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ABSTRACT
In mobile Internet applications, data can be transcoded,
updated, and transferred across heterogenous clients. The
problem then arises where updates made in the context
of an initial transcoding results in content too stringently
transcoded for subsequent clients, thereby causing loss of
semantic value. We solve this problem by suggesting that
the updates themselves can be transformed so that they can
be applied directly to the original data instead of to the
transcoded data; this approach allows the data to preserve
as much semantic value as possible across all heterogeneous
clients without unnecessary transcoding artifacts. We de-
fine reconciliation rules that can govern the interaction be-
tween client updates and transcoding, demonstrate a com-
plete middleware architecture that supports our methodol-
ogy, and provide two case studies using content-transferring
applications. We show that our resulting middleware sys-
tem executes our reconciliation approach with acceptable
latency (under 5 seconds for 200 kbytes of layered content),
good scalability, and well-organised modularity.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Communica-
tions Applications; D.2 [Software Engineering]: Software
Architectures

General Terms
Design, Management

Keywords
Mobile computing, reconciliation, transcoding, client up-
dates, data management, middleware
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1. INTRODUCTION
Transcoding is a well-known approach to handling het-

erogeneity at the client end [11] [24]. By taking into consid-
eration a device’s hardware, software, and bandwidth limi-
tations, a transcoding mechanism can appropriately adapt
the content delivered from an external source to a given
client. However, one area that has not been fully explored
is the issue of update modifications on transcoded content,
a scenario that emerges in mobile Internet applications that
share data among clients. In this paper we investigate the
problem of how to formalise and reconcile client updates and
transcoded data across heterogeneous devices.

These issues are relevant to any environment where data
can be transcoded, updated, and transferred between het-
erogeneous clients. In this paper we study the problem in
the context of two compelling application services relevant
to mobile computing. Content migration (e.g. [2] [3]) is the
term we use for an emerging model that suggests that an
application and its content can follow a single user across
multiple heterogeneous devices using an application-level
suspension, migration, and resumption mechanism. Con-
tent sharing (e.g. [15]) can take the form of interactive
whiteboards that allow multiple users to convey sketches
and other annotations to fellow participants.

The following two scenarios illustrate the problem. For
content migration, suppose a user working on a wireless
PDA downloads a colour JPEG that has been transcoded
to a small, greyscale image due to low bandwidth. After
applying some updates to the image, the user migrates his
session to his LAN-connected desktop PC. If we follow the
intuitive lead that the user should see exactly what he last
saw on the PDA, we are left with an undesirable situation:
a greyscale image that has been updated is being displayed
on the desktop PC’s large, full-colour screen. Similarly, con-
sider a content-sharing scenario where users are participat-
ing in a whiteboard application session. When a user on
a PDA downloads a transcoded image and applies annota-
tions, whiteboard semantics suggest that the other partic-
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ipants should see exactly the same content. Even if other
users are working on desktop PCs that require no transcod-
ing, the expected whiteboard behaviour leads us to believe
that they would be presented with the transcoded, anno-
tated data from the PDA.

In such cases, the transcoding appropriate for one device
may be too stringent for other devices. As the data is moved
between clients, the transferred content can quickly degener-
ate monotonically into a form appropriate only for the least
common denominator among all the devices. The problem
occurs because the update at a low-end device is made in the
context of a very lossy transcoding and essentially “locks-
down” the content into this heavily transcoded version. In-
stead, we would like the updated content to be presented as
closely as possible to its original form at all subsequent het-
erogeneous clients regardless of whatever transcoding that
may have been applied at a previous client.

In this paper we look to make the following three con-
tributions. First, we formalise the problem in Section 4
and derive a general solution by defining semantic rules in
Section 5. We consider the problem in the context of ap-
plications where the client updates can be separated from
the data on which they operate. These layered user modifi-
cations allow us to derive the semantic rules. Some impor-
tant application domains that can use this layered model are
medical informatics, computer-aided design/manufacturing
(CAD/CAM), and image/photo editing; in our work we use
a medical teaching application to demonstrate our ideas. We
show that we can leverage layered client updates by trans-
forming them to operate on the original data, thereby allow-
ing us to omit unnecessary transcoding artifacts. The end
result is that the interaction between updates and trans-
coding is managed in a predictable and tractable manner.
While previous efforts have looked into the problem of man-
aging updates to adapted data (e.g. [4] [7] [8]), to the best
of our knowledge ours is the first to reconcile updates and
transcoding across heterogeneous devices using a generalis-
able framework and method of evaluation.

Second, we present a complete middleware service archi-
tecture called MoxieProxy in Section 6 that facilitates con-
tent migration and content sharing using the semantic rules
which we develop. Running on a proxy situated between
application servers and client devices, our middleware pro-
vides an API and basic services for implementing our seman-
tic reconciliation techniques. The middleware is extensible
to support different applications through the use of dynam-
ically downloadable modules that supply the application-
specific logic appropriate for particular programs and proto-
cols. Furthermore, our architecture design is scalable across
a cluster of workstations and provides transcoding through
a pipelined content adaptation mechanism.

Third, we provide two detailed application case studies in
Section 7 that demonstrate the combined use of transcod-
ing, client updates, data transfer, and layered operations.
iDraw is an image-editing program developed as a follow-up
to a medical informatics teaching tool created in-house for
radiology professors at our university’s hospital. iShare is
a multi-client whiteboard application that allows users to
convey annotations to multicast participants. Experimental
results show that our middleware design executes our recon-
ciliation approach with acceptable latency (under 5 seconds
for 200 kbytes of layered content in our sample imaging ap-
plication), good scalability, and well-organised modularity.

2. RELATED WORK
Building on earlier work, this paper provides semantic

rules and a full middleware implementation for content mi-
gration/sharing that take into consideration both (1) user-
supplied modifications and (2) transcoding of data. To the
best of our knowledge, no other research work has provided
a generalised solution for this interaction.

2.1 Content migration
Content migration has been suggested as a new paradigm

appropriate for the ubiquity of computing devices around
us. Generally speaking, in this model applications follow
a user across multiple heterogeneous devices. We use the
term “content migration” to generalise a class of various
application-level implementations and to differentiate this
approach from process migration, a brute-force low-level
mechanism requiring homogeneous devices [23] [26]. With
a content migration capability, an application’s session is
suspended on a source device, moved to a different target
device, and then resumed. The session can also be sus-
pended and then resumed on the same device at a later time.
Various approaches to this type of content migration have
been seen (e.g. PIMA [3], Follow-Me [31], Multibrowsing
[16], One.world [13], and Application Session Handoff [2]),
but none have addressed the problem of transcoding and
updates. In this paper we will demonstrate our own imple-
mentation of a content migration mechanism that follows
the high-level reconciliation rules we develop.

2.2 Content sharing
We use the term “content sharing” for the class of collabo-

rative applications, such as Internet whiteboards [15] [25] or
desktops [28], that allow multiple users to interactively share
and manipulate data. Such a whiteboard provides a GUI for
users to draw figures, annotate with text, and erase content
over the Internet just as one would with a physical class-
room whiteboard. Like content migration, content sharing
with a whiteboard is sensitive to device heterogeneity, and
the resulting issue of handling updates in the face of needed
transcoding is problematic. Prior research in whiteboard ap-
plications have not addressed this issue; rather, much work
has focused on underlying network support. A seminal reli-
able multicast design was proposed in [10] using application
level framing techniques. A proxy-based architecture was
suggested in [7] to support multicast in whiteboards; like
our work, they utilise heterogeneous clients but do not ad-
dress the problem we state here. In this paper we treat
the underlying network support abstractly and instead fo-
cus on high-level application semantics. To that end, we
implemented a simple application-layer multicast using Java
RMI (with RPC behaviour) as a communication mechanism
to demonstrate our ideas. Because our semantic issues are
orthogonal to the underlying communication, our solution
can potentially be applied to many whiteboard systems.

2.3 Reconciliation techniques
Mobile computing. The problem of reconciling data af-

ter disconnectivity or adaptation has been studied in other
mobile computing domains. Within the file system commu-
nity, reconciling modified files on a mobile host after discon-
nection from a primary copy has been studied [21], as has
prefetching copies in file hoarding [20]. However, neither
consider the impact of transcoding effects.
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Figure 1: The original 800x600
24-bit colour JPEG image. This
represents the object o.

Figure 2: JPEG image from Fig-
ure 1 after being transcoded to
400x300 and 4-bit colour to fit a
client. This represents f(o).

Figure 3: Image after user has
circled the butterfly by applying
paint strokes onto the transcoded
400x300 photo. This represents
g·f(o).

The work in [8] provides an adaptation-aware editing fea-
ture that allows users to update transcoded data by sug-
gesting a thorough replication model that takes into consid-
eration the fidelity of subcomponents of content. However,
this work does not fully explore how updates on transcoded
data should be generally reconciled at the original copy and
manifest to other users working on heterogeneous devices.
In this regard, reconciliation is done in a type-specific man-
ner (as in our work), but they consider only a subset of the
cases we will examine, namely when transcodings and up-
dates are commutative. Our work is fully complementary to
their approach; we provide a general framework and eval-
uative condition for carrying out a reconciliation between
transcoding and updates.

Database view updates. Data in a relational database
can be filtered by a view and then updated by the user [4],
resulting in generally the same problem as ours. The work
in [19] paralleled our scenarios and provided key insight by
suggesting that any function translating database updates
must be created by the database administrator using do-
main knowledge at the same time that views are defined.
Although it is tempting to try to extend other solutions from
the database domain into ours, it turns out that the ostensi-
ble similarity is a red herring. Other researchers have solved
the problem by taking advantage of the reduced set of avail-
able view and update operations in the database context by
using solutions too database-specific to be generalised. In
early work, applying a “constant complement” to database
views was suggested [4], but this solution is too dependent
on database semantics. Likewise, other approaches included
SQL relational algebra [5] and constraint satisfaction tech-
niques [30]. Finally, the SQL2 standard itself already con-
strains the set of updates available on views.

3. BACKGROUND

3.1 Data transcoding
Transcoding [11], also known as distillation or content

adaptation, is the process of changing data, usually with
loss of quality, to appropriately fit the limitations of het-
erogeneous client devices or network bandwidth. Data can
be transcoded across different types (e.g. PDF to text) or
within the same type (e.g. reduction of colour depth or
resolution of JPEG images). This functionality is typically

performed at a proxy placed between the application server
and the client. Transcoding has been well-researched (e.g.
[27] [6] [14] [24]) and shall not be discussed here in detail.

Here we distinguish transcoded data sent over the network
with a notation we will use extensively. Let C1, C2, ... Cn

be a set of n client devices among which content can move.
From any client, the user can request a data object o from a
server. A middleware proxy then performs the transcoding,
or filtering, function fi on the data object o appropriate to
a given client Ci. The operation f may be null if the client
does not require any transcoding.

To demonstrate an application of this discussion, in Figure
1 we show a displayed 800x600 24-bit colour JPEG image
downloaded from a server using an Internet-enabled imag-
ing program called iDraw, which we will discuss in the next
subsection. Although the program is intended for the do-
main of medicine, here we chose a butterfly image to demon-
strate our ideas in the clearest visual manner. The image
shown represents a data object o prior to being transcoded
at the proxy. In Figure 2 we show the image after going
through our transcoder, which we will discuss in detail later.
Here, our transcoder, using a static client profile, has dis-
tilled the image to fit a 400x300 display with 4-bit colour.
The transcoded image thus represents f(o). We state that
the absolute quality of the resultant transcoded image is not
important in this paper; rather, just the fact that an image
was transcoded is what matters. (For completeness though,
we note that although there may not appear to be much
difference between the two colour photos if they are printed
as black-and-white on paper, much detail has been lost. For
instance, the butterfly and leaves have lost much interior
detail. Furthermore, the figures are not displayed to scale;
Figure 1 is exactly twice the size of Figure 2.)

3.2 Client updates via layered operations
Once a data object is delivered to the client, the applica-

tion accepting this data may provide the user with a means
to update it. In this paper we focus on applications whose
data modifications can be separated from the objects upon
which they operate. We say that in these types of applica-
tions, the data modifications are layered. The best examples
are instructional tools (e.g. used in medical informatics),
CAD/CAM (used to design and annotate complex systems),
and image-editing programs (e.g. Adobe Photoshop, Jasc
Paint Shop Pro, or GNU Gimp). In these applications, user
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operations can be naturally represented as a layer that is ap-
plied to a substrate, which can be either the original image
or one or more other layered operations on the original.

Layered operations are important because they allow us to
separate an operation from its operand and thereby provide
the flexibility to establish the semantic rules we will define
in the next section. Furthermore, because such operations
can be decoupled from its operand, we can take advantage of
this attribute as a performance optimisation when uploading
data from a client to a supporting proxy [22]. As we will also
show later, decoupling the operations additionally allows us
to transform the operation itself [9].

To facilitate further discussion, we show case studies us-
ing two programs. iDraw is an Internet-connected image-
editing program that follows up a real-world instructional
tool developed in-house by a medical informatics team at
our university to support radiology professors. With this
program, clinicians download medical images (e.g. magnetic
resonance images) and annotate them accordingly. iShare is
a multi-user whiteboard application in a similar vein. Both
are stand-alone Java programs subclassed from a common
GUI drawing application baseclass. These programs can
open image files loaded from the local disk or downloaded
over the network from an application/WWW server. The
images can then be edited using a variety of tools to apply,
for instance, brush strokes or typed text; iDraw also provides
imaging filters such as sharpening and edge detection. Fur-
thermore, images can be uploaded back to the application
server. Since these two applications’ front-end functionality
is so similar, we will use iDraw to visually drive our prob-
lem statement in this paper. Detailed case studies of these
applications and our middleware will be provided later.

Layered user operations can be represented using the same
style of notation we introduced earlier. Let object fi(o) be
the transcoded data received by client Ci from over the net-
work, as discussed before. We say that a user operation gi

can be applied on said data object at that client. The oper-
ation gi can consist of m different layered operations gi1 . . .
gim concatenated together. The resultant object is gi·fi(o),
which represents, reading from right to left, the original ob-
ject o, transcoded for client Ci by the filter fi, and modified
by the user with operation gi.

Accordingly, the iDraw content is defined along the lines
of layers. An opened image, either from a local file or re-
trieved over the network, is treated as the base layer. Manip-
ulations of the image are abstracted into commands that are
serially applied as layers on top of the image. When the user
performs a modification, the action is carried out while an
XML-based representation of this action is pushed onto an
image-manipulation stack. In Figure 3 we show a number of
paint strokes circling the butterfly in the transcoded photo;
this represents the object g·f(o). Each paint stroke is repre-
sented as a command defining two cartesian endpoints and a
colour. Text annotations are similarly represented as coor-
dinates, text, and font data. Additionally, image filters like
Gaussian blurring, sharpening, edge-detection, and colour
inversion are also represented using XML. The application’s
content thus comprises all these preserved commands en-
coded in XML along with the base image.

4. PROBLEM STATEMENT
At the heart of this paper is the definition of the seman-

tics governing transcoding and updates in an integrated,

Client 1 (C1)

 Application Server

 o 

 o 

Client 2 (C2)

 Middleware Proxy

 1 

 2 

 3 

 4 

 5 

 6 

 g  
 
1

 f  (o) 
 

1  f  g  f  (o) 
 112

 g  f  (o) 
 
11

 f  
 
1

 g  f  (o) 
 
11

 f  g  f  (o) 
 112

 f  
 
2

 f  (o) 
 

1

Figure 4: Content transfer events.

mutually-aware, and predictable manner. The problem is
relevant to mobile applications that receive transcoded con-
tent, allow users to update it, and transfer the resultant
data, all across heterogeneous devices.

As mentioned earlier, the two application services we con-
sider, content migration and content sharing, have these
characteristics in common. One difference between these
two is that in content migration, the data transfer between
clients is a state migration for a single user across multiple
devices. For content sharing, the data transfer is a sharing,
or dissemination, between multiple users across multiple de-
vices. The implementations can be different: the content
migration can be provided with any application-layer pro-
tocol (we use Sun’s RMI communication library), whereas a
content-sharing whiteboard typically uses a form of multi-
cast (we use our own application-layer multicast protocol).
However, at the high abstract level they all serve the basic
purpose of moving the user’s content between heterogeneous
devices via an intermediary that provides added services.
We thus group the data movement stage common to both
these scenarios under the umbrella term content transfer.

4.1 The problem
The content transfer capability must take into account

four important interrelated factors. Multiple cycles of these
factors can occur depending on the user’s actions.

To provide detail, we present here an example showing
a sequence of steps during a content transfer that involves
both transcoding and updates. In our discussion we model
content transfer using a generalised architecture where a
proxy is positioned between a client and an application server
to implement transcoding and other services such as caching
and service discovery. Such a tiered design is commonly
used; we describe our own proxy-based middleware archi-
tecture in full detail in Section 6.

In our example in Figure 4, a user initially starts working
on a client C1 and then requests a data object o from the
application server. A middleware proxy supporting the ap-
plication intercepts the request and asks for the data from
the application server on behalf of the client. The server
replies with the object o by sending the object to the proxy,
which immediately caches the object, as shown in step 1 of
the figure. The following steps then transpire:
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• Initial (pre-transfer) transcoding. Data received
from an external source is transcoded to fit the user’s
device C1. This transcoded data is f1(o) and corre-
sponds to step 2 in the figure.

• User updates. At each client device the user has the
opportunity to make changes to the received content
through whatever user interface is provided by the ap-
plication. The updated data is g·f(o) and corresponds
to step 3.

At this point the user wishes to perform a content
transfer to a target machine C2 due to either con-
tent migration or content sharing. Here we leverage
the fact that the user modification g can be decoupled
from the data on which it operates as a separated layer.
With that in mind, upon transfer only g1 (rather than
g1·f1(o)) is sent back to the proxy to be applied re-
motely there; this transmission is step 4.

• Subsequent (post-transfer) transcoding. The con-
tent is appropriately transcoded upon transfer to a
subsequent device. This transcoded data is f2·g1·f1(o)
and corresponds to step 5.

• Preservation of semantic value. When the con-
tent is resumed, the data as well as the user’s changes
should retain as much semantic value as possible; that
is, after the content transfer, the content should con-
vey almost exactly the same information as before.
Note that this may not be the case in our example
when f2·g1·f1(o) is finally delivered to C2, as shown
in step 6. (For a content-sharing application across
multiple clients, C3 would get f3·g1·f1(o), C4 would
get f4·g1·f1(o), etc.) The delivery of f2·g1·f1(o) to the
target client is naive and ultimately incorrect.

The sequence f2·g1·f1(o) would be correct if the trans-
coding function f1 always produces less lossy results than
transcoding function f2. However, C1 could be a low-end,
low-bandwidth wireless PDA while C2 could be a high-end,
high-bandwidth desktop PC. Here, f1 would be more lossy
than f2.

In this latter case, a problem arises due to the user’s up-
dates after an initial transcoding. When the user performs
an update on transcoded content, he is explicitly acting on
the transcoded data whereas implicitly what he really in-
tends is to update the original data; this intent is an impor-
tant assumption in our argument.

Furthermore, updating the data in the context of the origi-
nal transcoding results in content too stringently transcoded
for subsequent clients, resulting in loss of semantic value.
The result is that as the data is transferred across heteroge-
neous devices and updated at clients, the content will mono-
tonically degenerate into a lossy version appropriate only for
that device that required the most transcoding. The impor-
tant issue we address is that we ideally want to allow user
updates to be applied to the original, nontranscoded data.

It follows that the user’s g updates should be applied di-
rectly to o instead of to the transcoded f(o). The key then
is to remove the initial f transcoding. We thus say that ap-
plying g directly onto o preserves more of the original data’s
semantic meaning by omitting the initial f transcoding. In
this case the user’s updates can be considered applied both
implicitly and explicitly to the original data, and the mono-
tonic degradation of quality will not occur.

Referring back to the figure, we thus ideally want C2 to
receive, after adding the f2 transcoding, f2·g1(o) instead of
f2·g1·f1(o). It can further be seen that f2 is irrelevant to the
argument: regardless of whatever f2 may be, the important
point is the removal of the initial f1 transcoding so that g1

can be applied directly to o.

4.2 The importance of transcoding
independence

Unfortunately, this solution of omitting the initial trans-
coding and applying operations on the original data is prob-
lematic. Generally, a user operation may be tightly associ-
ated with a specific transcoding that occurred on the data.
We introduce two terms that characterise this behaviour:

• Transcoding independence. A client update oper-
ation is transcoding-independent of a specific trans-
coding if the operation can be applied either on a
transcoded datum or on the original, nontranscoded
datum.

• Transcoding dependence. A client update opera-
tion is transcoding-dependent on a specific transcoding
if it can only be applied on the transcoded version of
a datum.

Transcoding-independent operations are advantageous in
our context because they allow the initial transcoding step
to be omitted, thereby allowing user updates to be applied
directly on the original data. Upon transfer to another de-
vice, the content is then limited only by the post-transfer
transcoding. Thus, our desired factor of preservation of
semantic value can be attained. Transcoding-independent
user operations may require careful thought to derive: if
a user operation is transcoding-dependent, it may be possi-
ble to transform it into a transcoding-independent operation
using a methodology we will explain later. If a transcoding-
dependent operation cannot be transformed into a transcoding-
independent form, then the user must accept that his data
and interactive updates have been limited by both the pre-
transfer and the post-transfer transcodings. In the following
section we will develop precise rules to apply these defini-
tions and to determine when we can transform a transcoding-
dependent operation into a transcoding-independent one.

5. A RECONCILIATORY SOLUTION
Using the previous notation, we observe that the recon-

ciliation problem can be addressed if we apply the user op-
eration g directly to o. We must note that in general across
all applications, this is not possible, but in this section we
specify a condition which can be used to determine if it
is possible. We want to transform a transcoding-dependent
update g performed on f(o) at the client into a transcoding-
independent update G that can be directly applied to o at
the proxy.

5.1 An evaluative condition
Referring back to Figure 4, upon naive post-transfer re-

sumption, we would receive f2·g1·f1(o). At this point we
make two simplifications without loss of accuracy. First, we
drop the subscript for g1 because we will focus on only one
user update. Second, since as we have said that the second
transcoding f2 is not important, we will replace it with the
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same f1; this corresponds to a content migration or content
sharing back to the same device, a base case that should al-
ways hold true. After transfer, the content should therefore
be f1·g·f1(o).

As stated previously, to ideally reduce the number of trans-
codings, it is the first transcoding operation that must be
eliminated. We therefore want to change the post-transfer
series of layerings from f1·g·f1(o) to f1·G(o), where G is the
operation g that has been transformed to operate directly
on o. We thus ideally want the following condition to be
true:

g·f1(o) = f1·G(o)

In general, the exact equality may be difficult to achieve.
Intuitively, it implies an ideal scenario where the post-transfer
state is no worse in quality that the pre-transfer state. The
left-hand side represents the user-modified, transcoded ob-
ject that was last seen at the client before transfer. The
right-hand side represents our idealised situation after the
object is transferred to the client: a single necessary f1 takes
place on a modified object G(o) without a prior transcoding.
If the condition g·f1(o) = f1·G(o) is satisfactorily met, it
implies that the transcoding-dependent g can be applied to
o directly through its transcoding-independent form G.

5.2 Deriving transcoding-independent G

G must be obtained from g somehow. We first consider
three simple cases. First, suppose g is already transcoding-
independent of any f ; then f1 and g are mutually indepen-
dent and thus commutative. If this were the case, then
g·f1(o) = f1·g(o) by definition and G(o) is trivially g(o).
Second, if all the transcodings f are always null, then clearly
g·f1(o) = f1·g·f1(o) reduces trivially to g(o) = g(o). How-
ever, in the interesting contexts we are researching, f will
be non-null. Finally, for an o created or loaded locally at
the client, the case trivially reduces to where the pre-transfer
transcoding is null and no G is needed; the subsequent client
then receives f1·g(o) after transfer, as expected.

We now consider a more interesting case. Suppose that
for a given g, there does exist a G such that g·f1(o) =
f1·G(o) is true. In that case, after rearranging, G(o) =
f1

−1·g·f1(o). However, in our context any f represents a
lossy transcoding, which by definition is a many-to-few rela-
tionship. For instance, reducing colour depth clearly maps
from many to few colours. Determining the inverse function
f−1 of a many-to-few relationship is not possible because the
inverse few-to-many relationship cannot be determined. As
such, it is not possible, without additional information, to
determine an appropriate re-colourisation to be the inverse
of a colour depth reduction. Thus, G is hard to obtain au-
tomatically from solely f1 and g. We therefore rely on a
predefined mapping between g and G using per-application
heuristics. Such an approach can be represented by a trans-
form function T that maps g to G such that G = T(f1,g).

T represents a heuristic that must be derived from f1 and
g and therefore has no closed form. Intuitively, one can
think of T as “cancelling out” the effect of a transcoding
function f1, thereby allowing a user operation g to be applied
on o. In general, a T does not exist for arbitrary f and g.
If a T does exist (that is, if G can indeed be applied to
o), then we say that the transcoding-dependent g operation
can be transformed into a transcoding-independent G. The
end result of deriving G and applying it to o without a

prior transcoding is that it preserves more semantic value
upon content transfer. If a T does not exist (that is, if
no transcoding-independent G can be found), then we must
treat g·f(o) as a new object at the proxy with resulting loss
of semantic value upon transfer.

5.3 Programming methodology
In the previous subsection we identified the importance

of deriving transcoding-independent functions and the con-
dition which can be used to evaluate an implementation.
Here we provide a generalised framework and guidelines for
carrying out this approach. An application with layered
operations can be modified to use a content transfer with
our reconciliation rules by following a simple programming
methodology involving a collaboration between the applica-
tion programmer and the middleware proxy service provider.
This approach can be summarised in the following steps:

1. The middleware proxy service provider enumerates the
available f transcoding operations associated with a
given data type. For common data types (e.g. JPEG),
transcodings can leverage off-the-shelf code.

2. Collaborating with the service provider, the applica-
tion programmer combines his knowledge of the g user
update operations available in his program with the
given set of transcoding operations. This effort pro-
duces the T transform functions.

3. Using the transform functions, the programmer creates
the resultant transcoding-independent G user opera-
tions that can be applied to nontranscoded data.

4. The application programmer evaluates the result to
see if the pre-transfer and post-transfer presentations
are acceptably similar.

During the course of carrying out this methodology, it
is helpful to create a table that allows the programmer to
evaluate the conditions necessary for reconciling the updates
and transcodings. In Table 1 we show such a table that lists
the (f , g, T) tuples that must be evaluated. The table
is structured following the above design steps and is built
from the point of view of the application programmer. The
table shows that the f transcoding is provided to him (by
the service provider), the g user update operation is already
known to him, and the T transformation must be derived (if
it exists) to create the resultant G transcoding-independent
operation. The programmer then evaluates the pre- and
post-transfer conditions to see if they are acceptable.

We believe this methodology that the provider and pro-
grammer can collaboratively follow is reasonable and tractable.
We successfully utilised this approach during the develop-
ment of iDraw and iShare with the support of our middle-
ware. The following examples illustrate the methodology.

5.4 Example: imaging application
Figure 5 shows a naive attempt to apply a user operation

g directly to o. Here we again show paint strokes around
the butterfly as we showed in Figure 3. In that previous fig-
ure, the operation g had been applied to f(o) at the client,
thus forming g·f(o), which represented paint circles within
an image that had been transcoded via colour depth and
resolution reduction. As noted earlier, the layered g paint
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f (provided) g (already known) T (derived) Evaluation (g·f(o) = f ·G(o) ?)

1 image resolution reduction paint strokes scale strokes up Are the strokes applied in the correct position?
2 image resolution reduction text annotation scale text up Is the text at the correct position?
3 image colour reduction paint strokes N/A; apply default colour Does the default colour convey the same information?
4 image colour reduction image sharpening N/A possibly commutative; depends on implementation of sharpening algorithm
5 PDF-to-text cut and paste in text cut and paste PDF text Are the edits applied at the correct position in the PDF?
6 PDF-to-text underline in text underline PDF text Is the correct text underlined in PDF?
7 speech-to-text cut and paste in text cut and paste speech segments Are the edits applied at the correct position in the speech?
8 speech-to-text underline in text raise speech volume Is the appropriate text/voice-segment underlined/raised?

Table 1: Evaluation table used during the design methodology from the point of view of the application
programmer. We used a similar table during the development of iDraw. The last four entries are potential
evaluations for PDF-to-text and speech-to-text transcodings we will investigate in the future.

Figure 5: The transcoded
400x300 image after the user’s
brush strokes, g, have been
naively applied to the object
o. Note the misapplied circle
above-left of the butterfly. This
represents f ·g(o).

Figure 6: Image after user’s paint
strokes, g, were transformed in-
telligently to G (via the transform
T) and applied to original 800x600
image. This represents G(o).

Figure 7: The transcoded ver-
sion of the image from Figure 6,
now reduced to 400x300 and 4-bit
colour. This represents f ·G(o).

operations are represented using XML tags containing carte-
sian linepoints and a colour to be applied as single strokes
to a target. Figure 5 shows that applying such a g operation
directly to o without first transforming it to an appropriate
form G is incorrect. Here, the g operations’ target is not the
transcoded f(o) but rather the original image o without a
change in colour depth or, more importantly, size. The orig-
inal o has a resolution of 800x600, whereas the transcoded
f(o) has a resolution of 400x300. The applied paint strokes
containing the absolute cartesian coordinates of the paint
lines would therefore be inaccurately applied to the wrong
location in the original o. In Figure 5 we see that this is in-
deed the case: the circular paint strokes can be seen above
and to the left of the butterfly.

In order to properly implement the reconciliation rules for
this application, the programmer can use the evaluation ta-
ble we showed earlier. The first line of Table 1 corresponds to
this imaging problem. Here, the programmer takes into con-
sideration the image resolution reduction transcoding and
the paint stroke updates to derive that the T transformation
must appropriately scale the strokes up. He then considers
the evaluative condition using visual inspection to see that
the paint strokes can be applied correctly.

Figure 6 shows this approach where the operation g is
first transformed to G. Here, the transform function T,
which as we have said is a heuristic related to f and g,
is derived by considering that the original f function re-
duced the image from 800x600 to 400x300 and that the g
operation of applying paint strokes was performed on the

400x300 image. An appropriate G should thus be applied
on the original 800x600 photo. The T function therefore
appropriately scales up each paint stroke’s cartesian coor-
dinate endpoints, initially appropriate for the 400x300 size
of f(o), to instead match the original 800x600 size of o.
Figure 6 therefore shows the paint strokes, after transfor-
mation, scaled up to be drawn around the butterfly. For
completeness, Figure 7 shows the image after it has been
transcoded to form the subsequent f ·G(o) object. Here, the
image has been transcoded again; as we have said, we use the
same transcoding f to simplify the presentation. However,
now clearly the transcoding function operates on the applied
paint strokes as well as the image. Most importantly, the
choices of T, g, and f satisfy the property g·f(o) = f ·G(o)
as much as possible and can be seen visually by compar-
ing Figure 3 and Figure 7. (Note how the circling has now
lost quality. The circle would not have lost as much quality
had T been implemented more completely, namely by in-
creasing the thickness of each stroke in addition to scaling
its endpoints.) Furthermore, comparing Figure 7 and Fig-
ure 5 shows that the latter’s naive implementation is clearly
incorrect after transcoding.

iDraw also allows the user to annotate the image by en-
tering text directly on the image. For brevity, we omit a
screenshot of this capability, but we note this g operation
can also be transformed into a G by scaling the applied text
similarly as we did with the paint strokes. However, opera-
tions that add information like this textual annotation raise
another issue. Suppose the user annotates the image with
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something as seemingly innocuous as “The green leaves look
nice” and then performs a transfer from a PC to a greyscale
PDA. After the image is transcoded for the PDA by reducing
the colour to shades of grey, the annotation will have lost its
meaning entirely. The burden of managing such operations
falls on the user.

5.5 Other examples
In the butterfly example, we derived the T transform by

considering the fact that because the transcoding function f
scaled an image down in size, the corresponding T must scale
the user updates up to match. However, note how we did
not address the problem of the colour depth reduction. In
our implementation, we sidestepped the issue by using black
paint strokes all the time. As mentioned earlier, finding a
“reverse” function for a many-to-few colour depth reduction
is impossible unless additional information is available (e.g.,
we could define that re-colourising a colour depth reduction
always results in one colour, as we had done with black).
This approach is shown in the third line of Table 1. Similar
difficulties may be encountered in other applications using
different f and g. Some transcodings, such as scaling, have
a natural T, while others, such as colour changes, do not.
For the purposes of a graphics program, basic graphics the-
ory tells us that in some cases T is trivially found because
some operations satisfy the property f ·g(o) = g·f(o); that
is, some operations are mutually independent and commu-
tative. In these cases T is thus found easily if (1) f and g are
both geometric translation, rotation, or scaling operations
or (2) if f is a uniform scaling function and g is a geometric
translation. As a negative example, if f were a resolution
reduction and g were an image-blurring filter, then these op-
erations would not be mutually independent; furthermore,
it is not clear in this case that for this f a T could be found
that translates g into G and satisfies g·f(o) = f ·G(o).

Table 1 also shows possibilities with other programs. Con-
sider a user application that can accept Adobe PDF files
that can be transcoded by a PDF-to-text filter to suitably
fit the client. Upon receiving text, the user annotates it by
underlining some words. An appropriate T function would
transform these g operations into a G that can act upon
the original PDF format by changing underlining on text at
the client into underlining on the PDF data at the proxy.
However, we must still check if g·f(o) = f ·G(o) is true. If
the transcoder filters underlined PDF into underlined text,
then the system satisfies our semantics. Similarly, consider
a speech-to-text transcoder. If a T transform changes un-
derlined text to raised-volume speech and if the transcoder
filters raised-volume speech to underlined text, then again,
the system complies. Our approach in these and other ap-
plication domains is an area of future work.

6. MIDDLEWARE IMPLEMENTATION
In this section we provide a detailed look at MoxieProxy1,

a complete middleware architecture and software toolkit to
support the reconciliation rules and design methodology we
developed in the previous section. Broadly speaking, we
utilise the three-tier architecture shown in Figure 4 where
a middleware proxy is placed between application servers
and heterogeneous clients. Our middleware tier runs a set
of generalised services (including transcoding, caching, and

1moxie (noun): 1. energy, pep; 2. courage, determination

service discovery) as well as application-specific code (for
handling program logic and protocols), all written in Java.
Furthermore, the middleware proxy can be run on top of a
workstation cluster to improve scalability. At the client side,
an application must include a Java object that provides an
interface to the middleware services running on the proxy.

6.1 Client-side components
In Figure 8 we show a block diagram of the client-side

software architecture for an application modified to interop-
erate within our architecture. The diagram shows that the
program maintains content that is defined in an application-
specific manner. Furthermore, we assume that the source
code of the applications can be modified to include a Java
object we call the Middleware-Aware Remote Code, or MARC;
this assumption follows from our suggestion that the pro-
grammer and the service provider collaborate. By enca-
pulating our code into a single Java object, the applica-
tion’s original functionality is maintained without interfer-
ence from either the imported MARC object or the proxy.

MARC chassis. The MARC object operates within a
framework chassis and initially comprises only two function-
alities. First, a service discovery functionality can find the
nearest proxy using a discovery protocol. Second, the proxy
responds by sending an application-specific module that con-
tains the application logic allowing the program to utilise
content transfer.

The lazy, on-demand downloading of the module to the
client provides two important features: it allows the MARC
to maintain the smallest possible footprint until full func-
tionality is needed, and it facilitates software maintenance
by allowing updates to be distributed at the proxies instead
of the clients. Furthermore, because the client-side module
is downloaded as a Java object at runtime, it can be cached
and flushed appropriately by the Java virtual machine as
needed, thereby granting a flexibility that reduces memory
usage for the program. This dynamic downloading is an
example of the remote object factory design pattern.

Our MARC operates smoothly with applications thanks
to its clean object-oriented design. Utilising the MARC with
Java applications is straight-forward; we have also had prior
success incorporating Java MARC objects into C++ code
by using Sun’s Java Native Interface Java-C++ glue.

Application-specific modules (ASM) and the ASM
loader. The application-specific modules are the key soft-
ware components that allow us to flexibly implement our
reconcilitation rules. An ASM is the interface between the
original application and our middleware proxy. In the ab-
sence of the ASM, an application communicates with its ap-
plication server using an agreed-upon protocol (e.g. HTTP
for web, SMTP for mail, or ODBC for a DBMS). In our en-
vironment, a client-side ASM communicates with a proxy-
side ASM, which in turn communicates with the application
server using the application protocol.

At the client, the ASM library code provides an API for
the application to receive the f(o) object from the proxy
and to send the client update g back to the proxy. Each
application-specific module (as its name implies) must be
designed to the particulars of a given application. Commu-
nication between the client and the proxy is conducted using
Java’s RPC mechanism, Remote Method Invocation (RMI).
We chose RMI as our standard connectivity API instead of
socket streams because we wanted to keep the communica-
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Figure 8: Client-side architecture. A user ap-
plication contains a MARC Java object that
can load client-side application-specific modules
(ASMs) on-demand.

Figure 9: Proxy-side architecture. A middleware
proxy contains a number of components that run
between an application server and a client.

tion at the granularity of objects, not bytes. That is, the
ASM-enabled application requests and hands off whole ob-
jects like images and documents instead of streams of bytes,
thereby obviating the need for content parsing to assemble
and disassemble packet streams. Furthermore, although ob-
jects can also be sent via Java sockets, RMI simplifies the
programming interface considerably. This approach is simi-
lar to previous architectures that used object-based mobility,
such as Emerald [18] and Rover [17].

The loader allows an ASM to be downloaded from the
middleware proxy and installed dynamically. We imple-
mented this dynamic software downloading by also using
Java RMI to get class files and a custom class loader to
install the class object into the running virtual machine.

Service discovery. In self-organised mobile networks,
automatic service discovery is critical. We implemented our
service discovery component using Jini to allow applications
to find and interoperate with middleware proxy services on
the network. Jini provides a Java API to look up services
based on registries and service leases.

6.2 Proxy-side components
In Figure 9 we show the software architecture within Mox-

ieProxy’s middleware to support the application. This de-
sign is essentially a mirror image of the architecture used at
the client’s side; here, proxy-side ASM code is loaded dy-
namically and run to complement the activity at the client-
side ASM. Content is also cached appropriately.

Application-specific module pool. The proxy main-
tains a pool of client-side and proxy-side ASMs for each
supported program. For example, in our implementation,
the modules for the iDraw and iShare applications are man-
aged as separate Java .class files. Client-side ASM code
is delivered on-demand to the client as we discussed earlier.
Proxy-side ASM code is similarly loaded on-demand into an
execution thread pool, as we discuss next. Each proxy-side
ASM performs the functionality needed at the proxy for the
reconciliation techniques we developed; these ASMs are re-
sponsible for calling the content loader to download content
from the application server, calling our transcoder to adapt
the data, transporting content to the client, receiving g op-
erations from the client, transforming g to G, and applying
these updates. Although the final step of applying udpates

could potentially be done at the second client (by shipping
the transformed operation, in XML representation, to the
client), the application should be done at the proxy because
in general, the proxy has more computational resources than
the clients and may be better suited to perform the update.

ASM execution thread pool. A proxy-side ASM is
loaded into one of several pre-allocated execution threads.
Upon initialisation of the proxy, the system starts a vari-
able number of threads that can be adjusted by the service
provider. With each thread in the pool handling a client
request, the performance of the proxy scales well since the
ASM blocks on network I/O when interacting with either
the application server or the client. One problem we found
is that our transcoding mechanism is computation-bound
and negates much potential concurrency on a uniprocessor.

Content loader. This component loads data from the
application server. Although it we could have incorporated
this functionality into an ASM, we decided to make this
component separate in order to share common loading pro-
tocols among different applications. For example, the iDraw
program can upload and download images with a web server
or with our custom RMI-based server. Accordingly, there is
a separate loader for HTTP and RMI; the RMI loader is
also used by the iShare program. In the past we have also
implemented loaders to handle SMTP for a mail application
as well as RTP for a streaming multimedia program.

We must also consider how to treat these objects if the
user commits changes back to the application server. For
transcoding-independent g operations, the resulting object
G(o) has the same data type as the original object o since it
was simply modified with a legal operation. This fact can be
manifest by the default action taken by the application and
proxy when the user wishes to commit changes: the system
defaults to overwriting the original object o. On the other
hand, for transcoding-dependent g operations, the object
g·f(o) should not be considered of the same type as o due to
the use of f . In fact, as we have said, a transcoding operation
can transform an object from one data type to another, such
as a speech-to-text transcoder. When the user commits his
changes, the system defaults to saving to a different file.

Content Adaptation Pipeline. Our transcoding mech-
anism, the Content Adaptation Pipeline (CAP), divides the
transcoding process into separate extensible stages [29]. Ini-
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tially, when the client registers itself to our system, the client
profile (encoded in XML) is sent to and stored at the proxy
to provide the necessary parameters to perform transcoding.
The profile includes parameters such as the device’s display,
memory, runtime libraries, network interface, and CPU. Af-
ter this registration, the client application can then request
a data object from the application server via the proxy. To
identify the data object, we pass it through a Data Char-
acterisation Function to determine its data type and char-
acteristics. These resulting characteristics (in XML) and
the client profiles (and optionally the current network con-
ditions) are passed as inputs into the Adaptation Command
Generator to produce a set of commands (again in XML)
specifying how the object should be adapted to best match
the client’s constraints. These commands are then parsed
by the Content Adaptation Executor, which will call the
appropriate routines within its pool of available adaptation
library functions to perform the actual transcoding on the
previously cached object. Finally, the adapted object is de-
livered to the client.

In Figure 10 we quantify the overhead incurred by the
CAP to transcode a JPEG image by reducing its resolution
and colour depth. Here we executed the CAP on a Sun Ul-
traSPARC workstation on a fast ethernet LAN. From the
graph it is clear that the processing time for the CAP in-
creases with the size of the original image, a typical trait
in transcoding mechanisms. This figure shows that even for
the relatively large size of 300 kbytes, the completion time
of the CAP is acceptable, under 1600 milliseconds.

Multi-middleware registry for clustered operation.
Although the focus of our work is not scalable performance,
for completeness and robustness we can have the proxy op-
tionally execute across a local-area cluster of workstations
[1] [12]. Our design is similar to that used in modern load-
balanced Web farm clusters. Each client communicates with
a front-end proxy that maintains a registry of participating
back-end Sun Solaris workstations in the cluster. The front-
end proxy chooses a participating workstation in a round-
robin fashion from the registry and returns the IP address
of the chosen workstation to the client, which then inter-
acts directly. The workstations, each running an instanti-
ation of our middleware proxy software, autonomously de-
cide if they have sufficient computational resources to pro-
vide service to clients. We use as a metric the CPU load
provided by the UNIX library call getloadavg(3C), which
returns the number of processes in the system run queue.
If the workstation’s load is over a chosen threshold, it au-
tonomously decides to deregister itself from the front-end
proxy, which removes the workstation from the registry of
available servers. Such an approach scales well since the
decisions are made locally at each workstation without re-
quiring the centralised front-end proxy to maintain excessive
state or poll each server.

To show how our clustered system provides scalability, we
show results in Figure 11 that reflect the execution of the
CAP distributed over three proxies within a heterogeneous
cluster of Sun UltraSPARC workstations. Our front-end
middleware proxy was a Sun Blade 100 workstation running
at 501 Mhz with 1 GB of RAM. We structured the CAP
to perform JPEG transcoding as before. However, in this
case we placed the transcoder under stress by progressively
increasing the service load demanded by clients to test our
load-balancing scheme across our back-end cluster.
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Figure 11: CAP latency on multiple middleware
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The figure shows the latency to perform the transcoding
function as experienced by a given client. In the experiment
we launched a new client (requesting a 500 kbyte JPEG)
at random intervals based on a Poisson distribution with a
mean of 15 seconds. Upon launching, each client requests
data from the application server via the proxy and continues
to make such requests at random Poisson intervals with a
mean of 30 seconds. We localised our measurements on one
client, so therefore, each tick on the x-axis represents one
request iteration for this client (after a random interval).

The data plot for the 1-proxy case shows that the latency
seen by the client grows without bound as more clients (and
their requests) are introduced. This growth is due to the fact
that the proxy must perform the computationally-bound
JPEG transcoding. For the 3-proxy case, we implemented
a load distribution policy of having each proxy monitor its
current CPU load. When its load passes a chosen threshold
(specified by the proxy administrator), the proxy refuses fur-
ther service. In the case of the client in this experiment, it is
redirected to another proxy. With this easily implemented
scheme, the client’s completion time grows and then falls
off, showing that the self-regulating load-balancing scheme
provides reasonable scalability.
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7. CASE STUDIES
The iDraw application, as we have seen throughout the

paper, is an image-editing/paint program that allows the
user to perform a number of different paint operations, such
as multi-colour paint strokes and text annotations, as well as
image filters, such as sharpening, blurring, colour inversion,
and edge detection. The program was written in Java as
a stand-alone Swing/JFC program using JDK 1.3. In our
work, we used iDraw to demonstrate content migration by
having its content sent from one device to another via our
middleware proxy.

In addition to handling images stored on local disk, iDraw
can also download and upload images over the Internet. Im-
ages can be retrieved from a Web server via HTTP (by sup-
plying a URL) and then sent back to servers running a CGI
script we have written. Furthermore, the program can inter-
act with our custom RMI-based image server that publishes
the requisite Java interface for down/uploading images; in
this case, we use a special serialisable Image class because
the default Java Image class cannot be serialised.

The iShare content-sharing whiteboard application has
essentially the same GUI drawing functionality as iDraw, ex-
cept it does not have the image filter operations. Like iDraw,
it can down/upload images over the Internet. We note that
although much work has been done at the network layer
to provide reliable, consistent multicast whiteboard opera-
tions (e.g. [10]), we used a very simple scheme because we
are focused on high-level semantics. Consequently, iShare’s
whiteboard capability is implemented via an application-
layer multicast facilitated by a proxy that acts as a multi-
cast point. Even in the absence of our middleware archi-
tecture, iShare operates with its multicast proxy using the
RMI callback mechanism to allow operations at one client to
be conveyed to other whiteboard users who have registered
themselves as participants at the multicast proxy. Updates
from multiple clients are managed serially and atomically
via Java’s built-in “synchronized” keyword on the remote
methods, thereby enforcing monitor behaviour.

In our experiments, our single middleware proxy was a 501
Mhz Sun Blade 100 workstation with 1 GB of RAM. Our
application/WWW server was a Sun UltraSPARC-5 work-
station running at 270 Mhz with 128 MB of RAM. Our test
client was a Windows 2000 Pentium 4 running at 1.5 Ghz
with 256 MB of RAM. All the machines were connected via
fast ethernet on a LAN.

7.1 Client-side middleware support
Both iDraw and iShare are easily modified to incorporate

a client-side MARC object. The MARC chassis is instanti-
ated and treated just like any other Java object. A service-
discovery method can then be called to find an available
middleware proxy, and an appropriate application-specific
module can then be downloaded into the chassis. The ASM
is named using a unique identifier associated with the appli-
cation. Within the ASM, a variety of operations related to
the semantic reconciliation rules are performed as we enu-
merated earlier, including user registration, content down-
loading, and g uploading. The operations are accessed as
ASM object method calls that must be provided by the ap-
plication programmer and/or service provider.

As we noted earlier, uploading just the g operation instead
of the larger g·f(o) object can result in substantial savings.
In Table 2 we show the data sizes for a sample 1280x960

image, set of brush strokes, and text annotations. Since
the brush strokes and annotations can be encoded as XML
text, they can potentially be significantly smaller. With low-
bandwidth connectivity, this is an optimisation with tangi-
ble benefits.

Data Size

g · f(o) image 120 kbytes
g brush strokes 40 kbytes
g text annotations 2 kbytes

Table 2: Sizes of sample data sent from the client
to the proxy upon content transfer. Note how the
separation of the g operations from the underlying
image substrate has the potential to greatly reduce
the data to be uploaded. It is also worth noting the
brush strokes were encoded in XML but stored in a
Java Vector, incurring some overhead.

7.2 Proxy-side middleware support

7.2.1 Approach
The proxy-side support for iDraw (to perform content mi-

gration) and iShare (to perform content sharing) can be
modularised according to the internal middleware proxy or-
ganisation. The proxy-side ASM delegates responsibility to
the content loader to handle HTTP with a Web server or
RMI with our special image server. Received content is then
passed to the CAP for transcoding. Execution can option-
ally be load-balanced across a workstation cluster using our
multi-middleware proxy design. The above actions are com-
mon to both applications.

For iDraw, the proxy-side ASM performs functionality
specific to content migration. First, the application logic
required to apply transcoding-independent g imaging op-
erations is duplicated within the proxy-side ASM, but this
imaging engine cannot be used alone. Instead, following
the design methodology previously described, we identified
the transcodings available for the image types that iDraw
can handle (such as colour depth and resolution reduction).
A subsequent T functional was then derived for f and g
pairs, and object methods were coded to create the resulting
transcoding-independent G = T(f ,g). For this application,
the implementation of T included the scale-up transforma-
tion we demonstrated earlier. The coding involved a few
dozen lines of Java that calculated the correct scaling factor
and looped over all the paint strokes to scale each one cor-
rectly, resulting in the transformed G. Thus, it is this final
G that is used within the proxy-side ASM for iDraw. The
result is that this ASM properly handles the reconciliation
steps during the content migration.

For iShare, the proxy-side ASM functionality was cre-
ated using similar steps to create the required G operations
needed to reconcile updates for all users in the whiteboard
session. The ASM also contains functionality specific to
iShare’s multicast requirements. The ASM implements a
simplified multicast protocol and serves as a multicast point
among all the participants. In particular, it maintains a
soft-state list of users in the session and conveys updates
between each client. g updates from a client are sent to the
proxy-side ASM via RMI, and resulting G(o) objects are
sent to other participants via RMI callback. Here, the rec-
onciliation rules play a vital role. When a user updates the
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Figure 12: Average time to upload a g operation from
a client to the proxy.
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Figure 13: Average time to download an f ·G(o) object
from a proxy to a client.

Figure 14: Average time to transform a g paint
stroke to G, apply it to an o, and transcode it to
f ·G(o). The original JPEG was a 300 kbyte, 24-bit
colour image; the transcoder was set to reduce the
colour depth and image size to fit an iPAQ PDA with
255 colours and 300x200 screen.

Figure 15: Average time to transform a g text an-
notation to G, apply it to an o, and transcode it to
f ·G(o). Transcoding parameters were the same.

whiteboard content, the ability to apply G directly to o re-
sults in two substantial advantages. First, as we have seen,
it allows the other participants to receive the highest-fidelity
content available without the transcoding required for the
first client. Second, with multiple users, the creation of G(o)
obviates the need to maintain separate transcoded versions
appropriate for each client; that is, the ASM only maintains
(o) rather than a collection of f1(o), f2(o), f3(o), etc. This
simplification grants a savings not only in disk space but
also file management; with a large number of participants
requiring different transcoding support, this approach is a
substantial advantage. The updated whiteboard content is
then transcoded appropriately for the other clients and de-
livered. Concurrent updates in iShare from multiple users
are applied serially at the proxy. Each client uploads its gi

update to the proxy, which in turn applies the appropriate
Gi updates in a serial manner. The resulting object is then
delivered to other users.

7.2.2 Experimental results
In order to quantify the performance of the proxy to per-

form the operations needed to execute the reconciliation
rules, we ran a series of experiments that were common
to both iDraw and iShare. First, in Figure 12 we show
the average baseline overhead incurred by the Java RMI

communication library. In this graph we plot the time to
complete a transfer of a g operation from the client to the
proxy as a function of increasing g size, as seen by both
the client and proxy. Note that since RMI follows remote
procedure call behaviour, the completion time at the client
is subsumed by the completion time at the proxy. The la-
tencies include the time for communication and writing to
disk. (The reconciliation operations are not included here.)
In this experiment we used paint strokes as the g opera-
tions being uploaded; the cumulative strokes are stored in a
Java Vector, serialised (marshalled) into a transferable form
by the Java RMI communication library (thereby incurring
some payload overhead), and delivered to the proxy. As ex-
pected, transferring larger g operations results in a longer
average communication delay.

In Figure 13 we measure the time to move content from
the proxy to a second client. Here, the data is the f ·G(o)
object after applying reconciliation rules. It can again be
seen that the download time increases with the size of the
data being sent. We note that the time to perform the
downloading is up to 1.4 times slower for a given object size
than the corresponding upload of similar size shown in the
previous figure. We believe that the time to do an upload
(which includes a write to disk) completes faster due to the
Java I/O write buffers at the proxy.
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In Figure 14 we show the average time incurred to trans-
form uploaded g paint strokes into G, apply it to the original
o JPEG image, and then run it through the CAP transcoder
to attain f ·G(o). Specifically, we transformed each paint
stroke received from the client into an appropriate transcoding-
independent operation by scaling each stroke’s Cartesian
coordinates up following the approach we discussed ear-
lier. The resulting G operation was applied onto an orig-
inal JPEG image (of size approximately 300 kbytes) and
then transcoded. The graph shows that the average time
to complete these procedures increases with the size of the
g operations, an intuitive trend due to the computation-
bound nature of these operations. Even at 200 kbytes of
layered content, the latency of under 5 seconds is accept-
able. With a more optimised implementation (particularly
within the transcoder), this latency will decrease. Note that
the time to perform the transcoding does not grow as much
with increasing g; the G operations are merged into the
original JPEG, resulting in an updated image still approx-
imately the same size as before, thereby incurring similar
CAP transcoding time. This similarity may not always be
the case, as it is possible that the g operation could add sig-
nificantly large amounts of content such that the resulting
G(o) and o objects may differ drastically in size.

In Figure 15 we show the results of a similar experiment,
this time using text annotations for g. Here, the text anno-
tations are collectively controlled as an aggregate data string
and are scaled up appropriately by changing variables in the
text’s properties. From the graph, it is clear that this trans-
formation incurs less latency than scaling up paint strokes,
which must be done on an individual basis for each stroke.
Similarly, the time to apply the text annotations to the im-
age is also smaller because the text is applied collectively,
whereas paint strokes must be done individually. We expect
that other applications will have different operational laten-
cies as well, depending on the nature of the applications.

8. CONCLUSION
During a content transfer, much semantic information in

the application’s content can be lost due to the transcoding
of downloaded data to fit the limitations of client devices
and bandwidth. When a user performs update operations
on such data, the user is explicitly acting on the transcoded
data whereas implicitly what he really wants is to act on the
original data. Upon transfer to another device, the session
is transcoded again, but unfortunately the user is presented
with data limited by both the first and second transcodings.
If the first transcoding produces more loss than the second,
then much semantic value will be lost, and the content may
quickly degenerate to its lossiest form as it is passed among
other users and devices.

Our paper suggested a way around this problem. In the
applications we are studying, user operations may be rep-
resented by layerings that can act upon substrates. This
capability allows the operations to be separated from its
operand and transformed into another operation that can
be applied directly to the original object instead of to the
transcoded object. We say that operations such as these
are transcoding-independent. The end result is that the dis-
joint nature of transcoding-independent operations allows
the first transcoding to be omitted upon transfer, thereby
allowing more semantic information to be retained.

In future work the results in this paper can provide the

conceptual framework for evaluating the effectiveness of con-
tent transfer for other applications and transcodings. Ad-
ditionally, we look to resolve several open issues. First, we
will analyse the performance-storage tradeoff of our recon-
ciliation mechanism. Second, we will look into ways of han-
dling data objects that are too big to be downloaded in their
entirety before being manipulated. Although user updates
might only be able to operate on entire objects, in some cases
it may be possible to stream objects by first decomposing
them them into smaller sub-objects and then sending them
to the user in a piece-wise manner, an approach similar to
that in [8]. Third, we will investigate means for allowing
users to specify how decoupled operations should be trans-
formed. In much the same way that a transcoding mecha-
nism should allow the user to state preferences for transcod-
ing data, a reconciliation mechanism should allow users to
state parameters for transforming operations. A clear diffi-
culty is then to find ways to capture this open-ended intent-
based information; an XML-based representation would be
one direction. Fourth, we will carry out a human interactiv-
ity study of the perceived improvements from the different
reconciliation approaches mentioned. Finally, we will look
to address end-to-end security with a PKI-based approach.
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