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ABSTRACT
We study the problem of tracking a moving device under two in-
door location architectures: an active mobile architecture and a
passive mobile architecture. In the former, the infrastructure has
receivers at known locations, which estimate distances to a mobile
device based on an active transmission from the device. In the lat-
ter, the infrastructure has active beacons that periodically transmit
signals to a passively listening mobile device, which in turn esti-
mates distances to the beacons. Because the active mobile architec-
ture receives simultaneous distance estimates at multiple receivers
from the mobile device, it is likely to perform better tracking than
the passive mobile system in which the device obtains only one dis-
tance estimate at a time and may have moved between successive
estimates. However, an passive mobile system scales better with
the number of mobile devices and puts users in control of whether
their whereabouts are tracked.

We answer the following question: How do the two architectures
compare in tracking performance? We find that the active mobile
architecture performs better at tracking, but that the passive mobile
architecture has acceptable performance; moreover, we devise a
hybrid approach that preserves the benefits of the passive mobile
architecture while simultaneously providing the same performance
as an active mobile system, suggesting a viable practical solution
to the three goals of scalability, privacy, and tracking agility.
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1. INTRODUCTION
Determining the location of a device is a fundamental problem in

mobile computing. The importance and promise of location-aware
applications has led to the design and implementation of systems
for providing location information, particularly in indoor and urban
environments where the Global Positioning System (GPS) does not
work well [1, 7, 13, 15]. In general, these systems provide more
accurate location information when a mobile device is at rest than
when it is in motion: tracking a moving device is harder because the
inevitable errors that occur in the distance samples used to localize
the device are easier to filter out if the device’s position itself does
not change during the averaging process.

This paper addresses the problem of tracking a moving device
using the Cricket indoor location system. Our motivating applica-
tions include human navigation, where the goal is to direct users
to their desired destinations on an active map, robotic navigation,
where location sensors provide position information to a moving
robot, and multi-player games, where players can move in the real
world in a game like Doom or Quake, and have their moves ac-
curately represented in the computer game. All of these applica-
tions require the position of a device moving at human speeds to be
tracked.

The architecture of a location system influences its scalability,
its ability to preserve user location privacy, its ease of deployment,
and its device-tracking performance. We distinguish two differ-
ent indoor location architectures. The active mobile architecture,
as illustrated in Figure 1, has an active transmitter on each mo-
bile device, which periodically broadcasts a message on a wireless
channel (e.g., an RF message or an RF message coupled with an
ultrasonic pulse). Receivers deployed in the infrastructure (e.g., on
ceilings and walls) listen for such broadcasts and estimate the dis-
tance to the mobile on each broadcast they hear.1 Typically, each
receiver propagates this distance information to a central database
that then updates the location of each mobile device. Examples of
this architecture include the Active Badge [15], Active Bat [7], and
Ubisense [3] systems.

In contrast, the passive mobile architecture, as illustrated in Fig-
ure 2, inverts the transmitter and receiver locations. Here, beacons
deployed at known positions in the infrastructure periodically trans-
mit their location (or identity) on a wireless channel, and passive

1Not all active mobile schemes use distance estimates; for exam-
ple, the Active Badge system localizes nodes to with rooms using
infrared.
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Figure 1: In an active mobile architecture, an active transmit-
ter on each mobile device periodically broadcasts a message on
a wireless channel.

receivers on mobile devices listen to each beacon. Each mobile de-
vice estimates its distance to every beacon it hears and uses the set
of distances to estimate its position. An example of this architecture
is the Cricket system [13].

Qualitatively, the passive mobile architecture scales better than
the active mobile architecture as the density of devices increases,
because the wireless (RF and ultrasonic) channel use is independent
of the number of mobile devices. Unlike the passive mobile archi-
tecture, the active mobile architecture requires a network infras-
tructure to connect the deployed receivers to the central database.
In addition, the active mobile architecture also allows users to be
tracked more easily by the infrastructure, raising privacy concerns.
In contrast, the passive mobile architecture allows a mobile device
to estimate its location and control which other entities get that in-
formation.

However, the active mobile architecture solves the problem of
tracking moving devices in a more natural fashion. This is because
a receiver in a passive mobile system usually hears only one bea-
con at a time, and may move between chirps from different bea-
cons. As a result, there is no guaranteed simultaneity of distance
samples, unlike in the active mobile case where multiple receivers
concurrently obtain distance estimates to a moving device. The ab-
sence of guaranteed simultaneity of distance estimates implies that
tracking a moving object entails more than just a solution to simul-
taneous equations.

The natural question, then, is How well can a passive mobile sys-
tem perform at tracking a moving device? Can we devise a method
that enables the tracking performance of such a system to approach
the performance of an active mobile system? If the answer to this
question is “no”, then it would suggest that applications requiring
fast device tracking are better served with an active mobile system,
but that comes at the cost of reduced scalability and increased pri-
vacy concerns. On the other hand, if the answer were “yes”, then
it would suggest that a passive mobile system is a tenable approach
for a wide range of location-aware applications.

We show that the underlying tracking problem requires three
components that are combined in different ways depending on the
architecture. The first component is outlier rejection, wherein egre-
giously bad distance samples are eliminated. The second compo-
nent is an extended Kalman filter (EKF), which maintains the cur-

Figure 2: In a passive mobile architecture, fixed nodes at
known positions periodically transmit their location (or iden-
tity) on a wireless channel, and passive receivers on mobile de-
vices listen to each beacon.

rent and predicted device states and corrects the prediction each
time a new distance sample is obtained. The third component is a
least-squares solver (LSQ) that minimizes the mean-squared error
of a set of simultaneous non-linear equations.

We find that the EKF is able to track movement much better than
LSQ in the passive mobile system, and that it does just as well
as LSQ in an active mobile system. Specifically, for speeds of up
to about 0.8 m/s, an EKF model in a passive mobile system had
a median error of about 10 cm, while an active mobile systems’
median error was about 3 cm. At a higher speed of 1.43 m/s, the
passive mobile EKF’s median error was 23 cm, compared to 4 cm
for the active mobile. For many applications, this error difference
is unimportant.

Although the performance of the passive mobile system is ac-
ceptable for many applications, we also show how to improve it
further. We improve tracking performance by developing a hybrid
approach that runs the EKF in the common case and relies on an
active mobile transmission when the EKF state is bad. We describe
a protocol that allows the hybrid approach to not divulge device
information, in an effort to alleviate privacy concerns. Our main
result is that the hybrid system is nearly as accurate as our best ac-
tive mobile system in tracking moving devices, while maintaining
the advantages of the passive mobile system; its median error is 15
cm at a speed of 1.43 m/s.

We have implemented all the above schemes in the Cricket lo-
cation system, and our measured results are in that system using
a repeatable experimental setup that has both straight-line motion
and radial acceleration. With the implementation of different track-
ing schemes, users of the Cricket system can take advantage of a
variety of predictive tracking techniques for applications involving
continual or unpredictable device motion.

2. RELATED WORK
The Active Bat location system is an example of a system which

uses an active mobile architecture [7] . The Bat system consists
of a collection of fixed nodes arranged on a grid. The fixed nodes
receive ultrasonic chirps from the mobile device and compute dis-
tance estimates to the mobile using the time-of-flight of the ultra-
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sonic signal. These distance samples are forwarded to a central
computer which computes the mobile’s position.

The Bat system employs a centralized architecture in which both
mobile transmissions and mobile position estimations are handled
by a central computer. The Bat system, as described, is expensive
to implement in that it requires large installations, has a centralized
structure, and does not preserve user privacy.

On the other hand, each of these expenses provides a direct ben-
efit. The centralized structure allows for easy computation and im-
plementation, since all distance estimates can be quickly shipped to
a place where computational power is cheap. Moreover, the active
mobile architecture facilitates the collection of multiple simultane-
ous distance samples at the fixed nodes, which can produce more
accurate position estimates relative to a passive mobile architecture.

Some applications, such as virtual reality, require high precision
tracking even in the presence of large and erratic accelerations. Two
modern systems have been created for these applications. They
provide very precise position estimates at the expense of infras-
tructure and hardware.

The HiBall head tracking system [16] uses panels of infrared
LEDs that take turns flashing. Several head-mounted cameras mea-
sure the position of the flashing LED and the system uses knowl-
edge about the geometry of the head device’s cameras to compute
the desired location information. The LEDs flash very quickly and
thus allow very precise information to be obtained. Some of the dis-
advantages of this system include the difficulty of deploying a large
number LED panels to cover an entire building, expensive camera
hardware, high computation costs, and the possible interference
from the ambient light. Nevertheless, this system provides very
precise position information for specialized applications that oper-
ate in highly controlled environments. This system uses a technique
called SCAAT (Single Constraint At A Time) to track movement,
and is similar to our approach in that it handles one distance con-
straint at a time rather than obtaining multiple distance estimates to
known positions simultaneously.

The Whisper system [14] uses a spread-spectrum audio approach
to obtain precise distance measurements. It encodes information on
an audio stream and uses time-of-arrival information to obtain dis-
tance estimates. The system can achieve high measurement rates
because of the large bandwidth and the continuous nature of the
spread spectrum signal. This, in turn, leads to good tracking per-
formance. However, human-audible background noise, high com-
putation costs, and low range are some of the disadvantages of this
system.

The Global Positioning System (GPS) operates well outdoors
and achieves many of the goals in positioning systems, like scal-
ability, decentralized usage, and user privacy [6, 8]. The expen-
sive infrastructure enables simultaneous distance estimates to be
obtained, so that the tracking problem becomes easier to solve. The
Kalman filter-based tracking methods presented in this paper share
some similarities with the approach used in GPS.

Leonard et al. investigate underwater tracking of autonomous
underwater vehicles [9]. Their work uses a Kalman filter, with ac-
cess to more diverse observations than ours, including information
from depth sensors, accelerometers, and compasses.

Another area of related work is in user tracking and user move-
ment prediction in cellular wireless networks. In cellular phone
networks, if the system can predict which cells will provide the
best signal strength, the quality of service can be improved. One
implementation, presented in [11], uses the so-called Robust Ex-
tended Kalman Filter (REKF), introduced in [12]. The REKF is
concerned with maintaining good filter behavior in conditions with
high uncertainty.

Another new class of algorithmic techniques for user tracking
is given in [5], where the authors discuss Bayesian location es-
timation. One major difference between Kalman filtering and
Bayesian estimation is that Bayesian filtering can accommodate
non-Gaussian distributed measurement noise. This benefit comes at
some computational complexity costs, however. Because Kalman
filtering is a simpler special case of Bayesian estimation, there
might be benefits to be gained from modeling our system more
generally than in our current Kalman filter-based approach. Simi-
larly, particle filters appear to be a promising method to handle the
tracking problem. We leave an investigation of the performance of
these approaches in Cricket to future work, noting that the current
Cricket software and hardware infrastructure is well-equipped for
researchers to investigate these questions.

3. TRACKING ALGORITHM
This section discusses the different components of our tracking

algorithm and how they fit together. We show how the same basic
algorithm works in both the passive mobile and the active mobile
architectures, with appropriate parameter selection.

We start by formally defining the tracking problem. When a mo-
bile device hears a beacon in the passive mobile architecture, or
obtains a distance estimate to one or more receivers at known po-
sitions in the active mobile architecture, it gets a triple: [t, p, d],
where t is the current time, p is the known position of the beacon
or receiver, and d the distance between the mobile device and the
known beacon or receiver. Over time, the mobile device obtains a
sequence of such triples: [t1, p1, d1], [t2, p2, d2], . . . , [tn, pn, dn],
where the subscripts increase by one for each distance sample. The
goal of the tracking algorithm is to come up with φ̂n, a good posi-
tion estimate of the mobile device given the entire sequence of past
triples. Of course, individual distance samples may be erroneous.

This problem formulation covers both the active and passive mo-
bile architectures. In particular, if successive triples all have the
same time t’s and different p’s , then the simultaneity condition is
satisfied.

The flow chart of the Kalman filter tracking algorithm is shown
in Figure 3. There are three procedures: a least-squares minimiza-
tion (LSQ), an extended Kalman filter (EKF), and outlier rejection.
The Kalman filter updates its estimate φ̂n of the device’s position
every time a new distance sample is acquired. It also maintains a
confidence estimate in it state vector, which is used by the outlier
rejection stage to reject distance samples that are “far away” from
the expected value; the precise definition of “far away” depends
on some heuristics, as discussed below. Finally, every once in a
while, the EKF’s state will be bad, and its confidence in its state
low. When that happens, our tracking algorithm resets the EKF
state by running LSQ on some number of current and recently ob-
served distance samples.

We now explain the three modules in more detail.

3.1 Least Squares Minimization
If the mobile device were static, a standard way to solve the prob-

lem of estimating φ̂n is by minimizing the sum of the squares of the
error terms corresponding to each distance sample. This method,
called least-squares minimization (LSQ), estimates φ̂n by minimiz-
ing

n
X

i=1

(‖φ̂i − pi‖ − di)
2 (1)
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Figure 3: Flow chart for the tracking algorithm. The picture shows outlier rejection and LSQ explicitly; all the other steps are part
of the extended Kalman filter. The “measurements” are the distance samples obtained as triples. The “output” at each stage is the
position estimate φ̂.

Here, ‖φ̂i − pi‖ is the Euclidean distance between the estimated
coordinate of the mobile device and the beacon or receiver at posi-
tion pi.

LSQ does not always produce a good φ̂n estimate for several
reasons, including:

1. If the device is moving, old tuples need to be discarded be-
fore LSQ is run. In the active mobile architecture, one might
discard all samples but the ones corresponding to the latest
time, and hope that there are enough samples with low dis-
tance error to produce a good position estimate for the mov-
ing device. In the passive mobile case, it is not obvious which
samples, if any, to discard.

2. The simultaneity condition may not always hold for a mov-
ing device, either because the system is based on a passive
mobile architecture, or because there are not enough distinct
error-free samples (less than four in three dimensions) in the
active mobile case (e.g., because the user is in an area with
≤ 3 ceiling-mounted receivers, or because some of the re-
ceivers did not report good distance estimates).

3. The LSQ approach does not explicitly model noise terms in
the distance samples.

LSQ is also computationally complex. It has been the topic of
much analysis in the optimization literature, and is known to take
long to converge unless we impose certain strict criteria on the
function we’re minimizing or on the nature of the inputs to the op-
timization.

These shortcomings of LSQ are well known; it is for these rea-
sons that GPS receivers use a Kalman filter rather than LSQ. (An-
other reason is that the use of a Kalman filter allows a GPS re-

ceiver to predict a good current position based on previous mea-
surements.) We also adopt a Kalman filter-based approach, mod-
eling the system using a state vector, for the same set of reasons.
However, LSQ is useful in initializing and resetting the Kalman fil-
ter, a capability we use when the system first turns on or when our
filter gets into a bad state. We can think of LSQ as a way to “brute-
force” the position of the mobile and the Kalman filter as a way to
intelligently track the user from there.

In the least squares model we have two possibilities when dis-
tance measurements are obtained: either the problem is well-
defined or it is not. In 3-D space the location problem is usually
well-defined if we have four or more distances. Because our least
squares minimization tools are sensitive to local minima as a func-
tion of our initial guess, x0, it is important that we produce reason-
able starting points. If our problem is well-defined we can produce
a good initial guess by solving a linearized version of the prob-
lem [10]. We then provide this X0 along with our measurements
to an interior trust-region least squares minimizer [4, 4]. On the
other hand, if our problem is not well-defined we use a “line search
method” with X0 as our last guess at our position.

Although the details of the procedures presented in this section
are almost completely independent of the architecture in which they
are implemented (i.e., active mobile or passive mobile), there is a
minor difference in our least squares calculator. In least squares
under the passive mobile architecture we do not get a collection of
simultaneous distance estimates so we maintain a buffer in which
we store the last m measurements. The contents of this buffer are
then processed in the same way that the least squares normally pro-
ceeds. That is, in the passive mobile case, we make the simultaneity
assumption and assume that the distances in our buffer were col-
lected when the device was at the same point. That assumption will
not hold in general; to reduce the chances of the assumption being
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invalid, we make the size of the buffer inversely proportional to the
expected speed of the device.2

3.2 Extended Kalman Filter
We design an EKF using a state vector with six components,

three position components (x, y, z) and three velocity components
(vx, vy, vz). The basic idea of the EKF is that after any discrete
time step the filter has an idea of its state and an idea of how confi-
dent it is in that state (a covariance matrix). The EKF uses the most
recent distance sample and its internal state to project ahead and
produce an estimate of φ̂ of where the device might be in the next
time-step. When the next distance sample arrives, the EKF first
corrects its internal state based on the difference between where
the device would have been had the prediction been accurate, and
the actual distance sample. These steps are shown in Figure 3.

Let X = [x y z vx vy vz]
T be the state vector maintained by the

EKF. If the predicted state at time-step k is X
(−)
k and the corrected

state (the output of the EKF) is X
(+)
k , then in the position-velocity

(PV) filter model, which assumes that the device moves at constant
velocity between time-steps, the state prediction at time ∆T after
time-step k for each position component of X

(−)
k is

x
(−)
k = x

(+)
k−1 + vx ∆T (2)

y
(−)
k = y

(+)
k−1 + vy ∆T (3)

z
(−)
k = z

(+)
k−1 + vz ∆T, (4)

where the plus superscripts and k − 1 subscripts on the velocity
components are omitted for clarity.

Now, let P be a 6 × 6 covariance matrix for the EKF’s state
vector (we assume that errors are normally distributed). Then, the
predicted covariance for time-step k is

P
(−)
k = ΦP

(+)
k−1Φ + Qk−1, (5)

where Φ is a state transition matrix specific to our model and
Qk−1 reflects how we expect the quality of our state vector to de-
grade over time (e.g., if the mobile is moving faster we expect our
state to degrade more quickly).

In the correction step the EKF finds the difference between the
distance it expected to hear (based on the projected state) and the
measured distance sample. The EKF then adjusts the state vector to
make this difference less significant. The idea is to balance the con-
fidence in the measurement against the confidence in the state es-
timate to determine the amount by which the state estimate should
change. An overview of the underlying mathematics is given in
Appendix A.

The prediction-correction loop described above continually runs
as the system obtains distance samples.

The position (P) filter model is exactly the same as the PV model,
except that it only maintains the position of the user (x, y, z).
Whereas in the PV model we assume that acceleration and higher
order derivatives are zero, in the P model we assume that veloc-
ity and higher-order derivatives are zero. A P model filter is less
computationally expensive and has some distinct accuracy advan-
tages in certain situations, which we will see in our experiments
(Section 5).

Finally, we introduce the multi-modal filter, a way of combining
the output states of our PV and P models to produce a better solu-
tion. The idea here is simple. Since we have two states and their
corresponding covariances, by continuing our normally-distributed
2Of course, in many cases it may be impossible to know the speed
a priori.

assumption we can quickly come up with a way that averages our
two states, weighting them by their covariances. This idea has sig-
nificant promise, especially because it works across dimensions,
such that if one of the filters has a better covariance only along,
say, the z-axis, the multi-modal filter will weigh its z-coordinate
output more heavily than the others. Multi-modal filters tend to be
more accurate and track movement well, as we will show in 5.

3.3 Outlier Rejection
The third module in our tracking algorithm implements outlier

rejection. Since the EKF provides an estimate of the current posi-
tion based on its state estimate, the system can compute a guess of
the value of any distance measurement from a beacon or to a re-
ceiver in the infrastructure. The difference between this guess and
the actual measurement defines a residual, r, of each measurement.
If r2 > γ, an empirically-selected parameter, then we say that the
measurement is an outlier.

A subtle but important point lurks in this definition of an outlier.
Since the residual is computed based on the EKF’s state, if it gets
into a bad state then we expect the residuals of the accurate mea-
surements to be high. At this point, the system begins to reject all
of the samples and the EKF’s state becomes progressively worse
because the system is no longer accepting any measurements that
can help correct the state! The traditional solution to this problem
is to modify our outlier rejection to test for outliers based on the
modified formula r2S−1 > γ, where S−1 is a scalar computed
based on our state which we expect reflects the confidence in our
state. This formula computes what is commonly known as the Ma-
halanobis distance [2]. We chose not to implement this scheme
because it depends on the confidence in the state vector, on which
we have no guarantees of proper behavior. It also did not perform
well in our empirical measurements.

The solution to the false sample rejection problem that we chose
to implement is to monitor the fraction of rejections made by the
system over some time window. If this fraction significantly ex-
ceeds the fraction of outliers we expect to receive, we then declare
that the EKF is in a bad state. At that stage, we look to our least
squares model for possible recourse. That is, we compute the resid-
ual of the LSQ output with respect to the most recent measurement.
If this residual, rlsq is less than the EKF’s residual, rekf , then we
reset the filter with the least squares estimate as our position. If the
least squares residual is higher, then we do nothing, in which case
we expect this testing to continue in future time-steps.

4. HYBRID ARCHITECTURE
Occasionally the Kalman filter will get into a bad state. This sit-

uation rarely happens in the active mobile approach if the mobile
can hear three or more beacons, but may happen when it does not.
The Kalman filter in a passive mobile system has a higher proba-
bility of reaching a bad state since the distance measurements are
serialized in time. Once we detect a bad state, the listener uses a
mechanism to reset its Kalman filter to a known listener position.

In an active mobile approach, the listener can easily compute a
position estimate using simultaneous distance samples to multiple
beacons. In contrast, in a passive mobile approach, the listener
feeds the non-simultaneous distance samples to an LSQ estimator
to compute a position estimate; the LSQ estimation is computa-
tionally complex and is subject to large errors (we show this in
Section 5) because the LSQ estimation works with distance sam-
ples that may have been obtained when the device was in a different
position.

As a solution to this inherent difficulty in reseting the Kalman
filter in a passive mobile system, we propose the following hybrid
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Figure 4: Flow chart of a mobile device using a hybrid architecture.

solution the tracking problem. During the normal operation, we
use the passive mobile system due to its scalability and guaranteed
user-privacy. At start-up time, and when we detect a bad Kalman
filter state, the listener transitions to active mobile operation to ob-
tain multiple simultaneous beacon distance samples as shown in
Figure 4.

We develop the following method to transition between passive
and active mode on the mobile device:

1. As long as the Kalman filter’s confidence is high, the listener
does not transmit any information; only beacons do.

2. If the listener’s Kalman filter state is deemed bad, then it
becomes an active transmitter. This transition is usually re-
quired if the device experiences sudden linear acceleration or
a turn. The listener then generates a concurrent RF and US
pulse, with the RF message having no information in it other
than a randomly generated nonce.

3. If a beacon hears an RF message generated by a mobile and
the corresponding US pulse, it waits for a short random pe-
riod of time and broadcasts the nonce (set by the mobile) to-
gether with the distance estimate. During the broadcast, the
beacons use a simple CSMA scheme with randomized back-
off to avoid RF collisions. After receiving this information
from nearby beacons, the listener can compute its position
accurately since the simultaneity condition holds for these
distance samples. Next, the listener uses this position esti-
mate to reset its Kalman filter.

We can use either of the following approaches to enable a passive
listener to transition to an active mode. One approach is to set aside
a unique time slot for the active listener to transmit. This approach
requires time synchronization among the beacons and the listeners,
so that all the participants have a unified view of the time slot al-
location. The other approach is to use a simple CSMA scheme in
which the mobile competes with the beacons for transmitting the
message requesting ranging information. One disadvantage of this
scheme is that beacons need to continuously listen to the RF chan-
nel for possible mobile transmissions. We implemented the second
approach due to its simplicity.

In implementing this hybrid approach, the designer can choose
how frequently the mobile devices are likely to chirp by selecting
an appropriate bad state detection threshold. That is, since the hy-
brid system would typically contain a mixture of both active and
passive listeners at any given time, an appropriate balance between
the two modes can be achieved with some tuning.

We now look at three important architectural properties and dis-
cuss how well the hybrid approach performs in each case.

4.1 Scalability
The transition to an active transmission state by the mobile de-

vice happens only when the Kalman filter’s state is bad, which
means that the system as a whole is likely to remain scalable un-
less a large number of mobile devices in the same neighborhood
simultaneously have a bad filter state. Even if such an unfortunate
situation were to arise in practice, it is possible to design a scheme
to throttle the mobile’s bad state threshold reporting based on chan-
nel occupancy.

It would even be possible to pick between the active mobile and
hybrid architectures in real-time based on the number of other mo-
biles nearby. In this scenario we assume privacy isn’t important,
so that if there is only one mobile in the space then this mobile ac-
tively chirps. If there are two mobiles then these mobiles take turns
chirping. When the number of mobiles exceeds the number of bea-
cons, the mobiles start to actively chirp only if they get into a very
bad state. Even then, the definition of “very bad state” could be a
function of overall demand. If necessary, a priority scheme could
be implemented that gives certain mobiles preferential access to the
RF and ultrasonic channels.

4.2 Privacy
The use of a random nonce every time the mobile transmits helps

to hide the mobile’s identity. When the mobile device actively
transmits, an eavesdropper would be able to determine that there
is some mobile unit at the given position. This does not reveal the
position of a given user provided there are many users in a given
region. However if there is only one user in a single space and the
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system knows that there is only one user, then she might be easily
tracked.

The following conditions appear to be sufficient in practice for
maintaining a reasonable degree of location privacy.

1. The space is densely populated or has high levels of traffic.
2. Even when there is only a single user, a promiscuous listener

must have knowledge about the number of users in the space,
since it would have to know that all of the position estimates
correlate to a single device.

3. In the hybrid architecture, the percentage of active mobile
transmissions is relatively low (as explained later in Sec-
tion 5, especially in Figure 13), making it difficult to track
the mobile continuously.

These conditions make the random nonce approach very reliable
for preserving mobile privacy. Our results in the next section show
that the fraction of times that a mobile must actively chirp is very
small (about 1.5%) to achieve a performance close to the active
mobile scheme.

Finally, note that if the mobile device is very concerned about
privacy it can opt not to fall back on the active transmission mech-
anism, and always use LSQ instead.

4.3 Decentralization
Our protocol preserves the decentralized nature of the passive

mobile architecture, so we don’t have to run a cumbersome wired
or wireless network infrastructure connecting the ceiling-mounted
receivers to a central location to compute mobile device position es-
timates. Whenever a mobile actively chirps each beacon that hears
this chirp sends the measured distance back to the mobile device
over the RF channel (no ultrasound transmission is required). All
position calculations are done on the mobile node. Not only does
this significantly reduce infrastructure costs, it also solves the prob-
lem of correlating and aggregating distance estimates from differ-
ent beacons.

5. EVALUATION
In this section we present the results of several experiments to

evaluate the performance of different location architectures and
tracking techniques. These experiments shed light on the strengths
and weaknesses of the different methods. During our discussions
in this section, unless stated otherwise, when we refer to a Kalman
filter we are talking about the multi-modal extended Kalman fil-
ter that implements both the PV and P models and averages their
outputs weighted by their covariances.

We first describe our experimental setup, followed by a discus-
sion of the tracking performance of the three architectures dis-
cussed earlier: passive mobile, active mobile, and hybrid. We then
compare the PV and P models in the EKF, showing how their rela-
tive performance differs when the device accelerates (e.g., turns on
the tracks). We then discuss how to scale the performance evalu-
ation to determine what would happen at higher device movement
speeds by down sampling the observed distance measurements. We
conclude this section with a discussion of the computational com-
plexity of the various schemes.

5.1 Metrics and Setup
We began testing and developing our tracking techniques using

a simulator. This approach worked well while trying various ideas
because we could directly measure every cause and effect in that
environment. However, because the performance of the different
schemes depends strongly on the nature of the erroneous distances
observed in practice, we needed a real-world experimental testbed.

Figure 5: Picture of the experimental setup. The beacons are
shown on the ceiling; the cables emanating from the beacons
are used in a subset of the active mobile experiments to report
distance samples observed by infrastructure nodes.

We developed one using Cricket’s hardware and software infras-
tructure.

Developing a testbed to facilitate accurate and repeatable track-
ing experiments proved more difficult than we expected. The prob-
lem was that we wanted an apparatus that would capture real-world
noise, signal loss, and reflections, but at the same time permit some
degree of experimental consistency so that we could run multiple
runs comparing different approaches. We also needed to select an
apparatus which would allow us to simulate “typical” human move-
ment, including turns, starts, and stops, all at different speeds.

We decided to use a computer-controlled Lego train set placed in
a large room, with Cricket attached to the moving train. A picture
of this setup is shown in Figure 5, and the trajectory of the train in
schematic form with distances is shown in Figure 6. The schematic
figure was obtained by placing a listener at a number of positions
on the track and calibrating its position while at rest over a long
period of time at each position.

To conduct our mobile tracking experiments, we attached a
Cricket listener to the train and Cricket beacons to the ceiling.3

We calculated the beacons’ positions off-line using a combination
of manual and mobile-assisted measurements. We report on the re-
sults of experiments conducted at six different speeds: 0.34 m/s,
0.56 m/s, 0.78 m/s, 0.98 m/s, 1.21 m/s, and 1.43 m/s. These speeds
model a range of realistic pedestrian speeds. This experimental

3As explained later, this setup allows us to investigate all three lo-
cation architectures, not just the passive mobile one.
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Figure 6: Schematic representation of the train’s trajectory.
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Figure 7: True positioning error, comparing distance measured
to distance expected based on track counter.

setup included a number of real-world effects, including multiple
beacons (five or six in all experiments) interacting with one an-
other, varying distances from the different beacons to the listener,
and ultrasonic noise and reflections. For each architecture and each
speed, we gathered data samples over a five-minute interval. We
gathered about 15,000 individual distance estimates in the active
mobile architecture and about 3,000 distance estimates in the pas-
sive mobile architecture.

All of the error values presented in this section are relative to
the train’s real position, which we recorded using an optical track
counter mounted at the bottom of the train. The track counter
counted the number of tracks traversed during its motion. We ex-
pect this counter to be accurate to 1 cm, the distance between track
edges. However, because of inaccuracies in the beacon coordinate
assignments and in the mapping of the optical counter values to
coordinates, we expect our true position error to be larger than
one centimeter some of the time. The true positioning error dur-
ing movement is shown in Figure 7, where we show the difference
between distances measured by the Cricket system, and the dis-
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Figure 8: Error CDF of the different architectures with the de-
vice moving on the tracks at 0.78 m/s.
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Figure 9: Error CDF of the different architectures with the de-
vice moving on the tracks at 1.43 m/s.

tance we expected based on the track counter. Note that the error
numbers shown on this curve are different from the raw Cricket dis-
tance error (i.e., relative to a laser range finder measurement when
the listener is not moving); the Cricket hardware’s “raw” error is
usually 1 cm and almost never more than 3 cm. The figure shown
embodies three sources of error: the raw Cricket distance error, the
error inherent in our pre-programmed beacon coordinates, and the
error in our table matching track counter values to coordinates.

5.2 Tracking Performance
We now investigate the tracking performance of the three archi-

tectures and compare them.

5.2.1 Passive Mobile Architecture
In the passive mobile architecture, every beacon in the room

chirps periodically, such that we end up with a time-series of non-
simultaneous distance estimates at the mobile device. The bottom
two curves in Figure 8 show the error CDF for our multi-modal
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Figure 10: Median error in the passive mobile, active mobile,
and hybrid architectures versus the device’s speed.

EKF and least squares algorithms at a speed of 0.78 m/s while trav-
eling on the path shown in Figure 6. Here, the multi-modal fil-
ter performs well; the 90th-percentile error is an acceptable 0.3 m
(note that the tracks are 2.5 m long and 1.2 m wide, with turns),
whereas the least squares only achieves this level of precision only
30% of the time. The poor least squares performance is the result of
the simultaneity assumption not holding, as discussed in Section 3.

The bottom two curves in Figure 9 show the results of the
same passive mobile experiment conducted at the higher movement
speed of 1.43 m/s. Here, the multi-modal filter maintains reason-
able performance, while least squares performs much worse since
the simultaneity assumption becomes increasingly invalid with in-
creasing mobile speed. The top curve in Figure 10 shows the in-
crease in median error of a multi-modal filter with increasing speed.

The simultaneity assumption holds, however, when the train is
static. In this case the least squares error is small, but still not as
good as the Kalman filter. The reason for this (slight) difference
in quality is that the least squares procedure has a fixed window
size and can thus be thought of as a “finite impulse response” (FIR)
filter. Thus, even if we give least squares an infinite number of nor-
mally distributed samples it may never converge to the exact loca-
tion because that approach discards expired samples. The Kalman
filter, on the other hand, is an “Infinite Impulse Response” (IIR), so
as larger numbers of samples come in, the error converges to zero.

5.2.2 Active Mobile Architecture
In the active mobile architecture, the mobile device actively

chirps, and the fixed infrastructure nodes then reply either over a
radio channel or a cabled infrastructure, reporting the measured
distances to the mobile device or some central processor.

An important observation to make before looking at results is
that throughout our experiments with this architecture there was
only one listener, and thus no contention for the ultrasound chan-
nel. In any implementation with multiple mobile devices we expect
the error of a tracking technique involving active mobile transmis-
sions to increase as the number of mobiles increases. In this sense,
the results presented for the active mobile approach are quite opti-
mistic.

The CDF of the number of distinct ceiling-mounted receivers
whose distance reports were heard by the mobile device per ac-
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Figure 11: CDF of the number of replies from infrastructure
receivers per active mobile chirp, using an RF channel for re-
porting distances. There were a total of six infrastructure nodes
in the experiment.
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Figure 12: CDF of the number of replies from infrastructure
receivers per active mobile chirp, using cabled channels for re-
porting distances. Notice the scale; all five infrastructure nodes
in the experiment reply to more than 96% of the active mobile
chirps.

tive chirp, in a system using a radio channel to communicate these
distances from the infrastructure to the mobile device, is shown in
Figure 11. The total number of ceiling-mounted receivers in this
system was six. The number of responses does not depend on the
device’s speed. The primary limiting factor was the radio, which
operated at 38.4 Kbits/s; because of the large aggregate number
of messages that had to be sent from the infrastructure nodes, the
preamble overhead of every radio message proved to be the bottle-
neck. We expect this limitation to subside in the coming years as
radios for embedded devices become faster.

The same metric, for a system in which a cabled infrastructure
is used to report distances, is shown in Figure 12. Here we see the
expected result: if the radio bottleneck is removed, a much higher
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Figure 13: Frequency of mobile chirps at different speeds in
the hybrid architecture, given as percentiles.

percentage of distances are recorded. All results presented are from
the more optimistic cabled system, which may be more expensive
or cumbersome to deploy in practice on a large scale.

The top-most curves in Figures 8 and 9 show the error CDF of
our EKF scheme in this architecture at a speed of 0.78 m/s and 1.43
m/s respectively. In both cases, the median error is less than 5 cm,
comparable to the base error of our experimental setup. We do not
show the results for the least squares and the multi-modal models
under the active mobile architecture since the curves are indistin-
guishable; because the simultaneity condition is satisfied under the
active mobile architecture, least squares is a viable player even at
higher speeds.

5.2.3 Hybrid Architecture
We now look at the error profile of our system in an environment

that allows the Kalman filter to obtain simultaneous distance esti-
mates when they are the most useful (i.e., when the filter is in a bad
state).

Least squares here is not meaningful because we expect it to be-
have the same as it did under the passive mobile architecture, ex-
cept for the (small) fraction of the time that it has a little more
information. The point is that least squares already uses the simul-
taneity assumption, so filling its buffer half-way with simultaneous
information a small fraction of the time does not have a significant
impact on the output error.

Figures 8 and 9 show the error CDF graphs for the multi-modal
Kalman filter under two different speeds (the relevant curves are
the second from the top in both figures). This architecture shows
good behavior; even at the highest movement speed of 1.43 m/s,
the median error is a tolerable 15 cm.

The improvement in error (both median and tail behavior) over
the passive mobile scheme comes with little cost. Figure 13 illus-
trates the frequency of active mobile chirps as a function of the train
speed. A linear relationship between train speed and the frequency
of active mobile chirps is highly desirable, since it means that we
are getting this helpful (but costly) data more as error increases.
Ideally this could make the error constant as our speed increases,
which is an effect we come close to (considering the scale), as seen
in Figure 10. The main conclusion from this graph is that the num-
ber of active chirps from a mobile device is a small fraction of the
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Figure 14: Apparatus B: Schematic representation of the
train’s trajectory.

number of beacon transmissions—it is never more than 3% and
at medium speeds is only 10 in 1000, while achieving a tracking
error close to that of the active mobile system. Quantitatively, at
the highest speed we get a 59% increase in accuracy over the pas-
sive mobile system, relative to the active mobile system. This is
achieved with a 2.2% increase in the number of distance estimates
used.

We arrived at the above numbers using the following calcula-
tion. At the highest speed, we were in a bad state during 62 out
of the 3,506 periods. We averaged 3.7 distance measurements per
active mobile chirp, and thus consumed a total of 296 extra mea-
surements. In the active mobile case, at this speed, we averaged
4.9 measurements per period, for a total of 17,178 measurements.
The passive mobile architecture consumed one measurement per
period; 3,506 distances in total. So the total percent increase in dis-
tance measurements used by the hybrid architecture over the pas-
sive mobile architecture, relative to the active mobile architecture,
is 296/(17178 − 3506), or 2.2%. The median error of the passive
architecture EKF at this speed was 22 cm. In the active mobile ar-
chitecture it was 4.7 cm, and in the hybrid architecture it was 14.9.
Thus, our increase in precision is (14.9−4.7)/(22−4.7), or 59%.

5.2.4 Tracking Performance Summary
The hybrid architecture turns out to perform well, incurring low

overhead, because we only take on the cost of the active mobile sys-
tem when the payoff will be large. As seen in Figure 9, we come
significantly closer to active mobile performance by only using ac-
tive mobile information only 2% percent of the time.

In Figure 8 we examine a similar graph but at lower speeds. Even
though the mobile chirps half as often the hybrid filter shows better
accuracy. Overall error improves as expected, but the hybrid archi-
tecture approaches the performance of the active mobile faster than
the passive mobile does.

5.3 Comparing the P and PV EKF Models
In this section we will refer to a second experimental setup to

illustrate some concepts. We will call the experimental setup we
have seen thus far “apparatus A,” and the new experimental setup
“apparatus B.” The track layout for apparatus B is shown in Fig-
ure 14.
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Figure 15: Apparatus A: Large-error behavior of P-model as
compared to PV-model.
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Figure 16: Apparatus B: Large-error behavior of P-model as
compared to PV-model.

A general trend from our experiments is that the P-model has
better large-error behavior than a PV-model does, even when the
user is moving. This is shown in the extreme top-right corner of
Figure 15, but is more apparent under apparatus B, as shown in
Figure 16. This effect is best explained by the turns in our track.
Because the P-model assumes that the user’s velocity is zero and we
know this isn’t true, we tune our P-model EKF to degrade the qual-
ity of its state vector quickly (i.e.weigh incoming measurements
more heavily than its projected state). Therefore the P-model EKF
performs just as well during turns as during straight segments. On
the other hand, we tune the PV model to have a higher confidence in
its state vector since it has fewer assumptions. (I.e. only that accel-
eration and higher order derivatives are zero, as opposed to veloc-
ity, acceleration, etc. in the P-model.) Because the projected state
vector in the PV-model performs poorly when acceleration levels
are high, the PV model performs slightly worse than the P-model
during the extreme points of turns. This explanation also tells us
why the effect is more pronounced under apparatus B, since here
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Figure 17: Percentage of difference between scaled simulations
and real data at the same speed.
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Figure 18: The positioning error of various data sets scaled to
different speeds.

the turns are sharper, and thus acceleration levels are higher than in
apparatus A.

5.4 Scaling To Higher Speeds
We begin this section with a hypothesis. We propose that we

can process down-sampled experimental data to effectively emulate
higher train speeds. For example, if we have data collected while a
mobile was moving at 1 m/s, we can make a good approximation to
the errors we could expect at 2 m/s by only giving our filters every
other distance measurement.

As illustrated in Figure 17, it seems that this hypothesis is rea-
sonable. The shape and highly sporadic nature of this plot suggest
that we cannot make any meaningful mathematical generalizations
about its nature, but the fact that the largest relative error observed
is less than 20% suggests that for any scaling factor of less than
four in speed, this approach will be reasonably accurate.

Now, we take each set of data collected at the six speeds given
in Section 5.1, and scale it up by factors of one, two, three, and
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one time step of different tracking algorithms. From left to
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four. We then run this new data (twenty-four sets in all) through
our filters, which produces the trend shown in Figure 18. This data
was from a passive mobile architecture and a multi-modal EKF.

In Figure 18, the points corresponding to the different speeds are
roughly along a line, which suggests that the emulation of higher
speeds is correct. We arrive at this conclusion by noticing that the
median error linearly increases with speed in Figure 10. Moreover,
as Figure 17 shows, for the speeds where we have measured data
available, the emulation of scaling performance does not grow dra-
matically with speed.

It is important to note that the EKF filters during all of our ex-
periments were tuned with the same parameters; i.e., the parameters
that govern how covariances are projected across iterations were all
the same. The optimal parameter setting depends on the device’s
speed because as the speed increases, the assumptions of our filters
become progressively worse. However, we chose to make them a
constant for two reasons. First, determining how the parameters
should change with speed is not clear. Second, it is not desirable to
incorporate such a feedback loop into the system; if the parameters
are tuned based on the state of the EKF, bad things could happen if
the state degrades.

Therefore, as the speed increases in the passive mobile architec-
ture, all of the incoming distances begin to look like outliers, and
we saturate the rate of invocations of the LSQ method. We can ex-
pect that as the speed increases, our EKF behaves more and more
like an LSQ filter, whose performance also severely degrades with
speed as shown in Figure 9.

In contrast, recall that in the hybrid architecture, whenever the
filter reaches a bad state, the device performs an active mobile
chirp. In this case, as the speed increases the system would sat-
urate the rate of fallbacks onto this active mobile chirp. That is, it
would behave just as an active mobile architecture. This behavior
sets an upper bound on the positioning error of a system implement-
ing a hybrid architecture at high speeds: the hybrid architecture can
always perform quite well.

5.5 Computational Complexity
A graph showing the number of multiplication and exponentia-

tion operations for a large subset of our algorithms is given in Fig-
ure 19. The least squares bar can be generalized for all implemen-

tations since it always minimizes from some set of distances, after
being buffered in the case of the passive mobile architecture. We
also do not evaluate the computational performance of our multi-
modal filter since it will be close to the sum of its PV and P models.

We make a few important observations from this data. The first is
that our P model is about four times faster than the PV model, even
though it only has half of the number of elements in its state vector.
Most of the computational resources consumed by Kalman filters
are used in the covariance prediction phase, since if the state vector
has n elements then this calculation involves two n × n matrix
multiplications. So we see that the number of operations needed
in a naive Kalman filter grows as O(n3). However, because of the
sparse nature of some of the computations involved, we were able
to pull the increase in computational complexity of the PV model
down to about O(n2).

Second, we see that even though the active mobile models have
about five to six times the amount of data to process (there were
either five or six beacons during these experiments) their compu-
tational complexity is only about double that of the passive mobile
models. This relatively low increase in computation time is be-
cause these distance are measured simultaneously, and thus can be
incorporated into a single filter time-step. Therefore covariance
prediction only has to occur once.

It is obvious from the data shown that the least squares module
is computationally complex. There is not much that can be done
about this unless we sacrifice some accuracy. Finally, we note that
we optimized our Kalman filter procedures to take advantage of
the sparse nature of the covariance matrix so that multiplications in
which one of the factors is zero are not performed. This provided
about a two-fold increase in efficiency, so the numbers from a raw
EKF implementation would be worse.

6. CONCLUSION
This paper investigated the problem of tracking a moving device

in the context of two location architectures. In the active mobile
architecture, fixed receivers at well-known positions periodically
receive wireless signals (e.g., radio and ultrasound) from a mobile
device, allowing the infrastructure to track the device (or for the
moving device to track itself). In the passive mobile architecture,
fixed beacons in the infrastructure periodically broadcast informa-
tion that allows a moving device to track itself.

The passive mobile architecture scales well with an increasing
number of mobile devices, but does not allow simultaneous dis-
tance estimates to be obtained; as a result, its tracking has to be
done one distance constraint at a time, which is less accurate than
in the active mobile case. This paper investigated the relative per-
formance of these two approaches in a real-world testbed based on
the Cricket system.

We investigated the performance of an approach that uses three
components: a least squares optimizer, an extended Kalman filter,
and an outlier rejection method. We used our results from the active
mobile and passive mobile approaches to design a hybrid approach
that preserved the scalability and privacy advantages of the passive
mobile approach, while greatly improving tracking precision.
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APPENDIX
A. EKF CORRECTION STEP

This section gives more details of the EKF correction step. After
we compute our predicted state vector and covariance matrix for
some time ∆T later, we process the newly measured distance sam-
ple. The idea here is that we have an estimate of the variance of
the distance measurement, Rk (we assume that it is normally dis-
tributed as well), and we weigh the output between the predicted
state and the new measurement based on their relative covariances.
The factor that does this weighting is called the Kalman gain, Kk.
We define h(X), a function that, given a state vector X, computes
the expected distance to the appropriate beacon. We define H as
the Jacobian of h. Denote the new measurement by zk. We then
arrive at the following three equations:

Figure 20: Illustration of our 1-D, point model, correction step
example.
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We will use a very simple example to illustrate the use of these
equations. We implement a Kalman filter to track an object in a
1-D space using a P (“point”) model, shown in Figure 20. Suppose
we have the following predicted variables:

X
(−)
k = 10

P
(−)
k = 2

Suppose the measurement and its variance from a beacon located
at x = 5 are, respectively,

zk = 1

Rk = 4

Then,

h(X) = |5 − X|

H(X) = sign(5 −X)

Kk =
(2)(1)

(1)(2)(1) + 4
= 0.33

X
(+)
k = 10 +

1

3
(1 − 5) = 8.66

P
(+)
k = 2 −

1

3
(1)(2) = 1.33

Here, the variance of the predicted state is one-half of the new
measurement, so while the new measurement would suggest that
the listener is at x = 6, the corrected state is only pulled toward
that point.

Now we will observe the end-point behavior. If Rk = Pk, then
Kk = 0.5, and our projected state and the state dictated by the new
measurement, h(zk), would be averaged to produce the corrected
state. Furthermore, as Rk goes to infinity (i.e., as our measurement
becomes less reliable), Kk goes to zero, and the corrected state
and covariance matrices are not changed. Conversely, as Rk goes
to zero, Kk goes to one, and the corrected state approaches h(zk).

The simplicity of this example does not highlight the dimen-
sions of the terms involved. If our filter has n states, and our mea-
surement vector for the current iteration contains m measurements,
then X is an (n×1) vector, P is an (n×n) matrix, z is an (m×1)
vector, R is an (m × m) matrix, H is an (m × n) matrix, and K

is an (n × m) matrix.
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