
The following paper was originally published in the
Digest of the Large Scale System Administration of Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Systems Administration of Scientific Computing on NT

Rémy Evard & Michail Gomberg
Mathematics and Computer Science Division, Argonne National Laboratory

Abstract
Traditionally, scientific computing has been performed on large and expensive UNIX-based
supercomputers. The advent of high quality commodity hardware and software has the potential
to decrease the cost of scientific computing and change the way in which it is performed.

We describe the Chicago Pile 6 – a network of computers running Windows NT, built in order to
prototype scientific computing methods in this type of environment. We discuss the
administrative requirements for the system and our approaches to administering it.

Introduction
The term "scientific computing" refers to an
approach to doing scientific experiments by
modeling them on a computer. These models take a
long time to execute, but they can usually be sped up
by writing them using parallel programming
techniques and running them on parallel computers.
Thus, most large-scale scientific computing is done
on large supercomputers at various supercomputing
facilities around the world.

Even running in parallel, a scientific computation
will typically execute for a long period of time,
during which it will read and write very large
datasets sometimes reaching into the terabyte range.
It is also becoming common for scientists to use
advanced graphical techniques to analyze their data
and to distribute their computations across multiple
computers in order to reduce the execution time.

The Mathematics and Computer Science Division
(MCS) of Argonne National Laboratory has been
involved in parallel computing and scientific
computing for well over 10 years. We currently
operate a large IBM SP supercomputer, which is
used by scientists from around the world. The SP
runs AIX, and the majority of users are UNIX
programming experts.

Scientific Computing on Commodity
Platforms

The growing significance of NT is interesting to us
in a number of ways.

First, we have the same questions that most
predominantly UNIX-based sites have. How do we
integrate the two operating systems into a consistent
and cohesive environment? Is it possible to manage
NT desktops as easily as we can manage our UNIX
workstations? What security implications does the
NT world bring to us? These questions are a part of
the day-to-day management of our environment and
are related to scientific computing only in that many
of our users are starting to have NT machines on
their desktops.

A more interesting aspect of NT to us is its role in
the commodity computing marketplace. Standard
PC hardware has reached a sweet spot in the
price/performance curve, and everyone has noticed.
By measuring performance of processors and
comparing prices, it appears that a PC-processor
based supercomputer could be constructed for about
a third of the cost of an equivalent supercomputer.
This is obviously compelling, but leaves open
questions such as the operating system, the network
interconnect, and mass storage issues.

The majority of people working in this area are
building supercomputer style clusters of PCs running
Linux, built around a standard 100baseT Ethernet
switch. This approach makes a great deal of sense:
most supercomputing applications and tools are built
on UNIX, so getting them to run on a Linux-based
machine is quite easy. Some fascinating work is
going on in this area, perhaps best exemplified by the
Beowulf project [1]. Researchers active in
commodity supercomputing met at the Pentium Pro
Cluster workshop [2] in the spring of 1997.

However, we believe there is another part of the
commodity marketplace that will soon influence the

world of scientific computing (among others): the
incredibly large set of software that runs on the
Win32 API. This could have a profound effect on
the world of scientific software, in much the same
way that Intel processors are affecting the
workstation market. To understand what NT could
mean to us and to take advantage of it, we decided to
build a prototype of an NT-based supercomputing
cluster.

The Argonne Chicago Pile 6
First, a word on terminology: while we often refer to
this set of machines as an "NT cluster" out of
convenience, we are not using any clustering
technology in the strict sense of the term. The
machines are loosely coupled over an Ethernet, and
don't yet do any kind of failover, process migration,
or peripheral sharing. A more accurate description
of the machines is a "pile". So, the project has taken
on the name "Chicago Pile 6" or CP-6. (The
previous five Chicago “piles” were nuclear reactors
located around Argonne.)

We had a number of goals in mind when we built the
CP-6. Among them were the following:
1. To use component parts and off-the-shelf

software to try to build a system that could be
used for scientific applications.

2. To use the system as a porting testbed for
research projects in our division.

3. To test and compare applications performance.
4. To understand the systems administration issues

for a network of NT machines.
5. To study the scalability issues that would be

involved to build a TeraFLOP-class machine.

6. To explore the potential for integrating scientific
computing with desktop computing.

We started out building a small prototype system in
order to test the concept. This is an exploration; it's
not an attempt to actually turn these machines into a
user facility that is supported the same way our
supercomputer is. If this project is a success, that
will eventually be the goal, but we're not there yet.

We've started with a modest set of machines − 11
Pentium Pro machines, with varying numbers of
CPUs. They are connected over a 100baseT Ethernet
switch. We will soon be expanding the pile to add
substantially more nodes. We plan to grow to around
a hundred machines in the near future, so that we
will be able to test scalability issues. The current
configuration is detailed in Figure 1.

The machines are operated as their own NT domain,
which trusts the primary NT domain of our division.
Most of the nodes are compute nodes, running
Windows NT Workstation 4.0; another node is the
nominal front-end (see below), which is running
NTRIGUE [3].

Requirements and Solutions
Traditional supercomputers are built around a model
that consists of the following pieces:
• One or more front-ends, which a user logs into

remotely in order to start their job. In some
systems, the user compiles and debugs on the
front end as well. The front-end serves as a
remote access mechanism, a way to invoke jobs,
and a compilation site.

Figure 1

Figure 1: CP-6 Configuration

• The compute engine, which may consist of a
large number of distinct nodes or may be a set of
processors all sharing a large memory space. In
an individual node system (like the NT pile),
jobs are typically invoked on the compute nodes
by a form of remote shell.

• Some kind of scheduling mechanism, which
makes policy decisions about which jobs have
priority in a multiuser system.

• Data storage mechanisms, which range from
standard file systems such as a user's home
directory where code is stored, to large, high-
performance file systems for large data sets.

• Visualization components, where computations
display graphical output, which in some cases
(such as Argonne's CAVE [4]), can be used to
interact with the computation.

In addition, users have a number of implicit
requirements, such as having the same password on
all systems, a consistent and uniform file system
interface, and ubiquitous email.

In this section, we explain how we have tried to
fulfill these requirements on an NT-based system.

Interestingly, nearly every decision has included
some aspect of this question: Should we try to make
NT look like UNIX, or should we adapt ourselves
and our methods to NT's model? On one hand, we
want NT to act like the UNIX systems that we
understand because we have an enormous base of
knowledge, experience, code, and tools that already
work. On the other hand, NT doesn't fit into the
UNIX mold very well, and the potential advantages
of using NT as a commodity system disappear if one
layers piles of UNIXisms on top of it.

We don't have a set answer to this; there probably
isn't one. Our approach was to set out to build an
environment as much like the one as we are
accustomed to, and to modify that environment
where it made sense or we had to.

Remote Access
Our UNIX users take remote access for granted;
rlogin and telnet are things that they do constantly,
and this is how they expected to use the NT
computing cluster. Remote access, in that sense, is a
completely foreign concept in the NT world. It's
amazing how often this comes up in discussions, and
how little understood this issue is.

To get a handle on this problem (which we certainly
needed to understand if people were to use the NT

computing cluster without visiting the machine
room), we tried to identify what our users mean by
"remote access":
• They want to start a process on another

computer.
• That process should be running with their

permissions and have the same environment
(e.g., file systems and environment variables)
that it would have if they were sitting at the
console of the computer.

• They should be able to do this regardless of
whether or not someone else is logged into the
console, and their process shouldn't be impacted
by the presence of that user or that user's
processes, other than possible restrictions on
CPU or disk usage.

• They want to be able to run exactly the same
programs over this remote connection that they
could from the console of the computer.

This entire set of capabilities doesn't exist as a whole
under NT, and some of them are foreign to its
design. In fact, when we discussed these needs with
some NT users, they didn't even understand the
desire for remote access.

Here's what we've learned about remote access under
NT:

• Starting a process on another NT computer is
not hard. This can be done with the NT rsh
utility that comes with the NT 4.0 Resource Kit
[5], or any of several products.

• The rsh utility that comes with the resource kit
has to be installed as a service and can be set to
start automatically at startup. We discovered
quite early, though, that this rsh doesn't establish
the correct security context for the user process
on the remote machine. This is a real problem,
as the remote process can't access network
resources (such as filesystems) that would be
available to the user.

• Ataman Software [6] sells a version of rsh that
gets around this problem by storing the user's
password and then essentially logging in as that
user. We're currently using this product as the
way to spread processes across the CP-6. This
works well for users, but password maintenance
has become an administrative burden. Ataman's
rsh stores the user's encrypted password in a
local registry hive. We have had to write a set
of programs and scripts to take that password
and propagate it to the other nodes in the cluster.
Also, one gets a vague sense of unease with yet

one more place in the registry where passwords
are kept with yet another encryption scheme.

• Even under Ataman's rsh, it's not clear how
much of the user's environment is available on
the remote machine. For example, most of the
user registry hive doesn't get loaded during rsh,
meaning that user-mapped drives and
environment settings won't be present for the
process. There's also a strong chance for drive
letter collisions, if two different user processes
try to map different network drives to the Z:
drive, for example.

• Multiuser access of the type described above
simply isn't possible under pure NT 4.0. While
modified, multiuser versions of NT are available
from vendors other than Microsoft, at the time
of this writing, they're not a standard part of NT.
This is a serious drawback.

Job Invocation and Scheduling
Many supercomputers have some kind of front-end
machine, which is used as a way to access the
facility, to invoke jobs on it, and sometimes as a
place to build programs for it. We initially felt that
we would need some kind of front-end for the NT
pile, and we thought that this would perhaps help
solve the remote access problem described above.

We purchased NTRIGUE [3], a multi-user version of
NT 3.51, from Insignia Software. We installed it on
a 4-cpu machine and made it available to anyone
wishing to use the NT pile. This works well for
people who don't have NT machines of their own but
are instead using X Windows-based systems; it gives
them a location where they can access NT resources
and build programs. This machine, however, doesn't
perform any particularly important role in the cluster.
Jobs can be invoked from any NT machine trusted by
the NT machines, not just the NTRIGUE box.

As a way of giving a remote user access to an NT
desktop, NTRIGUE works well. The only serious
problem we've had with it is that NTRIGUE is based
on older versions of NT. Since NTRIGUE requires
major modification to the kernel, it is always going
to be behind the current OS release. Service packs
are also delayed until they are certified to work with
NTRIGUE, and some software simply doesn't work
because many packages are not capable of
functioning in multiuser environments. We expect to
see a 4.0 version of NTRIGUE shortly, but this type
of relationship between vendors always implies a
release lag. (In addition, at the time of this writing,
there is rampant speculation about the future of
NTRIGUE, as Microsoft appears to be moving

toward a similar, or perhaps identical, solution in the
near future.)

Some people thought that we could install
NTRIGUE on every machine in the cluster, thus
solving the remote invocation problem. It's a nice
idea, but it doesn't scale. When scientists start a job,
they want it to automatically run on a hundred nodes.
They don’t want to bring up a desktop on each node
in order to start the program.

As it turns out, with using Ataman's rsh, a job can be
started from anywhere. One simply needs to have
the correct files available in the file system, which is
possible to do from anywhere in our NT
environment.

 File Systems Capabilities
We need to use file systems for local storage on each
of the nodes, some shared directory for the user's
code, and shared applications. We've found the NT
file access model to be flexible enough for our initial
needs.

We created an identical share (C:\startup) on each
node, which all domain users have write access to.
Each is shared as \\<node-name>\startup. We will
typically put the user's application and data into the
share remotely, and then during execution, the
program will find its data in C:\startup, regardless of
which node it's running on.

Alternatively, users can pick one share and use it for
their primary file location, and then access it over the
network from all the other nodes. Or, in the same
way, they could use their network-based home
directory.

These file systems don't address the future need of
either very fast file access across multiple nodes, or
hierarchical storage, but they do demonstrate that the
NT network file system model can be used for our
needs.

 Future Requirements
As we're currently using the NT cluster as a proof of
concept, there are a number of requirements that
we've been able to delay. We will need to address
these shortly:

• Advanced visualization systems: this should be
simple, as the NT world is making incredible
headway into the graphics arena.

• Process scheduler: We will probably have to
write our own queuing and job scheduling

system if we plan to use the cluster in batch
processing mode.

• Parallel and hierarchical file systems: We hope
that these will show up as supported products
from vendors, possibly as an offshoot of
Microsoft's recent scalability push.

• Performance and scalability: These are things
we have not yet tested substantially. Eventually
we believe the network will be the bottleneck,
but by that point, gigabit Ethernet will be an
option.

Using the Cluster

The following are the steps that we currently use to
run a job on the cluster:

1. The first step is to enable the user to launch
executables remotely. Since our startup method is
Ataman rsh, we first have to make sure that the user
is enabled for rsh on all the cluster nodes. To
accomplish this, we have the user type in their
Domain password in the Ataman setup on any one of
the machines where Ataman is already installed. We
then run a set of scripts and Win32 binaries that
populate the rest of the cluster with the
user/password information via direct registry edits.

2. Next we decide what resources the user will need
on each of the nodes. A common requirement is to
have local disk where temporary files and output can
be stored. We have created a directory on each node
called \\<node>\startup. Each node shares this
directory to the network. Another requirement may
be that each node have a particular DLL in the
system directory, usually to reduce the program load
time on the node. In that case we'll copy the DLL to
\\<node>\c$\winnt\system32 to all the nodes.

3. At this point the user is free to use the cluster to
execute jobs. In most cases the user will copy the
data and executables to the nodes and then use rsh to
launch the executable. An outline of an NT (CMD)
batch script can be as follows.

for i in (nodes) do copy \\<%i>\startup\data.file
for i in (nodes) do copy \\<%i>\startup\image.exe
for i in (nodes) do rsh %i c:\startup\image.exe.

Once the jobs complete, the user can copy the output
files from \\<node>\startup. An alternative is to
copy a single batch file to all \\<node>\startup
directories. The batch file can be started via rsh and
should copy the data and image files from \\<home
server>\<user> directory. The batch file can also
start the executable and copy the output files back to

a single share. There is no particular advantage that
we're aware of in either method.

4. To monitor the performance of the nodes, we use
the perfmon.exe application that is supplied with
Windows NT. We monitor such variables as
processor usage, or number of IO transactions.

5. In some cases, we need to manually kill runaway
processes on remote nodes. To accomplish this task,
we have installed the remote kill service that is
available with the NT 4.0 resource kit. This allows us
to view and kill remote processes on all the nodes
from a single command line.

This works for all of the general cases. Some of the
users are working on writing their code using NT-
style client/server mechanisms, in which case we
will experiment with registering their code as an NT
service and then try to invoke it remotely.

Administering the Cluster
One of our main goals in building CP-6 was to use it
to experiment with different ways to administer a
network of NT machines and to really understand the
issues involved. For example, our UNIX-based
supercomputers are closely integrated with our
workstation environment, so we hope to have the
CP-6 integrated just as well. At the same time, we
want to run the NT cluster the "Microsoft way",
assuming we can figure out what that is.

Configuration and Integration
The CP-6 is its own NT domain. It trusts the
primary NT domain in MCS. The primary NT
domain in MCS is largely independent of our UNIX
environment, except that we are using samba on the
UNIX servers to provide file and print service to the
NT machines. Most users have accounts in both
environments, with passwords being maintained
separately.

Building Nodes
One of our first tasks was installing the base OS on
all of the machines. We wanted to be able to reinstall
the OS easily, since these are experimental machines
which we intend to break often. While NT comes
with some tools to do this, we found that some of the
tools were not flexible enough for our installation.
The major problem was the lack of support for new
network hardware. To counter this problem, we
developed our own base installation floppy that
contains just enough of LanManager for DOS to start
the system in DOS mode and mount a remote drive

via TPC/IP. For the rest of the installation we use the
recommended NT rollout procedure that is well-
described in Microsoft documentation.

Installing Applications in NT
We used Microsoft's Systems Management Server as
way to install and keep track of applications.
Initially, this had a very serious drawback: it required
someone to login in order to invoke the SMS jobs,
thereby completely eliminating any advantages of
trying to administer the CP-6 from a central machine.
However, during the last several months, Microsoft
has come out with two additions to SMS called the
SMS Installer and the Package Command Manager.
These were exactly what we needed, and we are now
using SMS to install software onto the nodes of the
cluster.

Remote Tweaks
Sometimes users want to do something directly on
the machine. We've tried this a number of ways, all
of which work reasonably well:
• Ataman's rsh to invoke perl scripts.
• NT Resource Kit remote command line tools
• Win32 API remote registry access

Installing services
Another one of the useful utilities that comes with
the NT 4.0 Resource kit is the remote service install
tool (SRVINSTW.EXE). This tool can be used to
install services on any machine where one has
Administrator access. While the tool is useful, it
appears that it is limited to installing services that
don't require additional registry entries other than
those needed to start the service. However, we were
able to use this tool to install the remote kill service
(wrkillsrv.exe) on all the nodes in the cluster.

Home Directories
Users on the cluster currently have home directories
on the primary domain server (apollo). The UNC
name for their home directory is:

\\apollo\users\<username>
When a user logs into an NT console, we map this to
Z:. (This is more convenient for use on a
workstation than for computing use.)

We started using this naming convention before we
had installed Microsoft’s Dfs. We have just recently
begun to move towards a Dfs-based file system,
which provides the ability to create a single logical
tree structure for multiple shared volumes anywhere
on the network. We will soon rename the UNC

volumes such that a user’s home directory will
become:

\\dfs\homes\<user>
This allows us to abstract out the name of the server
– a much needed feature in UNC names.

Remote Management
We use several utilities for managing the nodes:

• To monitor and log performance, we use
perfmon.

• To look at processes on remote nodes, we use
pviewer from the NT 4.0 Resource Kit.

• To kill processes, we use the wrkillsrv service
and the rkill utility, also from the resource kit.

• To reboot nodes remotely, we use shutgui.
• To rebuild a node from scratch, we have to put a

floppy in the drive and use the console of the
machine to initiate the rebuild.

Consoles
The consoles of the nodes are managed with a
simple, keyboard controllable console switch. We
have four consoles available, but could get by with
one. We generally only use the consoles for
rebuilding, although we had to bootstrap the system
(and do initial SMS installs) by logging into each
machine.

Integration with the NT Environment
Integrating the CP-6 with the rest of our NT
environment is completely painless. The NT domain
trust relationships, the UNC naming, and the utilities
described above work as they are supposed to.

Integration with the UNIX Environment
Integrating our NT environment with our UNIX
environment is not quite so simple.

We are using samba, which provides file sharing and
print services from the UNIX machines to the NT
machines. We are investigating NFS server products
for our NT machines in order to test the performance
of using an NT server with UNIX clients.

Our main desire right now is a ubiquitous account
creation and management system. We would like to
create an account once and then have that user be
able to login to both the UNIX machines and the NT
domain using the same password. Then, when a user
changes the password anywhere, that change should
get propagated to the entire environment. We

believe this can be accomplished with a series of
hacks, but we're hoping that someone will develop a
more elegant solution. (NTRIGUE comes quite
close to providing this capability now, acting as a
gateway between the two. However, one must set it
up as the PDC for the NT domain, which we don’t
want to do.)

Directions and Plans
At this point, scientists in the division are porting
their code to NT, and several are using the CP-6 as a
test environment. We have done some early
performance tests, and those imply that the initial
tuning needs to take place in user level code rather
than in system configuration.

In the near future, we will be working on serious
performance analysis and comparisons, expanding
the number of nodes in the pile and looking into
high-performance storage and networking solutions.

Summary
The CP-6 has now been operational for several
months. We are able to manage the system and users
are able to run jobs on it without too much trouble.
This is most certainly not a complete system, but it
proves the concept, which was one of our initial
goals. We are quite certain that a network of NT
machines can be used for scientific computing, and
that we will be able to manage the environment in a
reasonable way. How the system will compare with
currently existing supercomputers remains to be
seen.

Author and Project Information
Rémy Evard is the manager of Advanced Computing
Technologies and Networks in the Mathematics and
Computer Science Division at Argonne National
Laboratory. He holds an M.S. in computer science
from the University of Oregon. His research
interests include systems administration and on-line
collaboration. His email address is
evard@mcs.anl.gov.

Michail Gomberg is a systems administrator in the
Mathematics and Computer Science Division at
Argonne National Laboratory. He is the principal
engineer of the CP-6. His email address is
gomberg@mcs.anl.gov.

More information about the CP-6 project can be
found at http://www.mcs.anl.gov/ntcluster/.

This work was supported by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Computational and
Technology Research, U.S. Department of Energy,
under Contract W-31-109-Eng-38.

References
[1]: The Beowulf Project:

http://cesdis.gsfc.nasa.gov/beowulf/

[2] The Pentium Pro Cluster Workshop:
http://www.scl.ameslab.gov/workshops/

[3] Insignia Systems NTRIGUE product:
http://www.insignia.com/

[4] The Argonne National Lab CAVE:
http://www.mcs.anl.gov/FUTURES_LAB

[5] Microsoft Windows NT Workstation 4.0
Resource Kit, Microsoft Corporation,
Microsoft Press, 1996.

[6] Ataman Software Incorporated:
http://www.ataman.com/

