
USENIX Association

Proceedings of MobiSys 2003:
The First International Conference on

Mobile Systems, Applications, and Services

San Francisco, CA, USA
May 5-8, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 159

Service-oriented Network Sockets

Umar Saif and Justin Mazzola Paluska
M.I.T. Laboratory for Computer Science

{umar, jmp}@mit.edu

Abstract

This paper presents the design and implementation
of service-oriented network sockets (SoNS) for
accessing services in a dynamically changing
networked environment. A service-oriented network
socket takes a high-level description of a service and
opportunistically connects to the best provider of that
service in the changing characteristics of a mobile
system. An application states its high-level service
requirements as a set of constraints on the properties
required in a suitable resource and SoNS continuously
monitors, evaluates and compares the available
resources and (re-)connects to the resource that best
satisfies the specified constraints.

Unlike content-based routing systems, SoNS is an
end-host system, interposed at the session-binding
layer, and offers connection-oriented semantics. SoNS’
interface allows an application to tailor the planning
policy used to establish and rebind a network session.
SoNS is based on an extensible architecture to leverage
the wide-range of emerging technologies for
discovering and locating resources in a mobile system.

SoNS integrates a service-oriented abstraction with
the traditional operating system interface for accessing
network services, making it simpler to develop
pervasive, mobile applications. We present an
implementation for a mobile handheld device, analyze
the performance of our system and describe an
application to demonstrate the utility of our system.

1 Introduction

Advances in digital electronics over the last decade
have made computers faster, cheaper and smaller. This
coupled with the revolution in communication
technology has led to the development and rapid market
growth of embedded devices equipped with network
interfaces. It has also promoted the development and
widespread use of battery-operated portable computers,
allowing users to carry their computation resources and
tasks with them.

These advances have led to the recent activity in
pervasive systems [1][2]. MIT’s project Oxygen [22],
and related pervasive computing projects elsewhere,
aim to define computational environments that would
allow users to carry their mobile handheld devices from
one networked environment to another, possibly

disconnected, environment while providing
personalized ubiquitous access to services in the
environment of the user.

Such a system must be able to continuously adapt
to changes in user locations and needs, respond both to
component failures and newly available resources, and
maintain continuity of service as the set of available
resources change. This requires more than service
discovery [3] or simple content-based routing [4]; it
necessitates a certain degree of planning involving
continuous reevaluation of available alternatives, as
well as heuristic compromises to best address the
application’s requirement using imperfect resources in
the changing environment of the application [5].

Such opportunistic access to system resources is
contrary to what is offered by traditional mobile
systems [6] that aim to preserve access to a mobile host
as the characteristics of the system change. Such
systems do not cater to context-aware applications
[5][1][2] that desire to access the best provider of a
service (henceforth referred to as a resource) in their
environment, rather than maintaining access to a
particular host.

Traditionally, such a context-aware application
must itself provide the planning involved in accessing
the best available service-provider in its environment.
Such applications typically contain a planning
component that continuously reevaluates the available
alternatives and provides access to the best available
service-provider. These planning components often
employ a resource discovery system to find the
available alternatives and use the operating system
socket interface to establish and rebind network
connections as better alternatives become available.
Most context-aware and adaptive applications layered
on top of traditional operating systems and network
routing architectures are examples of this model [7].

Where the above-mentioned model has the virtue
that the application is free to use any arbitrarily
complex planning policy befitting its requirements,
allowing the underlying system to be policy-neutral, it
requires every application to be capable of discovering,
monitoring, evaluating and comparing the available
alternatives in order to utilize the best available service-
provider in its environment. In a pervasive computing
environment, where such opportunistic access to
service-providers is a norm, it is clearly desirable to
separate this complexity in a re-usable planning layer
that can be employed by different applications to

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association160

opportunistically access resources in a dynamically
changing networked environment.

Among the existing systems, the Intentional
Naming System (INS) [4] comes closest to achieving
this goal. The late binding architecture of INS allows an
application to send intentional datagrams that carry a
description of the properties of the required service,
instead of the network address of a host, and an overlay
of INS resolvers route these datagrams to the hosts that
match the service description. Where this scheme of
integrating service location and message routing
alleviates an application from the task of continuously
monitoring its environment and rebinding its network
connections when a better alternative becomes
available, INS provides limited planning for choosing
the closest match to application requirements when
more than one resource matches a service description.
In this case INS simply relies on an application-level
anycast to all the matching resources.

Even though it is conceivable that a more elaborate
scheme could lead to more informed routing decisions,
this approach of handling the dynamism of the system
at the routing level inherently suffers from the
following problems.
• The planning policy, used to select the best match to

application requirements, is hidden from the
application in the routing infrastructure and, worse,
distributed in the network. Therefore, it cannot be
tailored to suit the requirements of the various
different applications found in a pervasive mobile
system.

• Such content-based routing systems [4][8] only
provide connection-less datagram semantics; every
datagram carries the required service description
which is resolved by, often an overlay of, network
resolvers to deliver the message to an appropriate
host. Therefore, such systems lack application-level
session semantics, in that there is no concept of an
application-level connection; two successive
datagrams generated by an application can be routed
to two different hosts, transparently to the application.
This coupled with the characteristic fluctuations in the
performance of wireless links and mobile hosts,
means that an application has little control over which
resource gets accessed, precluding applications with
inherently connection-oriented semantics e.g. multi-
media streaming applications. Such a system is also
prone to thrashing between service-providers in the
presence of frequent performance fluctuations and
node failures.

• From a performance point of view, content-based
routing, performed by resolving complex service
descriptions at every hop in an overlay network, is
considerably slower than traditional address-based
network routing [4] since it introduces the cost of
resolving a service description to a network address in
the critical path of message delivery. Furthermore,

including a full service description of the required
service with every network message is wasteful of the
scarce bandwidth available in a wireless network.

• Finally, content-based routing systems introduce a
new API for network communication [4][21], which
is often different from the traditional operating system
interface, for accessing services in the system.

We propose Service-oriented Network Sockets
(SoNS) to access services in a highly dynamic
networked environment. A service-oriented network
socket takes a high-level description of a service and
opportunistically connects to the best provider of that
service in the changing characteristics of a mobile
system. An application states its requirements as a set of
constraints on the properties required in a suitable
resource and SoNS continuously monitors, evaluates
and compares the available resources and (re-)connects
to the resource that best satisfies the specified
constraints.

Unlike content-based routing systems, SoNS is an
end-host system, interposed at the session-binding
layer, and offers connection-oriented semantics. Most
importantly, SoNS allows an application to configure,
and even replace, the planning policy used to evaluate
and compare available alternatives and the semantics
used for rebinding a network connection when a better
alternative becomes available. SoNS integrates a
service-oriented abstraction with the traditional
operating system interface for accessing network
services, making it simpler to develop pervasive mobile
applications.

We favor this approach over a content-based
routing scheme as it handles the dynamism of a mobile
system at the stage of binding a network connection at
an end-host, and hence 1) offers connection-oriented
semantics 2) does not introduce the overhead of
resolving a service description in the critical path of
network communication, 3) does not require a service
description to be carried with every network message,
and 4) does not require any changes to the network
routing architecture.

The rest of the paper is organized as follows.
Section 2 identifies the design goals for SoNS and
Section 3 describes the architecture of SoNS. Section 4
describes the operation of the SoNS constraint parser,
section 5 describes the SoNS resource discovery
framework, section 6 describes the architecture of the
module used to evaluate resources and section 7
presents the support for network connection migration.
In section 8 we describe the API exported by a service-
oriented network socket and present a representative
context-aware application built using SoNS. Section 9
describes the implementation of SoNS for a mobile
handheld device, and section 10 presents performance
analysis and evaluation. Section 11 describes related
work and, finally, in section 12 we conclude the paper
and outline future directions of our research.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 161

2 Design Goals

In order to identify the goals for a system designed
to provide opportunistic access to services in a
dynamically changing system, we consider a simple
example application of such a system.

In our example, a video-stream played by a user’s
handheld device is automatically redirected to the
nearest display as she moves in an environment
populated with displays, possibly from different
vendors and conforming to different standards. In order
to provide this follow-me-video functionality, the
application requires opportunistic access to the nearest
display of a decent size, located in the same subnet as
the user. Furthermore, though the application requires
access to a better display as soon as one becomes
available, it would not like the video-stream to be
switched between displays due to transient fluctuations
in their access latency or when a display device is
quickly carried past it by another user. Finally, the
application must be notified before a session is migrated
to a new resource so that, for instance, it can transfer
some application-specific state to the new resource to
resume access to the service or to even decline the
rebinding suggestion all together.

In order to support such applications, our system
must meet the following goals.
• Resource Discovery and Selection: The system

must be able to discover resources based on a high-
level service specification. Additionally, the system
must define a planning framework capable of
evaluating and comparing the properties of available
alternatives in order to find the closest match to
application requirements.

• Expressiveness: An application must be able to state
its requirements such that they can be used for both
discovering and, subsequently, comparing the
suitability of available alternatives. An application
must be able to state the attributes required in a
suitable resource, the range of acceptable values for
each attribute, the preferred values for an attribute and
the relative importance of each attribute to the
application.

• Extensibility: In order to support a diverse set of
applications in a variety of network characteristics
and standards, the system must not enforce any fixed
policies that could limit the use or efficacy of the
system. Instead, the system must define an
architecture that may be extended to handle different
application requirements, network characteristics and
standards.

• Connection Rebinding Semantics: It must be
possible for an application to configure the semantics
of rebinding a network session when a better
alternative becomes available. Based on our target
applications, we identify the following parameters to

provide an application with the flexibility to configure
the semantics of session rebinding.

o Context It must be possible for an application
to configure the context within which it wants to
find the best resource for its requirements e.g.
current subnet, current room.

o Agility: It must be possible for an application
to configure the agility with which it wants the
system to react to valid changes in its context.

o Hysteresis: It must be possible for an
application to configure the hysteresis of the
system, indicating how long the system should
wait before reacting to a change, in order to avoid
reacting to transient fluctuations that are not of
interest to an application, and to protect against
thrashing.

o Application-notification: It must be possible
for an application to register a call-back method,
which is invoked by the system to notify the
application about the availability of a better
alternative. This notification can be used by the
application to prepare for the rebinding of the
network session. It must also be possible for the
application to decline the suggestion of rebinding
the session to the new resource.

• Performance: Where the system must include a
planning function capable of evaluating and
comparing a set of resources competing against
application requirements, this planning task must be
fast enough to quickly respond to changes in the
system. Furthermore, as our system is interposed at
the operating system socket level, it must be
comparable in performance with the traditional
socket-based communication. Finally, it must not
introduce an overhead for applications that do not
require service-oriented communication.

2.1 Service-oriented Network Sockets

Our service-oriented network session layer includes
an attribute-based discovery framework for discovering
resources in the system, as well as an evaluator module
for computing the suitability of available alternatives
against application requirements.

Since a network socket provides a portal between
an application and the network communication support
of an operating system, it presents a natural interface for
incorporating application-level policies for establishing
a service-oriented network connection by discovering
and evaluating the available alternatives.

Service-oriented Network Sockets offer an
additional socket domain that takes a high-level service
specification as the destination name, instead of a
network address, and defines additional socket options
to configure the rebinding semantics for the service-
oriented session. Using this interface, applications
configure a network socket with an appropriate context,
agility and hysteresis, and connect the socket by

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association162

providing a service description to open a service-
oriented network session. Using these application-level
semantics, SoNS locates the most appropriate resource
in the given context and establishes a network
connection. If any subsequent changes in the system
render another resource more suitable for application
requirements, in accordance with the agility and
hysteresis semantics of the application, SoNS notifies
the application and migrates the session to the better
alternative.

A service description is expressed as a set of
constraints on the properties of an acceptable resource.
As opposed to the resource discovery systems that find
a resource by performing an exact pattern-match on its
attribute-value pairs [3][4], the use of a constraint
language in SoNS, for stating an evaluation criteria,
offers the flexibility to evaluate and compare the
alternatives available in a given context in order to find
the closest match to the requirements of an application.

The design of SoNS handles the heterogeneity of
discovery standards and application requirements by
using a modular and extensible architecture for resource
discovery and evaluation. Protocols for discovering
resources and the policy for evaluating available
choices can be tailored according to the application
requirements and discovery standards used by different
resources.

By handling the dynamism of the system at an end-
node, SoNS does not require any changes to the
network routing infrastructure. Therefore, as opposed to
systems that employ application-level content-based
routing [4] to address the dynamism of the system,
SoNS architecture does not introduce extra routing
complexity in the participating nodes, achieves better
performance, and leverages the underlying network
support for quality-of-service.

3 System Architecture

Figure 1 shows the architecture of a Service-
oriented Network Sockets system. In order to facilitate
application-specific extensibility, portability,
accounting and fault-isolation, Service-oriented
Network Sockets are implemented as a user-space
wrapper around a traditional socket interface, instead of
as a kernel module.

The SoNS architecture has four components: a
resource discovery module, an evaluator module, a

connection migration module, and a socket-wrapper
module. Below we describe these modules in detail.

3.1 SoNS Interpreter

The SoNS Interpreter, shown in figure 2, lies at the
heart of the system and drives the different modules of
the SoNS architecture; it parses the constraints specified
by an application, discovers matching resources by
invoking the resource discovery module, invokes the
evaluator module to evaluate the suitability of any
matching resources, and finally, in the case when a new
resource becomes a better choice for the application,
notifies the application and requests the connection
migration module to migrate the connection to the new
resource.

In order to allow this processing to be accounted on
a per-connection basis, SoNS system forks a new
Interpreter for every service-oriented network socket
created by an application.

3.2 SoNS Interface

SoNS is designed as an extension of the operating
system socket interface; it implements all the methods
and options of a traditional AF_INET Unix socket, with
additional options for establishing service-oriented
network connections.

A service-oriented network socket extends a
traditional network socket in the following ways:
1) The call to create an operating system socket accepts

an additional domain, AF_SONS, for creating a
service-oriented network socket. AF_SONS extends
an AF_INET socket and allows an application to
choose between (sock_stream) and UDP
(sock_datagram) as the transport protocol for a
service-oriented session, including support for the
various options associated with these transport
protocols e.g. TCP_NO_DELAY for TCP.

2) The connect method of a service-oriented network
socket takes a high-level service description, instead
of a network address, to establish a service-oriented
network session. The service description is expressed
in a simple constraint language, described in detail
later in the section.

3) A service-oriented network socket can be configured
with four additional options (as arguments to
setsockopt), context, agility, hysteresis and

Operating System

Evaluator
Connection migration

module

SoNS
Wrapper/Interpr eter

Socket Structure

Resource
Discovery System

Discovery
Protocol

Scoring
Policy

Figure 1: SoNS System Architecture

Discovery
Module

Interpreter

Evaluator
Connection
Migration

1. Query 2. List of
matching
Resources

3. Resource
Descriptions

4. Score s
5. Address

of new
resource

Figure 2: The SoNS Interpreter drives the different
components in the system

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 163

application-callback, to tailor the session rebinding
semantics according to application requirements.

4) Finally, when configured with the optional
application-callback, a service-oriented network
socket invokes a callback method to notify (and seek
permission of) the application before rebinding a
network connection to a better alternative.

3.3 SoNS Constraint Language.

Though previous resource discovery systems offer
varying degrees of sophistication for looking-up
resources based on their attributes [9][4], these systems
do not offer support for evaluating and comparing the
suitability of matching resources against application
requirements. SoNS, on the other hand, allows
applications to specify the criteria for discovering,
evaluating and comparing the available alternatives as a
set of constraints expressed in a simple constraint
language.

Though several sophisticated constraint languages
have been proposed in other problem domains [10], the
constraint language used to express a service-
requirement in the SoNS system achieves a delicate
balance between the expressiveness required for
evaluating the suitability of available service-providers
and the simplicity of design necessitated by the paucity
of resources available in a mobile device.

The grammar for the SoNS constraint language is
shown in figure 3. An expression in the SoNS constraint
language lists the attributes that must be present in the
selected resource, along with a range of acceptable
values for each attribute. In order to define an
evaluation and comparison criterion, a constraint also
includes an operator, (less-than “<”, or greater-than
“>”), to indicate the preferred extreme in the range of
acceptable values; resources with attribute values closer
to the preferred extreme are favored over the resources
with values further away towards the other extreme.
This approach of allowing an application to express its
requirement as a range of acceptable values, instead of a
single scalar value, has the following merits. 1) It

provides the flexibility to satisfy the requirements of an
application with imperfect resources in its environment
2) It provides the system with a yardstick to compare
and evaluate the matching resources against application
requirements. 3) It encourages an application to
explicitly declare its scale of tolerance for an attribute
value; a change k in a range L

� � � � � 	 � � � � � � � � � � � �

than the same amount of change k in a larger range, L � � � � "

In the case where an application is interested in the
least or the greatest value for an attribute, irrespective
of the specific value of the attribute, the application can
leave the range unspecified. This could be used by an
application to, for example, connect to the least loaded
server in its environment, expressed as “< load”.

SoNS also allows open ended ranges in the case
where the application is interested in having an attribute
value to be greater than (or lower than) a certain
threshold, but perceives no marginal gain as the value
of the attribute moves further away from the specified
threshold. SoNS handles this case by treating the
unbounded end of a range as 0 or a large positive
integer, depending on which side of the range is
unspecified.

Not all attributes of a resource required by an
application are of the same importance to the
application. SoNS handles this requirement by allowing
an application to specify the relative importance of the
listed attributes by attaching a (integer) weight with
every attribute; an attribute with a weight of 4 is twice
as important to an application as an attribute with a
weight of 2.

Attributes that are allowed to have only a single
value, including the attributes with textual values, use
an equality (“=”) operator and do not specify a range
or attach a weight to the attribute; a resource description
that does not match an equality constraint is simply
rejected. Attributes that must be present in a matching
resource, but whose value is not of interest to the
application, are specified as a don’t care value, stated as
ANY.

Finally, the constraint language includes two
logical operators, conjunction and disjunction, to allow
individual constraint-expressions to be combined into a
composite constraint specification. A composite
constraint specification can have a hierarchical
structure; constraints can be grouped (associated) and
nested using braces, and the logical operators are
distributed over nested constraints when evaluating a
constraint.

(and (= device display)
 (> (size 15 30)
 (= color yes)
 (or (> video-streams 1)
 (= load 0)))

Figure 4: An example constraint specification
expressed in the SoNS constraint language

ConstSpec = Nested | Cmplx | Smpl
Nested = Cmplx (Cmplx+)
Cmplx = (Logical (Smpl Smpl+))
Smpl = (Relation Attribute) |
 (Relation Attribute Range | Value) |
 (Relation Attribute Range | Value) Weight
Logical = AND | OR
Relation = < | > | =
Attribute = String
Weight = Integer
Range = Numeric Numeric
Value = String | Numeric
String = [a-z]+[a-z1-9]*
Numeric = Integer | Float
Integer = [1-9]+
Float = [1-9]+.[1-9]*

Figure 3: Constraints Language for SoNS

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association164

To illustrate the expressiveness of the SoNS
constraint language, we show how the requirements of a
follow-me-video application, presented in section 2,
will be expressed in our language. Such an application
can impose the following constraints on the display
used by it. 1) The display must be more than 15 inches
in size, for clear viewing, but less than 30 inches, due to
the resolution limitations of the video-encoding scheme,
2) it must be capable of rendering colors, 3) and should
be either capable of displaying more than one video-
stream simultaneously or must not be in use. These
requirements would be expressed in the SoNS
constraint language as shown in figure 4. It is worth
noting that the use of an open-ended range for the
number of video-streams supported by the display
device implies that the application is indifferent to the
number of streams being displayed on the screen. If the
application prefers to use a less cluttered screen, it will
provide a closed range, and will use the “<”operator to
indicate that a display capable of showing fewer
streams is preferable. Therefore, the use of a range to
express a constraint, in fact, encourages an application
to be more precise in defining the, often assumed,
precincts of context-awareness.

3.4 Semantics of Session Rebinding

Besides the constraints specified by an application
to define the criteria for comparing available resources
against application requirements, SoNS also allows an
application to tailor the semantics of rebinding the
network session by controlling the parameters for
detecting and reacting to changes in the system. A
service-oriented network socket takes four additional
options as arguments to the setsockopt library call.
Context: An application can specify its context as a
sub-net address, location of the looked-up resources,
number of network hops traversed by a discovery
message or any other metric meaningful for the
discovery protocols part of the SoNS architecture. For
example, the current implementation adjusts the

SCOPE of an SLP [9] network query to limit the
context of the discovery.
Agility: An application can specify the agility with
which it reacts to changes in the system by adjusting the
frequency to probe the system for changes. The agility
is specified as the interval between successive probes,
stated in seconds.
Hysteresis: An application can keep the system from
reacting to transient changes, not of interest to the
application, by specifying a value for hysteresis. The
hysteresis is stated in terms of the number of probes for
which an application requires the properties of the
resources in its context to be consistent before SoNS
(notifies an application and) switches the connection to
a better alternative.
Application-Callback: Finally, an application can
register a callback with the socket, which, if registered,
is used to notify the application when a better
alternative becomes available. This notification,
parameterized with the description (including the
network address) of the new resource, can be used by
an application to prepare itself to switchover to the new
resource or to reject the change by returning a false
value from the callback. It is worth noting that since a
connection migration can only happen when the
application returns control from the call-back, the
application can use the call-back to delay the migration
to a “migration-safe” point in its control flow.

4 Constraint Parsing

The constraints specified by an application are used
both for discovering and evaluating resources in the
context of an application. To accomplish this, the
constraints are parsed into a tree data-structure, which
serves as an in-core representation of the application
requirements for discovering and evaluating resource
descriptions.

 (or

(> (a 1 2)1)

(and

(< (b 0 9)2)

 (= (c 9)1)) int connect(int fd, struct sockaddr * addr)

or

and

<
range:[0 - 9]

attr: b
weight: 2

>
range:[1 - 2]

attr: a
weight: 1

=
range:[0 - 9]

attr: c
weight: 1

Attribute
 Value

 a
 1.5
b
 3
c
 10

or

and

<
range:[0 - 9]

attr: b
weight: 2

>
range:[1 - 2]

attr: a
weight: 1

=
range:[0 - 9]

attr: c
weight: 1

0 .66

0 .5

.5

Figure 5: An illustration of constraint parsing and evaluation by the SoNS Interpreter

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 165

Constraints are read as a plain-text string from the
sockaddr_sons structure passed by the application in a
connect()socket call (refer to figure 5). The string is
then parsed using a standard GNU Flex/Bison
lexer/parser into a constraint tree. The parser makes a
distinction between composite constraints and simple
constraints. Simple constraint, specifying a range over
a single attribute, are placed at the leaves of tree, while
composite constraints, containing nested constraints
composed by taking disjunctions (OR) and conjunctions
(AND) of simpler constraints, are represented at the
intermediate nodes of the tree (refer to figure 5).

The parser also fills-in any missing bounds, 0 for
less than constraints and a large integer for greater than
constraints, as well as missing weights with a default of
1.

5 Resource Discovery

After constructing a constraint tree, the SoNS
interpreter invokes the discovery module with the list of
attributes at the leaves of the constraint tree. The
discovery module invokes the discovery protocols
registered with it and returns the matching resource
descriptions to the interpreter.

The interpreter then passes this list to the evaluator
module, which assigns each resource a score by
comparing the values of its attributes against the
constraints stored in the constraint tree. The evaluator
invalidates the resource descriptions with attribute
values outside the range specified by the application, as
well as the resources that fail to meet an equality
constraint.

After the initial setup, this procedure is repeated
every time the probe period specified by the application
expires. An application can also force a probe/evaluate
cycle, for instance on the command of a user. After
receiving the score for each resource, the interpreter
removes all the resource descriptions that were rejected
and forms the “n-best-list” for the probe. If the
application forced the probe (by invoking connect on an
already connected socket), then the resource with the
highest score is chosen from the n-best-list and the
socket is migrated to its network address (just like the
initial setup). However, if the probe was a normal
periodic probe, the system enters the hysteresis phase.
In the hysteresis phase the n-best-list from one
probe/evaluate cycle is compared to the n-best-list
stored from the previous cycle and the resources present
in both new and old probes have their hysteresis value
increased by one. Resource(s) with a hysteresis value
greater than the hysteresis value specified by the
application are separated and the connection is migrated
to the network address of the resource with the highest
score. In the case where an application has registered a
call-back, SoNS invokes the callback method, with the
description of the chosen resource, before performing

the migration, and migrates only if the application-
callback returns a true value (indicating application’s
approval of the connection migration). Upon migration
of the network connection, the n-best-list is reset and
the process is started anew.

5.1 SoNS Resource Discovery Framework

Our target network environment often comprises of
resources conforming to different resource discovery
protocols, e.g. IETF SLP [9], INS [4] and SSDP [11],
due to both commercial and technical reasons.
Therefore, a service discovery framework based on just
a single discovery protocol is not sufficient to discover
the various resources found in a pervasive mobile
system.

SoNS handles this heterogeneity by defining an
extensible resource discovery framework, capable of
employing different discovery protocols to discover
resources in the system. A discovery protocol is added
to SoNS by registering a pointer to its look-up method,
while SoNS performs resource discovery by invoking
the look-up methods of all the discovery protocols
registered with it.

However, various discovery protocols found in our
target environment offer different degrees of
expressiveness for looking-up resources in the system.
Protocols like INS [4] and SSDP [11] simply take a list
of attributes and match them with the attributes of the
resources being looked-up, whereas more sophisticated
protocols like SLP [9] and SSDS [3] can perform
complex queries containing conjunctions and
disjunctions on nested lists of attributes, as well as
range comparisons for attributes with numerical values.
In order to interoperate with such diverse protocols,
SoNS translates a service specification to a very basic
query format common to all discovery protocols.

SoNS resource discovery framework invokes a
constituent discovery protocol with a simple list of
ASCII-encoded attribute names, constructed by taking
the attribute names from the leaves of the constraint tree
created by the SoNS parser. Upon invocation, a
discovery protocol finds the resources containing the
specified attributes, and returns their descriptions in a
list of feature-sets: sets of attribute-value pairs. The
matching resource descriptions, encoded as feature-sets,
are passed on to the evaluator module to evaluate their
suitability against the constraints specified by an
application.

It is worth noting that, in order to achieve
compatibility with simpler protocols, this scheme does
not require any filtering involving value comparisons to
be performed by a discovery protocol. Rather,
discovery protocols look-up resources by simply
performing a pattern match on the specified attributes,
and the suitability of a resource, based on the values of
the looked-up attributes, is computed in the SoNS
evaluator module.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association166

Passing a query as a simple ASCII-encoded list of
required attributes also has the virtue that it can be
easily converted to a more ornate format, by a simple
wrapper around the lookup interface, if required by a
more sophisticated discovery protocol.

5.2 Context of Discovery

Along with a pointer to a look-up method, a
discovery protocol can also register a pointer to a
method for setting the scope of the network queries
generated by the discovery protocol. This method is
invoked by SoNS when an application specifies a
context of interest as an option to a service-oriented
network socket. For example, SLP and SSDS register a
pointer to a method that sets the value of SCOPE of the
discovery agent to configure the context of the network
queries. Though some simpler protocols, e.g. SSDP,
lack support for scoped queries, and hence, do not
register this method, we believe that such support is the
key to the scalability of a pervasive discovery protocol
and will soon find its way in mainstream discovery
protocols.

5.3 Probing vs. Advertising

A mobile device wishing to discover resources in
its environment can either passively listen to
advertisements by other resources in the system or can
actively probe the network with periodic discovery
messages.

SoNS uses active probing as it makes it simpler to
support application-level semantics for session-
rebinding. Applications configure the session rebinding
semantics by setting 1) the frequency of probing, to
adjust the agility with which resources are discovered,
2) the scope of a probe message, to adjust the discovery
context and 3) the number of probes for which the
properties of a resource must be consistent, to set the
hysteresis of the system.

We favor probing over advertisements because in
an advertisement based system the scope and frequency
of the messages generated by a resource to advertise
itself to the system cannot be adjusted to suit the
requirements of any single application. Furthermore,
with resource advertisements arriving asynchronously
at different frequencies from various resources, there is
no clean way to specify the hysteresis of the system.

From a design point of view, in an advertisement-
based system, where resources are required to
continuously advertise themselves to the system in the
hope that some application might be interested,
introduces a continuous overhead of network messages
and processing of advertisement messages even when
there is no application listening to the advertisements.

Finally, probing is supported by all the resource
discovery protocols found in our target environment
(though some protocols can also be configured to
operate in an advertisement-based mode).

5.4 Directory-based versus Peer-to-peer
Discovery

Resources can either respond to queries directly, in
a peer-to-peer setup, or could register their descriptions
with a directory service which could be searched to
locate resources.

SoNS’ extensible design does not impose a
restriction on which of the two methods is employed by
a constituent discovery protocol to discover resources in
the system. However, we believe that a peer-to-peer
model is more suitable for supporting application-
specific session rebinding.

Though a directory-based setup avoids query
broadcasts, and, hence, presents a more scalable design,
it suffers from the following limitations in a
dynamically changing system. 1) A directory-based
architecture depends on the availability of host(s) in the
system that are capable and willing to answer queries
on behalf of other resources. 2) A directory-based
scheme introduces the overhead of keeping the
directory state consistent with the (oft-changing)
properties of resources in the system. 3) The directory
service can itself cause a bottleneck in the system. Since
in a peer-to-peer setup resources themselves report
their, up-to-date, properties, the rate of probing provides
an accurate mapping for the rate of adaptation expected
by the application; this can only be guaranteed in a
directory based system when the directory service is
always consistent with the changes in resource
properties.

6 SoNS Evaluator Module

The discovery framework returns all the matching
resource descriptions returned by the various discovery
protocols to the interpeter, which passes these resource
descriptions to the evaluator module. The SoNS
evaluator module performs the planning required to
select the resource, among the available alternatives,
that comes closest to satisfying the service requirements
of an application.

To motivate the evaluation strategy used by the
SoNS evaluator module, consider a situation where the
follow-me-video application mentioned above moves
into an environment with two displays: one closer to the
handheld device but the other larger in size and with
better resolution. In this situation, there is no clear
winner (that is better than all the other available
alternatives in every aspect). A naïve solution could be
to count the number of attributes for which a resource
“beats” other alternatives and pick the resource with the
maximum number of “wins”. However, such a solution
not only leads to a combinatorial explosion but also
requires every sample of attribute values to be kept for
later comparisons according to application’s hysteresis
requirements.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 167

SoNS evaluator is designed to be simple and
responsive to changes and does not require the attribute
values of every resource to be preserved across multiple
probes. SoNS achieves this by using a simple scoring
scheme which sums-up the suitability of a resource in a
single scalar value for efficient comparisons.

SoNS evaluator takes a list of feature-sets, along
with the application’s constraint tree, and returns a
corresponding list of positive integer scores reflecting
the suitability of each resource. A resource with an
attribute that fails to meet an equality constraint or has a
numerical value outside the range specified by an
application is assigned a score of zero.

Figure 5 shows the operation of the default SoNS
evaluator. SoNS’ default evaluator performs a depth-
first search of the constraint tree. On reaching a simple
constraint at a leaf node, it extracts the value of the
corresponding attribute from the resource’s feature-set
and compares the value with the range specified in the
constraint. If the value satisfies the constraint, then a
score between 0 and 1 is calculated based on where the
value falls in the valid range. If the constraint specifies
that smaller is better, then a value equal to the lower
bound is assigned score 1 and a value equal to the upper
bound is assigned score 0, with all other values being
assigned linearly within that range. The reverse occurs
for constraints indicating that larger values are better. If
the constraint specifies only equality or the ANY
keyword, then any value fitting the constraint is given a
score of 1. Finally, the score is multiplied by the
constraint’s weight and returned as the value of that leaf
node.

After assigning scores to the leaf nodes, scores for
the intermediate nodes, containing conjunctions and
disjunctions, are calculated using the following
algorithm. An OR node acquires the score of a child
node with the highest score in its sub-tree, while a score
of zero is assigned if all of its children nodes have a
score of zero. An AND node is evaluated in a
complimentary way: the score of an AND node is
calculated by adding the scores assigned to its child
nodes, while any child node with a score of zero causes
the AND node to be assigned a score of zero. The
overall score of a resource is the score calculated for the
root of the constraint tree using the attribute values in
the resource’s feature-set.

We have found this simple evaluation strategy to
be sufficient for our purposes for the following two
reasons. 1) It keeps the design of SoNS simple enough
to be hosted in resource constrained mobile devices and
2) the simplicity of the algorithm used for evaluating
and comparing the available alternatives incurs minimal
penalty in terms of the responsiveness of the system;
where a more elaborate scheme could be used for
comparing the suitability of available alternatives, it
would increase the time spent in evaluating a resource,
resulting in an increased latency between the time a

viable resource become available and when the system
recognizes its superiority.

As described earlier, the scores returned at each
probe are compared by the Interpreter according to the
hysteresis semantics of the application and a winner is
chosen if a resource consistently scores better than other
resources.

The extensible design of SoNS also allows the
default evaluation policy to be replaced by more
efficient or specialized algorithms better suited to
individual application requirements. An application can
replace the default evaluation policy by registering a
pointer to an application-specific evaluator with the
SoNS evaluation module. This allows more involved
constraint satisfaction engines, for example as proposed
in [12], to be employed for calculating the relative
utility of available resources. Such planning and
constraint satisfaction systems are a topic of our current
research.

7 Connection Migration Module

Once a better resource has been selected, the SoNS
Interpreter requests the connection migration module to
migrate the network connection to the new resource.

The semantics of migrating the network connection
from one resource to another depend on both the
stateful-ness of the service being accessed and the
reliability guarantees offered by the underlying message
transport protocol [13]. Migration of an unreliable
network connection to a stateless service is
accomplished by simply closing the old network
connection and opening a fresh connection to the new
resource. However, additional support is required for
migrating reliable connections and for managing
stateful services [13]. Migration of a reliable connection
requires support for preserving the sequence of
messages across migration, while a connection to a
stateful service can be migrated transparently across
resources only when the state accessed at the old
resource is also available at the new resource in the
form that the access to the service can be resumed at the
new host from where it left-off at the old resource.

The former requires a reliable transport protocol
with support for migrating an active connection, while
the later also requires a system for distributing and
maintaining consistent state across replicated instances
of a stateful service.

This paper focuses on enabling a client to utilize
the best provider of a service in its changing context;
the subject of replicating and synchronizing stateful
services has been extensively researched by others [14]
and is not covered in this paper.

SoNS uses the Migrate system [15] for migrating
network connections between resources. We chose the
Migrate system as it provides support for securely
migrating both reliable and unreliable network
connections, as well as a lightweight, soft-state based

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association168

consistency management system to support connection
migration across stateful servers. Unlike other
connection migration systems, like SCTP[16], that
require the network addresses of all the potential servers
to be known at connection setup time, Migrate allows a
connection to be migrated to a newly available server
using the TCP migrate options. Having said this, the
modular design of SoNS allows other connection-
migration systems to be used as well, though we have
not integrated other such systems with SoNS as yet.

8 Applications

This section describes the API of SoNS and a
simple, yet representative, application we have
developed to demonstrate the utility of service-oriented
network connections offered by the SoNS architecture.

Our test applications were developed for a Compaq
iPAQ, fitted with a backPaQ and running familiar
Linux. Our backPAQ is fitted with an 802.11b wireless
card, video-camera, accelerometer and the Cricket
Location detection system [17].

8.1 Follow-me-video

We have used SoNS to develop a follow-me-video
application. A follow-me-video application running in a
handheld device carried by a user re-directs the video
stream to the display closest to the user as she moves in
the system. In our test environment, all resources
(server devices) are also fixed with Cricket Beacons to
measure their distance relative to other Cricket-enabled
devices (including our handheld device).

The relevant code snippet from our example
application, mentioned in section 3.3, is shown in figure
6. Our example application generates an MPEG-1
encoded stream and is interested in the nearest display
with 1) Resolution: 640x800 – 1280x1600 (with
preference for displays with higher resolution), 2) Size:
larger than 15 inches to allow viewing from a distance,
but less than 30 inches due to the limitation of the
encoding resolution (with preference for a larger
display)

The application creates an AF_SONS domain
socket, and specifies the following options: Context: 6th-
Floor, Agility: 5 (seconds between probes), Hysteresis:
3 (number of probes), Call-back: pointer to method that
forced a base frame to be transmitted. The application
then connects the socket by giving it a composite
constraint specification for the properties of the display
device.

SoNS sets the SCOPE of the SLP user agent to 6th-
Floor, probes the network for display devices, and
connects to a display that scores the highest points
among those present on the 6th floor. The distance to a
display device is measured by invoking the Cricket
location system (added to the system just like another
discovery protocol). After making the initial
connection, the network is probed, using SLP and

Cricket, every 5 sec and available resources are
compared according to the hysteresis. If a better display
becomes available, SoNS invokes the application
callback, which forces a base MPEG frame to be
transmitted upon migration, so that the playing of video
at the new display can be resumed without jitter.

Our example application also monitors the
accelerometer embedded in the backPAQ to find out if
the device is moving and with what speed. If the
application discovers that the handheld device is
mobile, the application can increase the rate of probing
and reduce the hystersis value, according to the degree
of movement reported by the accelerometer, in order to
take advantage of the displays that become available for
a short time when, for example, a user walks down a
hallway.

int main(int argc, char ** argv) {
 int sockfd;
 int intopt;
 char * charopt;
 size_t opt_sz;
 sons_callback_t cbsons;
 struct sockaddr_sons sasons;
 sockfd = socket(AF_SONS, SOCK_STREAM, 0);
 intopt = 5;
 opt_sz = sizeof(int);
 setsockopt(sockfd, SOL_SOCKET,
 SO_PROBE_PERIOD, &intopt, opt_sz);
 intopt = 3;
 opt_sz = sizeof(int);
 setsockopt(sockfd, SOL_SOCKET,
 SO_HYSTERESIS, &intopt, opt_sz);
 charopt = "floor-6";
 opt_sz = strlen(charopt) + 1;
 setsockopt(sockfd, SOL_SOCKET,
 SO_SERVICE_SCOPE, charopt, opt_sz);
 cbsons = force_b_frame();
 opt_sz = sizeof(sons_callback_t);
 setsockopt(sockfd, SOL_SOCKET,
 SO_CALLBACK, &cbsons, opt_sz);
 charopt =

 “(and (= service display)\n”
 “(= media mpeg1) \n"
 "(> xresolution 800 1600) \n"
 "(> yresolution 640 1280)) \n"
 "(> displaysize 15 30) \n"
 "(< distance))";
 sasons.sin_family = AF_SONS;
 memcpy(sasons.query, charopt,
 strlen(charopt));
 connect(sockfd, (struct sockaddr *) &sasons,
 sizeof(struct sockaddr_sons));
 //...read and write using standard socket
 // calls...
 close(sockfd);
 return 0;
}

Figure 6: Code snippet from the follow-me-video
application developed using SoNS.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 169

9 Implementation

SoNS was implemented in GNU C/C++ on
GNU/Linux. The code is divided into four modules: the
socket interface library, SoNS interpreter, wrappers for
the resource discovery protocols, and the evaluator
module.

9.1 Socket Library

The socket library code overrides the socket
interface to offer the extended SoNS interface, and
spawns an interpreter daemon to periodically discover
and evaluate available resources.

In order to provide an extended interface, we either
needed to modify the underlying Linux libc or use a
package that captures system calls and redirects them
through other functions. We chose the latter route and
specifically chose to use TESLA [18]. TESLA allows
arbitrary handlers to be inserted between an
application’s socket call and the underlying socket
kernel calls, precisely matching our needs.
Furthermore, the Migrate architecture, which we use for
connection migration, also uses TESLA, so the
overhead of using TESLA would be present in our
system anyway.

We wrote TESLA handlers to override the calls to
socket(), connect(), getsockopt(), setsockopt(), and
close() functions. The most interesting overridden call
is connect(). The connect call exercises the entire
system since it sends a message to the interpreter
daemon telling it to force a network probe, then picks
the best service, and finally calls connect on the
underlying socket structure. getsockopt() and
setsockopt() simply update socket-related data in the
daemon. The interpreter daemon itself merely sits in a
loop waiting either for an event from the TESLA
handler or an alarm signal indicating that it should
perform a periodic poll/evaluate cycle.

9.2 Resource Discovery Protocols

The interpreter invokes the run_query method of
all the discovery protocols registered with it. The run
query method takes an array of required attribute names

and returns a list of attribute-value bindings. This
method is the sole interface between the interpreter and
the discovery protocols so that discovery protocols can
be easily added/replaced.

The current implementation employs two discovery
protocols to find resources in the system: IETF Service
Location Protocol [9] and the Cricket Location System
[17] (for estimating distance to available resources). We
use the OpenSLP implementation of SLP, with the User
Agent configured to perform discovery in a peer-to-peer
fashion, by multicasting the query on the SLP multicast
channel.

10 Performance Analysis and Evaluation

Unlike content-based routing systems, the session-
oriented approach of SoNS moves the cost of resolving
service descriptions from the critical path of a network
message delivery to the stage of establishing and,
subsequently, rebinding a network session. Therefore,
we evaluate the performance of SoNS by measuring 1)
how quickly it can setup a service-oriented network
session and 2) how quickly it can rebind the network
session when a better alternative becomes available.

All tests were performed on a Pentium III with
256MB of RAM running Linux 2.4. Since we wanted
to isolate our system from network latency, we used an
in-memory stub SLP rather than the OpenSLP SLP.
We expect most constraint specifications to have
between 1 and 15 elements and be a combination of
both simple constraint specifications and composite
constraint specifications. Our tests span this space: we
vary the number of attributes in a straight-line set of
simple constraint specifications and also vary the height
of the tree of composite constraint specifications.

10.1 Session-setup Latency

The SoNS system adds latency in two places, at a
socket() call where we fork a daemon and initialize all
the discovery protocols installed in the system, and on a
connect() call where we must decide which device is
the best device available.

0.9

0.95

1

1.05

1.1

1.15

1.2

1 2 3 4 5 6 7 8

C
on

ne
ct

 L
at

en
cy

 (
m

s)

Number of Non-nested Constraints

"conn-simple"

1

1.1

1.2

1.3

1.4

1.5

1.6

0 2 4 6 8 10 12 14 16

C
on

ne
ct

 L
at

en
cy

 (
m

s)

Number of Nested Constraints

"conn-and"
"conn-or"

Figure 7: The cost of a connect() call (averaged over 100 tests) increases only linearly with the number of constraints.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association170

In all of our tests, the socket call took between 2ms
and 5ms. This is fairly high, but represents the cost of
forking a process and all inter-process communication
between the daemon and the SoNS TESLA handler.

Figures 7 summarizes the cost of a connect call as
we varied the number of constraints. The cost of the
connect call increases only linearly as the number of
constraints, both nested and non-nested, are increased.
The connect latencies in our system hover around 1ms,
which, though higher than expected, is acceptable when
amortized over the life of the connection.

10.2 Session-rebinding Latency

Another form of latency shows itself as the time
between the discovery of a resource and signaling the
application that the SoNS system has found a new best
resource. Ideally, this should be zero, but we must
evaluate the services returned, which has a non-zero
cost. Figure 8 show the time elapsed from when a call
to run_query() method returns — with matching
resources on the network— and when SoNS invokes the
application-callback to notify the presence of a better
alternative (given the hysteresis semantics). This
latency again increases only linearly with the number of
constraints (both for nested and non-nested constraints),
and more importantly, hovers only around 200-500µs of
latency.

In order to achieve compatibility with simpler
protocols, SoNS does not require any filtering involving
value comparisons to be performed by a discovery
protocol. Instead, discovery protocols return all those
resources that contain the required attributes and the
evaluator module performs the value comparisons to
compute the suitability of matching resources.
However, since all the value comparisons in this
scheme are performed by the evaluator module, the
evaluator must be able to efficiently compare a
moderately large number of matching resource
descriptions. Figure 9 shows the time spent in the
evaluator module as we increased the number of
resource descriptions processed by the evaluator. This

cost increases only linearly and hovered only between
0.8 – 1.0 msec in our tests.

The simplicity of our system makes it suitable for
mobile handheld device. The memory footprint of our
system varied between 0.8 MB to 1 MB during our
experiments.

10.3 Evaluation

Where our system achieves acceptable
performance, we found that the following
implementation choices incurred unwanted overhead:
• Per-socket interpreter daemon processes,
• Use of standard IPC between the socket wrapper

and the per process interpreter deamon, and
• fixed-point arithmetic.

Our implementation would be faster if we were
able to communicate with the daemon without copying
through interprocess communication channels. This
could be accomplished by using a thread library at the
cost of making our code less portable. Secondly, we
maintain a separate daemon process for each socket to
allow for fine-grained accounting. However, this is
inefficient compared to an implementation in which a
single deamon process handles the discover/evaluate
cycles for all the sockets, since such an implementation
would save the cost of spawning a daemon every time a
socket is created, and might allow for optimizations by
batching queries by different applications.

Finally, our system is slowed down by the use of
the fixed-point math system we wrote for computing
resource scores. This is because the iPAQs we include
in our target platforms do not have floating point units
and incur an order of magnitude performance hit on
floating point performance. Since scoring and
weighting is an inherently floating-point process, we
were forced to write our own, non-optimized,
implementation of fixed-point arithmetic. We are
currently working on a more efficient implementation
in the light of these observations.

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8

C
on

ne
ct

 L
at

en
cy

 (
m

s)

Number of Non-nested Constraints

"hyst-simple"

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 2 4 6 8 10 12 14 16

C
on

ne
ct

 L
at

en
cy

 (
m

s)

Number of Nested Constraints

"hyst-and"
"hyst-or"

Figure 8: Latency (averaged over 100 tests) between the time a better alternative becomes available and the time
SoNS realizes its presence (and signals the application about its presence).

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 171

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14 16

C
on

ne
ct

 L
at

en
cy

 (
m

s)

Number of Returned Services

"hyst-match"

Figure 9: The hysteresis latency increases linearly with the
number of services returned by the SoNS discovery
framework.

11 Related Work

SoNS integrates a service-oriented abstraction with
a traditional operating system communication interface.
Using SoNS, applications open a network connection
with an abstract service specification, instead of a
network address, and the system automatically connects
the application to the most suitable server in its
changing environment. SoNS combines resource
discovery and evaluation with a connection migration
system to provide application-specific opportunistic
access to service providers. SoNS’ modular architecture
can be extended with various resource discovery,
location-detection, and connection migration protocols,
and its evaluation policy can be customized to
individual application preferences.

Therefore, SoNS is designed to complement and
leverage recent research in resource discovery, location-
detection and connection migration protocols, not to
replace such systems. In fact, SoNS was motivated by
the desire to combine pervasive mobile computing
technologies developed for MIT’s Project Oxygen, e.g.
INS, Migrate and Cricket, to leverage context-aware
applications in a mobile handheld device.

The recent interest in pervasive computing
environments has given rise to a proliferation of
systems that allow resources to be dynamically
discovered based on their attributes. As opposed to the
white-pages style lookup offered by systems like DNS
that simply resolve a resource name to its network
address, such systems do not require a priori knowledge
of some unique identifier of the resource, like its
network address, and hence can be used to dynamically
discover and utilize resources as they become available
in a pervasive system.

Such attribute-based resource discovery systems
differ in the format used by them to describe resource
properties, expressiveness offered by their look-up

interfaces, whether they offer push-based or pull-
based discovery and whether queries are mediated
by a directory service or resolved in a peer-to-peer
fashion in the system. In addition to the classical
examples like Grapevine, GNS [19] and X.500
[20], a range of industrial standards like
Microsoft’s UPnP resource discovery protocol
(SSDP) [11], IBM’s T-Spaces, and IETF’s Service
Location Protocol [9], and experimental systems
like MIT’s INS [4] and Berkeley’s SSDS [3] have
emerged over the last few years. For example,
where SLP offers a rich LDAP-based [20] query
interface, systems like INS and SSDP define
simple attribute-based resolvers that can be hosted
in resource constrained mobile devices.

SoNS is designed such that different discovery
protocols can be added to its resource discovery
module, possibly via a simple wrapper function to
covert the SoNS attribute list to the specific format
used by a discovery protocol, e.g. XML (used by

Berkeley’s SSDS).
Unlike existing resource discovery protocols that

simply match queries against resource descriptions,
SoNS uses an applications-specific evaluation
framework that continuously monitors, evaluates and
compares the available alternatives in order to pick the
closest match to application requirements. Indeed, the
problem of satisfying high-level requirements with
imperfect resources has been extensively researched in
the AI domain [12]. However, where systems like
MetaGlue [12] propose to use general-purpose
constraint satisfaction engines over complex utility
functions, SoNS default evaluator is designed to be
simple and responsive to changes in the system.

Content-based routing systems like INS’s late
binding architecture [4] and Information Bus [21], as
well as application-level anycast routing systems like
[8], allow applications to send messages without
specifying the network address of the recipient, and
route the messages to the appropriate server by looking
at the content of each network message and matching
that with the properties of the available servers. Where
such systems offer an alternative to our approach, they
inherently lack application-level session semantics, do
not offer a clean interface for configuring the
application-specific policy for resource comparison and
session-rebinding, introduce the overhead of resolving
service descriptions within the critical path of every
message delivery, and, by defining their own routing
framework, do not leverage the support for QoS offered
by the underlying network.

12 Conclusions and Future Work

This paper establishes the need for service-oriented
network connection, and presents the design and
implementation of the SoNS system. SoNS presents an
application with an extended socket interface to open a

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association172

service-oriented network connection by providing a
high-level service-specification. When asked to
establish a connection, SoNS discovers the available
resources and connects the application to the resource
that best provides that service in its context. Once
connected, SoNS continuously monitors, compares, and
evaluates available alternatives, and reconnects the
application to a better alternative if one becomes
available.

As opposed to content-routing systems, SoNS
moves the cost of discovering and evaluating resources
against application requirements at the connection set-
up time, and allows the application to exercise control
at the level of a network session. Since the cost of
discovery and selection in SoNS is amortized over the
life of the network session, it allows SoNS to be
significantly more sophisticated in terms of
expressiveness, evaluation and selection of available
resources, as compared to systems that perform
message-level service-selection-and-routing.

As SoNS integrates support for context-awareness
with a traditional operating system communication
interface, we have found it much simpler to use than
other systems that require the use of additional, and
often several different [7], APIs to build a context-
aware application. Though we believe that SoNS has
the potential to become an integral part of future
operating systems in a pervasive computing
environment, it relies on the wide-spread deployment of
network devices embedded with service advertisement
protocols, as well as the availability of location
detecting mechanisms to estimate the distance of a user
with the devices embedded in her context.

The design of SoNS pays special attention to
extensibility in order to take advantage of the wide
range of emerging technologies for resource discovery,
location detection and network connection migration.

The current design of SoNS does not include a
security framework. Security in such a system is
required at several levels: to protect resources against
illegitimate access, to protect the SoNS system against
malicious extensions, and to protect the connection
migration system against connection hijacking. Though
some discovery protocols, like SSDS and SLP, and
connection migration schemes, like Migrate, define
their own security models, we are currently
investigating an extensible security framework that
would allow security policies to be defined
independently of the constituent modules.
SoNS makes it simpler to develop context-aware
applications. Our experience with SoNS has shown us
that unlike message-based routing systems that are
better suited to command-based applications e.g.
“sending a document to the nearest printer”, SoNS is
equally useful for connection-oriented applications as
well, e.g. follow-me-video/audio. We are currently

developing more applications to demonstrate the utility
of SoNS in pervasive mobile environments.

References
1. Christopher K. Hess et al. Building Applications for Ubiquitous

Computing Environments, International Conference on
Pervasive Computing (Pervasive 2002), pp. 16-29, Zurich,
Switzerland, August 26-28, 2002.

2. Esler, M. et al. G. Next Century Challenges: Data-Centric
Networking for Invisible Computing: The Portolano Project at
the University of Washington Mobicom 99

3. S. Czerwinski et al. An architecture for a secure service
discovery service. In Proc. of MobiCom-99, pages 24-35, N.Y.,
August 1999

4. William Adjie-Winoto et al. The design and implementation of
an intentional naming system, Proc. 17th ACM SOSP, Kiawah
Island, SC, Dec. 1999.

5. David Garlan et al. Project Aura: Towards Distraction-Free
Pervasive Computing IEEE Pervasive Computing, special issue
on "Integrated Pervasive Computing Environments", Volume 1,
Number 2, April-June 2002, pages 22-31.

6. C. Perkins et al A Mobile Networking System Based on Internet
Protocol, IEEE Personal Communications, Vol. 1, No. 1, pp.
32-41, March 1994.

7. Harter, A. et al.: The anatomy of a context-aware application.,
Mobile Computing and Networking. (1999) 59-68

8. S. Bhattacharjee et al. Application Layer Anycasting. In Proc.
IEEE INFOCOM’97, 1997

9. Erik Guttman. Service Location Protocol: Automatic Discovery
of IP Network Services. IEEE Internet Computing Journal, 3(4),
1999.

10. J. Jaffar et al. Constraint logic programming: A survey. The
Journal of Logic Programming, 19/20:503--582, May/July 1994.

11. Universal Plug and Play, http://www.upnp.org
12. Krzysztof Gajos. Rascal - a Resource Manager for Multi Agent

Systems in Smart spaces. In Proceedings of CEEMAS 2001.
13. Alex C. Snoeren et al. Fine-Grained Failover Using Connection

Migration, Proc. 3rd USENIX USITS, March 2001.
14. R. Golding. A Weak-Consistency Architecture for Distributed

Information Services. Computing Systems, 5(4):379--405, 1992.
15. Alex C. Snoeren et al. An End-to-End Approach to Host

Mobility, Proc. 6th ACM MobiCom, August 2000
16. R. R. Stewart, et al. Stream Control Transmission Protocol.

RFC 2960, IETF, Oct. 2000.
17. Nissanka B. Priyantha et al. The Cricket Compass for Context-

Aware Mobile Applications Proc. ACM MOBICOM Conf.,
Rome, Italy, July 2001.

18. Jon Salz, SM thesis, MIT. 2002, The Transparent Extensible
Session-Layer Architecture for End-to-End Network Services.

19. A. Birrell et al. Grapevine: An exercise in distributed
computing. Comm. Of the ACM, 25(4):260–274, April 1982.

20. CCITT. The Directory—Overview of Concepts, Models and
Services, December 1988. X.500 series recommendations,
Geneva, Switzerland.

21. B. Oki et al. The Information Bus (R) – An Architecture for
Extensible Distributed Systems. In Proc. ACM SOSP, pages 58–
78, 1993.

22. MIT Project Oxygen, http://www.oxygen.lcs.mit.edu

Acknowledgements

We would like to thank Steve Ward for his valuable comments
that helped us improve the paper significantly. The title of the
paper was also suggested by Steve Ward.
We would like to thank Marvin Theimer, our “shepherd”, and
anonymous reviewers for their helpful comments and suggestions.

