devil, an Inter-
face Definition Language (IDL) for hard-
ware programming. Devil attempts to
ease the driver development process by
defining an IDL in which a driver writer
composes a strongly typed, high-level,
easy-to-write description of a hardware
device’s software interface.

The Devil IDL is based on a few key
abstractions: ports, which serve as a com-
munication point and correspond to an
address range; registers, which serve as a
repository of data and are the grain of
data exchange between a device and the
CPU; and variables, which serve as the
programmer interface and correspond to
collections of register fragments that are
given semantic values, such as bounded
integers or enumerated types.

The IDL compiler checks the consistency
of a Devil specification with respect to
properties such as conformance to type
rules, use of all declared entities, absence
of multiple definition of entities, and
absence of overlap of port and register
descriptions. It then generates the neces-
sary low-level driver code, which includes
code to check for the proper use of the
generated interface.

Muller described the Devil description of
a device driver for the Logitech Bus-
mouse and several other devices, includ-
ing an IDE disk controller. Muller has
found that device drivers generated using
Devil are five times less prone to errors
than is C code, and that Devil offers neg-
ligible performance overhead while
improving programmer productivity.
Muller’s vision is that hardware vendors
will supply device specifications as a
Devil description, which can then be
used to generate documentation and the
device driver itself.

During Q&A, one conference attendee
pointed out that embedding the hard-
ware specification inside the compiler
limits the possibility of simultaneously
generating drivers for multiple platforms.

For more information, see
<http://www.irisa.fr/compose/devil/>.

http://www.stanford.edu/~engler/
http://www.irisa.fr/compose/devil/>.

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

STAMING THE MEMORY HOGS: USING

COMPILER-INSERTED RELEASES TO MANAGE

PHYSICAL MEMORY INTELLIGENTLY

Angela Demke Brown and Todd C.
Mowry, Carnegie Mellon University

Summarized by Tep Narula

Angela Demke Brown began her talk by
pointing out the rapid memory con-
sumption behavior of computational
problems with large data sets, termed
“out-of-core” applications. Such applica-
tions often suffer from high page-fault
rates caused by the operating system’s
default virtual memory management
policy. An earlier work by the same team
had shown that, by using the compiler to
analyze and insert page prefetches into
the code, out-of-core applications could
achieve good performance improvement
on a dedicated machine. However, out-
of-core tasks with aggressive prefetching
tend to have a severe negative impact on
other applications in a multipro-
grammed environment. Brown then
described the extensions they made in
order to turn an out-of-core task into a
“good neighbor” without placing any
additional burden on the programmer.

The system consists of three parts: OS
support, compiler analysis, and runtime
layer. The OS support includes primitives
for page prefetch and releases, as well as
information on page location, usage, and
availability. This was implemented as a
memory management policy module and
a kernel daemon called releaser on SGI
IRIX 6.5. The compiler algorithm per-
forms reuse analysis, locality analysis,
loop splitting, and software pipelining in
order to decide where to insert prefetch
and release hints. The implementation is
a pass in the Stanford University Inter-
mediate Format (SUIF) compiler. The
runtime layer dynamically analyzes both
the static, compiler-supplied hints and
the dynamic, OS-supplied system status
and decides when to issue a request for
either prefetch or release of a page to the
OS. The runtime layer is implemented as
a library that spawns a pool of pthreads

13June 2001 ;login: OSDI 2000 ●

to handle the prefetch and release
requests within the application space.
There are two release policies imple-
mented in the library: aggressive release
and priority-based buffered release.
Experiments were performed using the
out-of-core version of five applications
taken from the NAS Parallel benchmark
suite plus the MATVEC kernel. An SGI
Origin 200 with four processors was used
for the experiments. Overall, the results
showed significant performance
improvements both in dedicated and
multiprogrammed scenarios.

SESSION: SCHEDULING

SURPLUS FAIR SCHEDULING:

A PROPORTIONAL-SHARE CPU SCHEDULING

ALGORITHM FOR SYMMETRIC

MULTIPROCESSORS

Abhishek Chandra, Prashant Shenoy,
and Micah Adler, University of Massa-
chusetts, Amherst; Pawan Goyal, Ensim
Corporation

Summarized by Darrell Anderson

Scheduling is important for diverse Web
and multimedia applications, such as
HTTP, streaming, e-commerce, and
games. Applications are often hosted on
large, multiprocessor servers. A key chal-
lenge is to design OS mechanisms to pro-
vide fair and proportional resource
allocation. Other requirements include
isolating misbehaving or overloaded
applications and achieving low overheads
for efficient implementation in real sys-
tems.

Proportional-share scheduling is one
class of scheduling algorithms that
addresses these requirements. It associ-
ates a weight with each application and
allocates CPU bandwidth proportional to
weight. There are a number of algorithms
in use, but do they work well on multi-
processor systems?

Abhishek Chandra illustrated how one
such algorithm, Start-Time Fair Queuing
(SFQ), can lead to starvation when
scheduling three threads on two CPUs.

This starvation is a result of “infeasible
weight assignment,” where the account-
ing is different from actual allocation. A
simple correction, or “weight readjust-
ment,” can be made limiting any one
thread’s weight to a single CPU’s band-
width, preserving overall weight ratios.
Weight readjustment is efficient, running
in time proportional to the number of
CPUs in the system, and can be incorpo-
rated easily into existing scheduling algo-
rithms.

A second problem arises under frequent
arrivals and departures of short jobs,
which Chandra calls the “short jobs
problem.” Again, SFQ performs correctly
on uniprocessor systems but breaks
down when scheduling across multiple
processors.

Surplus Fair Scheduling (SFS) addresses
this problem. With this algorithm, the
scheduler measures observed processor
bandwidth share, which it compares with
the ideal share, computing the scheduling
surplus for each thread. By scheduling
threads in order of increasing surplus,
the short jobs problem sees fair schedul-
ing on single and multiprocessor systems.

Chandra presented proportional alloca-
tion tests where SFS yields near optimal
allocation. Second, SFS was compared
with time sharing for isolation and
scheduling overhead. SFS provides supe-
rior isolation at modest additional sched-
uling overhead.

Q: Don’t many scheduling algorithms,
such as lottery scheduling, have nearly
trivial extensions for multiprocessor sys-
tems?

A: Lottery scheduling has problems with
proportional share when applied directly
on a multiprocessor. On a multiproces-
sor, tickets do not translate to scheduling
weight.

Q: You claim a proportional-share sched-
uling algorithm will not work well on
multiprocessors. Does your algorithm

scale? What happens to the overhead
with a very large number of processors?

A: We have developed some algorithms
independent of the number of proces-
sors.

Q: How important is the virtual time in
your algorithm?

A: The idea is basically heuristic.

Q: It doesn’t seem that the problem is
inherent in SFQ. It seems you need to
have a notion of a global virtual time,
rather than weight readjustment.

A: We looked at a few algorithms we
could apply, but did not come up with a
simple answer.

For more information, see
<http://lass.cs.umass.edu/software/gms>.

PERFORMANCE-DRIVEN PROCESSOR

ALLOCATION

Julita Corbalán, Xavier Martorell, and
Jesús Labarta, Universitat Politècnica de
Catalunya

Summarized by Darrell Anderson

Performance-driven processor allocation
uses runtime information to make sure
that processors are always in use. The
scheduling problem is how to allocate
processors to applications, both for space
sharing and time sharing. Things work
best when the number of processes is
equal to the number of processors.

Processor allocation should be propor-
tional to application performance. A
drawback of this metric is that applica-
tion performance is not known before
execution. One solution involves a priori
calculation by measuring multiple execu-
tions, using previous results to predict
later performance. Julita Corbalán pro-
posed an alternative approach where
processors are allocated to those applica-
tions that can take advantage of them.
This runtime dynamic performance
analysis approach, called Performance-
Driven Processor Allocation (PDPA)

14 Vol. 26, No. 3 ;login:

requires coordination between medium-
and long-term schedulers.

Corbalán used the NANOS execution
environment on a shared memory multi-
processor. NANOS uses a queuing system
and CPU Manager to schedule OpenMP
parallel applications. The dynamic
performance analysis is done by the Self-
Analyzer, a tool that estimates execution
time for processes.

The SelfAnalyzer remembers baseline
performance results for two and four
processors, which are then used to pre-
dict performance. Performance-driven
processor allocation is space sharing,
allocating for acceptable efficiency.
Processes run to completion with mini-
mum allocation of one processor.
Dynamic partitioning and reallocation is
driven by the runtime system.

Corbalán compared PDPA against three
other multiprocessor schedulers, using
the OpenMP application suite on an SGI
Origin 2000 with 64 processors running
IRIX 6.5.8 and multiprogramming level
set to 4, PDPA performs as well as, and
frequently better than, the competing
schedulers. Corbalán showed different
applications that perform well for one
scheduler, with matching PDPA perfor-
mance. In some cases, PDPA performs
significantly better than all three alterna-
tives. Corbalán observed that it is very
important to provide accurate perfor-
mance information to the scheduler.

For more information, see
<http://www.ac.upc.es/NANOS>.

POLICIES FOR DYNAMIC CLOCK SCHEDULING

Dirk Grunwald and Philip Levis, Univer-
sity of Colorado; Keith Farkas, Compaq
Western Research Laboratory; Charles
Morrey III and Michael Neufeld, Univer-
sity of Colorado

Summarized by Darrell Anderson

“Saving energy or power is important,
both for battery life and at the micro-
architecture level for clock speeds,” said
Michael Neufeld, as he indicated that this

work is a study of proposed algorithms
and is a negative result.

Instantaneous power consumption of
CMOS components is proportional to
the square of voltage, times frequency.
Batteries will perform better if drained at
a lower rate. Secondly, frequency depends
on voltage. Greater voltage permits
higher frequency, to a point. Lower fre-
quencies provide more than linear reduc-
tion in power needs. It is better to run a
system slowly and steadily than to run it
as fast as possible and then shut the
processor off. Clock scaling algorithms
require load prediction and speed adjust-
ment.

Adding to prior work, Neufeld’s contri-
bution includes a real implementation
instead of simulation, focusing on practi-
cal aspects. The authors use an exponen-
tial weighting algorithm proposed in
earlier work, predicting utilization from
earlier intervals. Their implementation
uses a 10 millisecond interval time, look-
ing back three intervals with 50% and
70% busy as thresholds.

They modified the Compaq Itsy to meas-
ure current draw and power consump-
tion with 5,000 samples per second. They
ran the Compaq-modified Linux kernel
v2.0.30, adjusted to perform clock/volt-
age scaling. They also used the Kaffe Java
VM, instrumenting it to record and
replay applications. They ran four appli-
cations, measuring energy and smooth-
ness. Smoothness implies infrequent
changes in clock speed and voltage. They
ran an MPEG player, hoping that its
characteristics would translate well to
clock scaling. In practice, the algorithm
performed only marginally better.

The negative result: weighted averaging
methods do not appear to work well.
What went wrong? Averaging attenuates
oscillations, but does not remove them.
Larger interval history might help, but
would reduce responsiveness. Even if
tuning were possible, it would be fragile.
Also, a linear change in frequency doesn’t

http://lass.cs.umass.edu/software/gms
http://www.ac.upc.es/NANOS

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

S

15June 2001 ;login: OSDI 2000 ●

always mean a linear change in idle time.
The authors don’t have a conclusive
explanation.

Neufeld points out that existing hardware
has only limited voltage-scaling capabili-
ties. A wider range of hardware would be
very useful for experimentation.

SESSION: STORAGE MANAGEMENT

TOWARDS HIGHER DISK-HEAD UTILIZATION:

EXTRACTING “FREE” BANDWIDTH FROM BUSY

DISK DRIVES

Christopher R. Lumb, Jiri Schindler,
Gregory R. Ganger, David F. Nagle,
Carnegie Mellon University; Erik Riedel,
Hewlett-Packard Labs

Summarized by Mac Newbold

“Disk drives increasingly limit perfor-
mance in many computer systems,” Greg
Ganger pointed out as he explained the
need for better utilization of disk band-
width. His presentation outlined a
method of scheduling disk accesses that
can extract an additional 20–50% of a
disk’s potential bandwidth without
affecting the service times of the original
requests. Their method describes two
pools of requests: foreground requests,
which include the normal and high-pri-
ority workload of the disk, and back-
ground requests, low-priority tasks that
must get done but whose time of com-
pletion is less important. This “free”
bandwidth is extracted by scheduling the
low-priority requests between high-pri-
ority ones so that time normally spent on
rotational latencies gets used for back-
ground reads and writes.

Typical disk use generally requires the
disk heads to spend a relatively large
amount of time seeking the desired track
and waiting for the desired sectors to
rotate to the disk head. These are the seek
time and the rotational latency, respec-
tively. The seek time is inevitable. How-
ever, the rotational latency can be used
for other reads without affecting the
time the original request would take. The
authors call this process freeblock schedul-
ing.

The effectiveness of freeblock scheduling
relies on the ability to find background
requests that fit well between the fore-
ground requests. Tasks that are most
appropriate for this are processes that are
low priority, have large sets of desired
blocks, require no particular order of
access, and have small working memory
footprints. Applications that fit these
requirements include those that perform
scanning, internal storage optimization,
or prefetching and prewriting.

The actual results published in the paper
are very promising. They demonstrate
that for a process that wants to read the
entire disk in the background, the full
potential free bandwidth (35–40% of
total potential) can be utilized until over
90% of the disk has already been
scanned, and even until the entire disk
has been scanned, over half of the poten-
tial free bandwidth can actually be uti-
lized. They also show increases of disk
bandwidth utilization on the order of 10
times that of the original utilization.

It remains to be seen how much of this
scheduling can be done outside of mod-
ern disk drives, given the complexity of
their internal algorithms and the lack of
low-level interfaces. If freeblock schedul-
ing indeed proves to be compatible with
modern disk-drive technology, it could
be very beneficial and could significantly
increase disk bandwidth.

LATENCY MANAGEMENT IN STORAGE SYSTEMS

Rodney Van Meter, Quantum Corpora-
tion; Minxi Gao, University of Califor-
nia, Berkeley

Summarized by Vijay Gupta

Rodney Van Meter indicated that the pri-
mary motivation for this work was the
11-orders-of-magnitude difference
between latency of access to a tape and
that of access to RAM.

To address the above problem, the
authors proposed the concept of Storage
Latency Estimation Descriptors (SLEDs).
An API, SLEDs allow applications to

understand and take advantage of the
dynamic state of the storage system.
SLEDs are complementary to the notion
of hints (which are used in transparent
informed prefetching). Whereas hints are
given by applications to the OS, SLEDs
are given by the OS to the applications.

Van Meter motivated the use of SLEDs by
giving the example of an application
which makes two sequential passes over a
file. Suppose there are three pages in the
buffer, and the file size is five pages. If the
page replacement strategy is LRU, then
the second pass will have five hard faults.
On the other hand, SLED reorders reads
in the second pass so that there are only
two hard faults. Thus reordering I/Os
yields large gains.

The SLEDs were added to v2.2.12 of the
Linux kernel. The authors added new
ioctl options which return SLEDs data. In
addition, they modified several UNIX
utilities such as find, wc, grep and GMC
(which is a GUI file manager) to assess
the benefit of SLEDs. wc reorders I/O;
grep reorders and prunes directory
search trees; find uses their -latency pred-
icate. The feature of the -latency predi-
cate is that if the latency to access some
portion of the file system is going to be
beyond the specified latency, then that
portion of the file system would be
skipped.

Then Van Meter presented a large, com-
plex example of an astronomy applica-
tion (LHEASOFT) which is made up of
840,000 lines of C and Fortran. It has a
100,000-line I/O library. The application
was modified to reorder the I/O opera-
tions. This reordering achieved 11–25%
reduction in execution time in spite of
the fact that the program was already
optimized with the I/O library.

Overall, the paper raised some very
important issues for heterogeneous sys-
tems, which are becoming increasingly
common.

A LOW-OVERHEAD, HIGH-PERFORMANCE

UNIFIED BUFFER MANAGEMENT SCHEME THAT

EXPLOITS SEQUENTIAL AND LOOPING

REFERENCES

Jong Min Kim, Jongmoo Choi, Jesung
Kim, Sang Lyul Min, Yookun Cho, and
Chong Sang Kim, Seoul National Uni-
versity; Sam H. Noh, Hong-Ik Univer-
sity;

Summarized by Tamara Balac

This talk focused on a new solution to an
old problem. The problem is determining
which pages the OS should cache in the
main memory. The motivation for their
solution approach was that LRU has
problems for sequential and looping ref-
erences. If the access is purely sequential,
then caching recently used pages is
wasteful. If the access is looping, then
LRU cannot figure it out. To overcome
this difficulty, they proposed a new con-
cept called Inter-Reference Gap (IRG).
IRG for a block is the difference between
the points when the block is successively
accessed.

The types of references which the authors
considered are: sequential, looping, and
other. They developed a new scheme,
called unified buffer management (UBM),
which includes automatic detection,
replacement, and allocation, to exploit
these references.

In automatic detection, they take into
account “fileID, start, end, period” for
references. Initially, the period is infinity.
As more references are encountered, the
period is adjusted. For sequential access,
the period always stays at infinity. But in
the case of looping references, there is a
definite period. For replacement, they
adopt different schemes depending on
the type of reference. For sequential
access, they use MRU; for looping refer-
ences, they use a period-based replace-
ment scheme; and for other references,
they use LRU. The allocation scheme is a
bit too mathematical to explain here,
although the intuition involves using
marginal gains and IRG.

16 Vol. 26, No. 3 ;login:

To wrap up, Noh showed the results for
trace-driven simulations and showed
graphs for how UBM takes into account
the looping references.

SESSION: SECURITY

HOW TO BUILD A TRUSTED DATABASE ON

UNTRUSTED STORAGE

Umesh Maheshwari, Radek Vingralek,
and William Shapiro, STAR Lab,
InterTrust Technologies Corporation

Summarized by Tamara Balac

Digital rights management protects
rights of the provider (i.e., database bal-
ances, contracts). Existing systems are
missing trusted storage in bulk. Umesh
Maheshwari presented a Trusted Data-
Base system (TDB) that resists accidental
and malicious corruption by using
Crypto Basis, which leverages persistent
storage in a trusted environment.

The TDB architecture consists of three
layers: a Collection Store, an Object
Store, and a Chunk Store. The Chunk
Store provides trusted storage for vari-
able-sized sequences of bytes which are
the unit of encryption and validations
(100B–10KB). The Object Store manages
a set of named objects. The Collection
Store manages a set of named collections
of objects.

Performance evaluation demonstrated
that Crypto overhead is small compared
to I/O and that TDB performs well com-
pared to commercial packages (e.g.,
XDB).

END-TO-END AUTHORIZATION

Jon Howell, Consystant Design
Technologies; David Kotz, Dartmouth
College

Summarized by Mac Newbold

In a very entertaining presentation, Jon
Howell explained the need for an end-to-
end authorization scheme. Currently,
when a local user needs to grant access to
a resource to a non-local user, it creates
an authentication problem, because the
server doesn’t know about the non-local

user. Typically this is solved by creating
an account locally for the non-local user
by sharing passwords, or by installing a
gateway that is implicitly trusted by the
server, all of which we know have many
weaknesses. The solution proposed by
Howell is a system for delegating author-
ity in a way that the server has a complete
proof of correctness and an audit trail for
the access the remote user was given.

The system is based on delegations. For
instance, local user Alice wants to give
remote user Bob access to some of her
files. So she delegates her authority over
those files to Bob. Then when Bob asks
for file X in that set of files, the server is
presented with a collection of statements:
first the request, “Bob wants to access file
X,” then the delegation, “Bob speaks for
Alice concerning file X,” and finally the
basis for delegation, “Alice owns file X.”
The server then can make a decision
about allowing Bob to access X, instead
of relying on one or more gateways to
decide. In this scheme, gateways are
required only for translation and relay of
requests and proofs. Of course, at this
point, the client trusts the gateway not to
abuse its authority. To deal with this, a
gateway authentication scheme can be
used.

One advantage of a system like this is
that the gateway is very simple. It only
needs to carefully quote each request and
only use Alice’s authority for Alice’s
requests. It need not make access deci-
sions. This also allows for multiple gate-
ways to bridge the gap between client and
server, and ultimately the server is the
one who grants or denies access.

The implementation of the authorization
scheme uses Simple Public Key Infra-
structure (SPKI) and is part of the
Snowflake project. The paper includes
performance evaluations that reflect
some additional overhead for the end-to-
end authorization but points out that a
large part of the added overhead is
directly attributed to slow and inefficient

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SSPKI libraries. It is estimated that opti-
mized SPKI libraries would perform
almost as well as a Java and Java SSL
implementation of HTTP authorization.
Because Snowflake performs steps that
very closely correspond to those per-
formed by SSL, most of which are com-
putationally expensive cryptographic
operations, it is expected that an opti-
mized Snowflake would perform as well
as SSL plus a small overhead for the
proving steps that are not performed by
SSL. These results show that their tech-
nique is potentially a very valuable
resource for end-to-end authentication.

SELF-SECURING STORAGE: PROTECTING DATA

IN COMPROMISED SYSTEMS

John D. Strunk, Garth R. Goodson,
Michael L. Scheinholtz, Craig A. N.
Soules, Gregory R. Ganger, Carnegie
Mellon University

Summarized by Tamara Balac

Intrusions are a fact of modern comput-
ing. What are system administrators to
do? Diagnosis and recovery. Nevertheless,
the major problem with diagnosis and
recovery is that intruders can manipulate
ALL stored information.

John Strunk presented an implementa-
tion of a Self-Securing Storage System,
named S4, that prevents undetectable
modifications by providing a complete
history of all modifications. S4 is a sepa-
rate piece of hardware that runs a sepa-
rate operating system. The next step is to
add internal reasoning and auditing, by
creating a new version (called collec-
tions) on every write, and to store these
for a guaranteed amount of time (called
detection window).

The benefits of S4 include providing an
opportunity to analyze security compro-
mises, enabling speedy recovery, and
allowing recovery from accidents (like
accidental file modifications).

Diagnostic comparison of S4 and con-
ventional systems showed that conven-
tional systems use guessing, while S4’s

17June 2001 ;login: OSDI 2000 ●

audit log shows the sequence of storage
events. Additionally, an S4 administrator
can recreate the state of the storage at any
point of time.

Feasibility evaluation showed that large
detection windows, even multi-week
detection windows, are possible. More
importantly, the performance overhead
was less than 15%.

FAST AND SECURE DISTRIBUTED READ-ONLY

FILE SYSTEM

Kevin Fu, M. Frans Kaashoek, and David
Mazières, MIT Laboratory for Computer
Science

Summarized by Vijay Gupta

The motivation for this talk was that
Internet users increasingly rely on pub-
licly available data for everything from
software installation to investment deci-
sions. Unfortunately, the vast majority of
public content on the Internet comes
with no integrity or authenticity guaran-
tees. This work uses a secure file system
(SFS) that was built by the authors and
presented at SOSP 1999.

David Mazières started off by providing
an example of installing an OS over the
network. He also gave reasons why peo-
ple avoid security: performance, scalabil-
ity, reliability, and convenience. Another
issue in a distributed system is that the
more replicas you have, the greater the
chance of a break-in. To mitigate this
problem, people resort to ad hoc solu-
tions. As an example, lots of software
packages contain PGP signatures. The
problem with PGP is that it is not general
purpose; most users ignore signatures,
and it requires the continued attention of
the user.

So, they propose a self-certifying read-
only file system , which has been designed
to be widely replicated on untrusted
servers. This acts as a content distribu-
tion system providing secure, scalable
access to public, read-only data. With
this, one can publish any data. It is con-
venient because you can access it from

any application. It is scalable because
publishing has been separated from the
distribution infrastructure.

In their approach, an administrator cre-
ates a database of a file system’s contents
and digitally signs it offline using the file
system’s private key. The administrator
then widely replicates the database on
untrusted machines. Client machines
pick their data from these machines and
before data is returned to the applica-
tions, SFS checks the authenticity of data.
The good thing about their approach is
that no cryptographic operations are
performed on servers, and the overhead
of cryptography on the clients is low.
This is accomplished using collision-
resistant cryptographic hashes. For
details about the scheme, the interested
reader is referred to the paper.

The read-only file system is implemented
as two daemons (sfsrocd and sfsrosd in
the SFS system). A performance evalua-
tion shows that sfsrosd can support
1,012 short-lived connections per second
on a PC, which is 92 times better than a
secure Web server. Finally, Mazières also
mentioned the necessity of periodically
re-signing data and putting them on to
the server to prevent break-ins.

For more information, see
<http://www.fs.net>.

SESSION: NETWORKING

OVERCAST: RELIABLE MULTICASTING WITH AN

OVERLAY NETWORK

John Jannotti, David K. Gifford, Kirk L.
Johnson, M. Frans Kaashoek, James W.
O’Toole Jr., Cisco Systems

Summarized by Mac Newbold

Overcast addresses many of the problems
with current multicasting solutions in
the Internet. One option is IP multicast,
but it has several weaknesses. It can only
be used for live transmission, has no
delivery guarantees, requires support in
routers, servers, and clients, and makes
accurate billing and good security nearly
impossible. Another alternative is a con-

http://www.fs.net

tent distribution system, which provides
on-demand content. But it doesn’t per-
form so well with live content, often is
not scalable, and doesn’t allow for nodes
to be added or deleted on the fly.

John Jannotti indicated that Overcast
provides a unified reliable multicast solu-
tion. It is self-organized, handles live,
time-delayed, and on-demand content,
and any HTTP client can join without
modification. As an overlay network, it is
also incrementally deployable and
requires no special support from the
underlying network or its routers. It uses
HTTP over TCP port 80 and has other
features that make it compatible with
NATs, firewalls, and HTTP proxies.

One key to the Overcast design is the
process of building an efficient multicast
distribution tree. The source of the mul-
ticast is designated as the root of the tree,
and any nodes that want to join contact
that root node and attach to the tree as
its child. Periodically, each node consid-
ers its “sibling” nodes and “grandparent”
nodes as possible new parents. If it finds
that its connection to a sibling node is
better than its connection to its current
parent (for instance, in terms of latency,
bandwidth, or hop counts), it makes that
sibling node its new parent. It could also
find that a connection directly to its
grandparent would be a better connec-
tion than through its current parent, and
it would, in effect, become a sibling to its
parent node. This protocol makes the
topology flexible when faced with chang-
ing network conditions.

Overcast uses only “upstream” connec-
tions when contacting other nodes; that
is, the child always must establish a con-
nection with the parent. This ensures
that HTTP proxies and NATs do not
interfere with Overcast functionality. For
this reason, an up/down protocol was
created for maintaining information
about node status. It requires each node
to check in with its parent periodically,
and if it misses a check-in, it is consid-

18 Vol. 26, No. 3 ;login:

ered dead. Through the use of “death cer-
tificates” and “birth certificates,” it noti-
fies the hierarchy of changes in topology.
A key to scalability here is a system for
quenching messages that aren’t necessary
for nodes further up the hierarchy. Over-
cast network usage for these messages
scales sublinearly, and space usage on the
root node is linear, but even in a group of
millions of nodes, total RAM cost for the
root would be under $1,000.

Jannotti referred to the paper which also
outlines a system for replicating the root
node to increase reliability of the root
server itself. The system uses techniques
used by normal redundant server setups,
such as DNS redirection or round-robin
load balancing and, in the case of a failed
server, IP address takeover. The Overcast-
specific solution is to replicate root state
by setting up the servers linearly, with
each replicated root being the only child
of the root node above it, so that the rest
of the hierarchy is descended from each
of the root nodes. This way when one
fails, another can immediately take over
without any interruption of service or
loss of state.

Jannotti concluded that the reliable mul-
ticast solution proposed in Overcast is a
very feasible solution in terms of deploy-
ability, scalability, efficiency, flexibility,
and usability in real-world situations.

SYSTEM SUPPORT FOR BANDWIDTH

MANAGEMENT AND CONTENT ADAPTATION

IN INTERNET APPLICATIONS

David Andersen, Deepak Bansal,
Dorothy Curtis, and Hari Balakrishnan,
MIT Laboratory for Computer Science;
Srinivasan Seshan, Carnegie Mellon Uni-
versity

Summarized by Vijay Gupta

David Andersen opened his talk by say-
ing that the primary motivation of the
work was to facilitate end-to-end conges-
tion control. TCP uses an additive
increase, multiplicative decrease (AIMD)
scheme for congestion control. That’s
wonderful for FTP and email, which use

just one TCP connection. But HTTP uses
four connections in parallel between the
same two endpoints in the Internet. Fur-
thermore, not all applications necessarily
need the reliability of TCP, so such appli-
cations use UDP. To make them TCP-
friendly, they end up using some
home-grown congestion control. The
goal of this work is to have some kernel-
level mechanisms to facilitate TCP
friendliness.

Andersen showed where the congestion
controller occurs in the Linux kernel,
where they implemented their scheme.
They use callbacks for orchestrating
transmissions and application notifica-
tion. The clients for these callbacks are
in-kernel TCP clients.

The implementation handles flow con-
trol and congestion control. It also has a
user-level rate callback API, called libcm,
which tells if bandwidth goes up by some
factor (e.g., a factor of 2).

Andersen addressed evaluation issues
such as the impact on the network and
on the connections. Their approach has a
positive effect on the TCP friendliness of
host-to-host flows, although the
throughput of the connections may be
slightly worse.

For testing the flow integration, they
used a series of Web-like requests on the
Utah testbed (see
<http://www.cs.utah.edu/flux/testbed/>).
Andersen also presented graphs to show
that congestion manager (CM) is effi-
cient, and he then showed some results
for layered MPEG-4 (which is not in the
paper). He also said that implementing
an adaptive visual audio toolkit (vat) was
very trivial using the CM toolkit.

For more information, see
<http://nms.lcs.mit.edu/projects/cm/>.

http://www.cs.utah.edu/flux/testbed/>
http://nms.lcs.mit.edu/projects/cm/>.

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SSESSION: STORAGE DEVICES

OPERATING SYSTEM MANAGEMENT OF

MEMS-BASED STORAGE DEVICES

John Linwood Griffin, Steven W.
Schlosser, Gregory R. Ganger, and David
F. Nagle, Carnegie Mellon University

Summarized by Vijay Gupta

John Griffin began the talk with an
overview of microelectromechanicals
(MEMS) and MEMS-based storage
devices. MEMS is a new storage technol-
ogy currently under development in
industry and academia. Real-life systems
such as car airbags already use them. The
results in this paper are based on collabo-
ration with the MEMS lab at CMU.

The real advantage of MEMS-based stor-
age devices is that the seek time is an
order of magnitude less than with disks.
The purpose of the talk was to show that
work on disk-scheduling algorithms is
also applicable to MEMS-based storage
devices. This was shown through a vari-
ety of graphs which had the same shape
for disk-scheduling and MEMS-based
storage.

An interesting aspect of MEMS-based
storage is that the access is faster for data
in the center, and slower for data at the
borders. So the authors suggest that the
center be used for metadata and small
objects, and that the border be used for
large-streaming media objects.

During Q&A, one person asked about
price/GB, and Griffin said that it might
be cheaper than hard disk. Someone else
asked when we could see them in real
systems, and he replied that it could be
expected in a few years. For power
requirements, he referred to their
upcoming ASPLOS paper, while for
MTTF, Griffin responded that he did not
have an answer.

For more information, see
<http://lcs.Web.cmu.edu/research/MEMS
>.

19June 2001 ;login: OSDI 2000 ●

TRADING CAPACITY FOR PERFORMANCE

IN A DISK ARRAY

Xiang Yu, Benjamin Gum, Yuqun Chen,
Randolph Y. Wang, Kai Li, Princeton
University; Arvind Krishnamurthy, Yale
University, Thomas E. Anderson, Univer-
sity of Washington

Summarized by Vijay Gupta

Large disks are now available for a frac-
tion of what they used to cost, and hence,
one can be more creative about how to
use them. In this paper, Randolph Wang
proposes a way to reduce the usage level
of disks.

Since the access times between memory
and disks keeps on increasing, RAID sys-
tems were made to improve the read/
write throughput of the systems and to
improve reliability. However, this work
goes beyond RAID by contributing an
SR-array, which flexibly combines strip-
ing with rotational replication to reduce
both seek and rotational delay. The aver-
age seek distance becomes less than one-
third of the ratio of the maximum to
average rotational delay, and the rota-
tional delay for reads is reduced to half.

Wang went on to show some of the equa-
tions which they derived as part of their
theoretical model. They have a prototype
MimdRAID implementation (which is a
simulator) that puts the theory to test.
The bottom line was that the MimdRAID
prototype can deliver latency and
throughput results unmatched by con-
ventional approaches.

For more information, see

<http://www.cs.princeton.edu/~rywang/mimdraid>.

INTERPOSED REQUEST ROUTING FOR SCALABLE

NETWORK STORAGE

Darrell C. Anderson, Jeffrey S. Chase,
Amin M. Vahdat, Duke University

Summarized by Mac Newbold

Jeff Chase described a new storage system
architecture called Slice. It takes advan-
tage of high-speed networks to interpose
a request switching filter, a microproxy or

µproxy, and presents an NFS interface to
clients that has a back end which scales
well in both bandwidth and capacity.

Because of recent advances in LAN
performance, a specialized Storage Area
Network (SAN) with faster network con-
nections (like Fibre Channel) is no
longer required, and similar approaches
can be used in a LAN environment to
provide scalable network storage. The
Slice file service is a group of servers that
cooperate to provide an arbitrarily large
“virtual volume” to a client, who sees it as
a single file server. Client requests are
separated into three classes: high-volume
I/O to large files, I/O on small files, and
operations on namespace or file attrib-
utes. This diverts high-volume data flow
around manager nodes and allows spe-
cialization of the servers for each type of
data.

The µproxy handles all bulk I/O requests
and was designed to be small, simple, and
fast. It has been implemented as a load-
able packet filter module for FreeBSD. It
may rewrite source or destination
addresses or other fields in request and
response packets. It maintains a bounded
amount of soft state that is not shared
across clients, so it can easily be placed
on the client itself, in a network interface,
or in a network element close to the stor-
age servers. All of its functions can be
replicated freely to provide scalability,
with the constraint that requests for a
given client all pass through the same
µproxy. The µproxy routes requests
directly to the storage array without any
further intervention by management
nodes.

The storage nodes themselves use an
object-based method as opposed to sec-
tor-based. This feature lets the µproxy be
located outside of the server’s trust
boundary and use encryption to protect
object identifiers, limiting damage from a
compromised µproxy to those files and
directories that its clients have permis-
sion to access. Slice is also compatible

http://lcs.Web.cmu.edu/research/MEMS
http://www.cs.princeton.edu/~rywang/mimdraid

with sector-based storage if every µproxy
is trusted. Redundancy can also be pro-
vided at two levels, either internally to
each storage node or across nodes
through mirroring and striping. It can be
configured on a per-file basis, and a Slice
configuration could even use redundancy
at both levels for stronger protection.

The two types of management nodes, the
directory servers and the small file
servers, take load off of the storage nodes
and allow for further specialization for
these types of operations. These man-
agers are data-less, and all their state
comes from the storage arrays, so they
provide only memory and CPU resources
to cache and manipulate the structures.
The directory server handles all lookups,
creation, renaming, and deletion of
directories and files and their attributes.
The small file servers provide more effi-
cient space allocation and file growth, as
well as batching of multiple small
requests into larger ones for efficient disk
writes. The managers also help provide
atomicity and recovery features through
a write-ahead log and two-phase com-
mits.

Performance data indicates that Slice
does indeed scale very well. Name-inten-
sive benchmarks showed directory serv-
ice can be improved simply by adding
more directory server sites, and for any
given configuration, the performance
scales linearly with the number of clients.
Performance was evaluated with the
industry-standard SPECsfs97 bench-
mark, and Slice kept up perfectly with the
offered load up to its saturation point,
which can be easily raised by adding
more storage nodes.

Slice definitely provides a network stor-
age solution that is scalable, reliable,
practical, easy to upgrade, and compara-
ble to similar commercial solutions in
terms of performance. With benefits like
these, we are sure to hear more about
Slice in the near future.

20 Vol. 26, No. 3 ;login:

For more information, see
<http://www.cs.duke.edu/ari/slice/>.

SESSION: RELIABILITY

PROACTIVE RECOVERY IN A

BYZANTINE-FAULT-TOLERANT SYSTEM

Miguel Castro and Barbara Liskov, MIT
Laboratory for Computer Science

Summarized by Tamara Balac

Today’s computer systems provide crucial
information and services which make
them more vulnerable to malicious
attacks and make the consequences of
these attacks, as well as software bugs,
more serious. As an alternative to the
usual technique of rebooting the system,
this paper proposes a new means of sys-
tem recovery that does not use public key
cryptography.

Miguel Castro presented an asynchro-
nous state-machine replication system
that offers both integrity and high avail-
ability and is able to tolerate Byzantine
faults which can be caused by malicious
attacks or software errors. The paper
presents a number of new techniques,
like proactive recovery of replicas, fresh
messages, and efficient state transfer,
needed to provide good recovery service.

The task of recovery from Byzantine
faults is made harder by the fact that the
recovery protocol itself needs to tolerate
other Byzantine-faulty replicas. Attackers
must be prevented from impersonating
recovered replicas. The advantage of this
system over previous state-machine
replication algorithms is the use of sym-
metric cryptography for authentication
of all protocol messages, which bypasses
the major public key cryptography bot-
tleneck.

This algorithm has been implemented as
a simple interface, generic program
library that can be used to provide
Byzantine-fault-tolerant versions of dif-
ferent services.

For more information, see
<http://www.pmg.lcs.mit.edu>.

http://www.cs.duke.edu/ari/slice/
http://www.pmg.lcs.mit.edu>.

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SEXPLORING FAILURE TRANSPARENCY AND THE

LIMITS OF GENERIC RECOVERY

David E. Lowell, Western Research Lab-
oratory, Compaq Computer Corpora-
tion; Subhachandra Chandra and Peter
M. Chen, University of Michigan

Summarized by David Oppenheimer

David Lowell described the abstraction of
“failure transparency,” in which an oper-
ating system provides the illusion of fail-
ure-free operation by automatically
recovering applications after hardware,
operating system, or application failures
without explicit programmer assistance.
His work proposes two invariants that
must be upheld to achieve failure trans-
parency. The “save-work invariant” speci-
fies what application state must be
preserved to mask the failures. The “lose-
work invariant” specifies what applica-
tion state must be discarded to allow
recovery from failures that affect the
application state.

Lowell’s theory defines a space of recov-
ery protocols. Each point in the space
represents a different technique for
upholding save-work. One axis of this
space is the effort made to commit only
visible events, while the other is the effort
made to identify and convert non-deter-
ministic events. Lowell mapped a num-
ber of protocols onto this space and
discussed how performance, simplicity,
reliability, recovery time, and other
design variables vary over the space.

Lowell presented performance results,
using “save-work invariant,” for four
applications: nvi, magic, xpilot, and Tread-
Marks. He ran each application on a
number of protocols from the protocol
space. For these applications he found an
overhead of 0–12% when his recovery
system used reliable memory as stable
storage. He found overhead of 13–40%
for the interactive workloads when using
disk as stable storage.

In addition to nvi, Lowell used postgres
for measuring performance with “lose-
work invariant.” By injecting faults into

21June 2001 ;login: OSDI 2000 ●

nvi and postgres, Lowell also measured
the fraction of application faults that vio-
late lose-work by committing after the
fault is activated. He found that uphold-
ing save-work for these applications
caused them to violate lose-work in at
least 35% of application crashes from
non-deterministic faults. Merging this
result with published fault distributions,
he estimated that perhaps greater than
90% of application crashes in the field
violate lose-work, making application
generic recovery impossible in those
cases.

Because operating system faults often do
not manifest as propagation failures, OS
faults cause violation of lose-work less
frequently than application faults. Lowell
presented fault-injection study results in
which nvi and postgres violated lose-
work in 15% and 3% of OS crashes,
respectively.

Lowell concluded that for stop failures,
which do not require upholding lose-
work since by definition they crash the
application before corrupting any appli-
cation state, low-overhead failure trans-
parency is possible for many real
applications. Recovering from propaga-
tion failures is much more difficult
because upholding save-work often
forces violation of lose-work. From this
study, Lowell concluded that providing
failure transparency for stop failures is
feasible, but that recovery from propaga-
tion failures cannot be accomplished
transparently and must involve help from
the application.

During Q&A, conference attendees asked
about the feasibility of rebooting applica-
tions as a mechanism for stopping a pro-
gram before an error has propagated, and
the difference in the chance of violating
lose-work for hardware failures as
opposed to software failures.

For more information, see
<http://www.eecs.umich.edu/Rio>.

DESIGN AND EVALUATION OF A CONTINUOUS

CONSISTENCY MODEL FOR REPLICATED

SERVICES

Haifeng Yu and Amin Vahdat, Duke
University

Summarized by David Oppenheimer

Amin Vahdat described the design and
evaluation of TACT, a continuous consis-
tency model for replicated services. This
model proposes a continuous range of
consistency options for distributed appli-
cations, rather than simply the tradi-
tional strong and optimistic concurrency
policies. By proposing a set of metrics to
quantify the consistency spectrum —
numerical error, order error, and stale-
ness — TACT allows the investigation of
tradeoffs among consistency, availability,
and performance as consistency policies
are varied in the space between strong
and optimistic concurrency.

Applications that use TACT specify their
desired consistency semantics using
conits. A conit is a three-dimensional
vector associated with each application-
specific physical or logical unit of consis-
tency (e.g., a block of seats on a flight in a
distributed airline reservation system).
The three elements of a conit are numer-
ical error, which bounds the discrepancy
between the local value of a piece of data
and the value in the “final image” of the
data; order error, which bounds the dif-
ference in the order in which updates are
applied to a local replica and the ordering
of those updates in the “final image”; and
staleness, which specifies a maximum
amount of time before a non-local write
is accepted to be applied locally. Bayou-
style anti-entropy is used as the mecha-
nism for maintaining consistency among
replicas.

TACT is implemented as a middleware
layer that enforces the consistency
bounds specified by the application’s
conits. It allows applications to dynami-
cally trade consistency for performance
based on service, network, and request
characteristics. Three systems have been

http://www.eecs.umich.edu/Rio

built using the TACT platform: a bulletin
board, an airline reservation system, and
a system for enforcing quality of service
(QoS) guarantees among distributed
Web servers. For these systems Vahdat
evaluated such issues as latency for post-
ing a bulletin board message as a func-
tion of the numerical error bound;
reservation conflict rate, throughput, and
reservation latency as a function of
inconsistency in the airline reservation
system; and number of consistency mes-
sages as a function of relative error for
the distributed Web server QoS system.

During Q&A, Vahdat indicated that his
group is currently investigating issues
such as how responsive the system is to
rapid variation in desired consistency
levels and how much effort is required by
a programmer to incorporate conits into
an application.

For more information, see <http://www.
cs.duke.edu/ari/issg/TACT/>.

SESSION: SYSTEM ARCHITECTURE

SCALABLE DISTRIBUTED DATA STRUCTURES

FOR INTERNET SERVICE CONSTRUCTION

Steven D. Gribble, Eric A. Brewer,
Joseph M. Hellerstein, and David Culler,
University of California, Berkeley

Summarized by Mac Newbold

Building and running a cluster-based
Internet service is hard. Steven Gribble
explained the implementation of a Dis-
tributed Data Structure (DDS) that is
designed to be a reusable storage layer for
Internet services. The goals of the DDS
are to be scalable, highly available and
reliable in the face of failures, to maintain
strict consistency of distributed data, and
to provide operational manageability. In
particular, they have designed and imple-
mented a distributed hash table that
meets these goals.

The basic design starts with a cluster.
This provides low latency, redundancy,
and makes a two-phase or multiple
round-trip system feasible. All instances
of the service see the same data structure,

22 Vol. 26, No. 3 ;login:

so any client can work with any server for
any transaction, which simplifies load
balancing and request routing.

This design provides incremental scala-
bility as nodes are added to the cluster
and was tested up to terabytes of storage
space. Because individual nodes and
disks might fail, each partition of data is
replicated on multiple nodes, forming a
replica group, which are all kept strictly
coherent. Any replica can service a data
lookup, but any state changes must hap-
pen in all replicas.

A simple algorithm is also in place to
provide fault tolerance. If a replica
crashes, it is simply removed from the
replica group and operation continues.
When a node joins or rejoins a replica
group, the partitions that it will duplicate
are copied from existing replicas, and the
node is added to the replica group. Indi-
vidual partitions are kept small (approxi-
mately 100MB), so that an entire data
partition can be copied in 1 to 10 seconds
(given a 100Mbps to 1Gbps network).
The partition to be copied is locked by
the joining node, copied, and the replica
group maps are updated, and the locks
are released. Any write operations on that
partition will have failed during that
time, but after the lock is released, retries
will succeed.

Performance data shows that the maxi-
mum throughput of the DDS scales lin-
early with the number of bricks. Read
operations also scale linearly up to the
saturation point, where read throughput
plateaus, but again, by adding bricks, the
throughput is increased. Write operations
run into problems, however, because
garbage collection ends up causing an
imbalance between the nodes in a replica
group, and because the writes have to
happen on all replicas, the slow one
becomes the bottleneck. Even perfor-
mance in recovery was very promising;
an N-brick DDS during a single failure
and recovery appeared to yield perfor-
mance near to that of an (N-1)-brick

DDS, except that the partitions on the
failed brick were available only for read-
ing.

An example of the usefulness of DDS for
rapid construction of Internet Services is
Sanctio, an instant messaging gateway. It
translates between ICQ, AOL’s AIM pro-
tocol, email, and voice messaging over
cellular phones. It also uses AltaVista’s
BabelFish to do language translation.
During his presentation, Gribble told of
using Sanctio to translate his English
ICQ connection to an Italian AIM con-
nection to communicate with a friend’s
grandmother in Italy. Using DDS for its
storage, Sanctio was completed in less
than one person month, and the code
that interacts with the DDS took less
than a day to develop.

This work shows that a Distributed Data
Structure can provide a scalable, highly
available, reliable, consistent, and easy-
to-use interface to network storage, and
shows its usefulness for constructing
Internet services.

PROCESSES IN KAFFEOS: ISOLATION,

RESOURCE MANAGEMENT, AND SHARING IN

JAVA

Godmar Back, Wilson H. Hsieh, and Jay
Lepreau, University of Utah

Summarized by Tamara Balac

Godmar Back described the design and
implementation of KaffeOS, a Java vir-
tual machine that supports the operating
system abstraction of a process and pro-
vides the ability to isolate applications
from each other or to limit their resource
consumption and still share objects
directly. Processes enable several impor-
tant features. First, the resource demands
for Java processes can be accounted for
separately, including memory consump-
tion and GC time. Second, Java processes
can be terminated, if their resource
demands are too high, without damaging
the system. Third, termination reclaims
the resources of the terminated Java
process.

http://www

