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Abstract 

This paper presents the design and implementation 
of service-oriented network sockets (SoNS) for 
accessing services in a dynamically changing 
networked environment. A service-oriented network 
socket takes a high-level description of a service and 
opportunistically connects to the best provider of that 
service in the changing characteristics of a mobile 
system. An application states its high-level service 
requirements as a set of constraints on the properties 
required in a suitable resource and SoNS continuously 
monitors, evaluates and compares the available 
resources and (re-)connects to the resource that best 
satisfies the specified constraints.  

Unlike content-based routing systems, SoNS is an 
end-host system, interposed at the session-binding 
layer, and offers connection-oriented semantics. SoNS’ 
interface allows an application to tailor the planning 
policy used to establish and rebind a network session. 
SoNS is based on an extensible architecture to leverage 
the wide-range of emerging technologies for 
discovering and locating resources in a mobile system.    

SoNS integrates a service-oriented abstraction with 
the traditional operating system interface for accessing 
network services, making it simpler to develop 
pervasive, mobile applications. We present an 
implementation for a mobile handheld device, analyze 
the performance of our system and describe an 
application to demonstrate the utility of our system. 

 

1 Introduction 

Advances in digital electronics over the last decade 
have made computers faster, cheaper and smaller. This 
coupled with the revolution in communication 
technology has led to the development and rapid market 
growth of embedded devices equipped with network 
interfaces. It has also promoted the development and 
widespread use of battery-operated portable computers, 
allowing users to carry their computation resources and 
tasks with them.  

These advances have led to the recent activity in 
pervasive systems [1][2]. MIT’s project Oxygen [22], 
and related pervasive computing projects elsewhere, 
aim to define computational environments that would 
allow users to carry their mobile handheld devices from 
one networked environment to another, possibly 

disconnected, environment while providing 
personalized ubiquitous access to services in the 
environment of the user.  

Such a system must be able to continuously adapt 
to changes in user locations and needs, respond both to 
component failures and newly available resources, and 
maintain continuity of service as the set of available 
resources change. This requires more than service 
discovery [3] or simple content-based routing [4]; it 
necessitates a certain degree of planning involving 
continuous reevaluation of available alternatives, as 
well as heuristic compromises to best address the 
application’s requirement using imperfect resources in 
the changing environment of the application [5]. 

Such opportunistic access to system resources is 
contrary to what is offered by traditional mobile 
systems [6] that aim to preserve access to a mobile host 
as the characteristics of the system change. Such 
systems do not cater to context-aware applications 
[5][1][2] that desire to access the best provider of a 
service (henceforth referred to as a resource) in their 
environment, rather than maintaining access to a 
particular host. 

Traditionally, such a context-aware application 
must itself provide the planning involved in accessing 
the best available service-provider in its environment. 
Such applications typically contain a planning 
component that continuously reevaluates the available 
alternatives and provides access to the best available 
service-provider. These planning components often 
employ a resource discovery system to find the 
available alternatives and use the operating system 
socket interface to establish and rebind network 
connections as better alternatives become available.  
Most context-aware and adaptive applications layered 
on top of traditional operating systems and network 
routing architectures are examples of this model [7]. 

Where the above-mentioned model has the virtue 
that the application is free to use any arbitrarily 
complex planning policy befitting its requirements, 
allowing the underlying system to be policy-neutral, it 
requires every application to be capable of discovering, 
monitoring, evaluating and comparing the available 
alternatives in order to utilize the best available service-
provider in its environment. In a pervasive computing 
environment, where such opportunistic access to 
service-providers is a norm, it is clearly desirable to 
separate this complexity in a re-usable planning layer 
that can be employed by different applications to 
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opportunistically access resources in a dynamically 
changing networked environment.   

Among the existing systems, the Intentional 
Naming System (INS) [4] comes closest to achieving 
this goal. The late binding architecture of INS allows an 
application to send intentional datagrams that carry a 
description of the properties of the required service, 
instead of the network address of a host, and an overlay 
of INS resolvers route these datagrams to the hosts that 
match the service description. Where this scheme of 
integrating service location and message routing 
alleviates an application from the task of continuously 
monitoring its environment and rebinding its network 
connections when a better alternative becomes 
available, INS provides limited planning for choosing 
the closest match to application requirements when 
more than one resource matches a service description. 
In this case INS simply relies on an application-level 
anycast to all the matching resources.  

Even though it is conceivable that a more elaborate 
scheme could lead to more informed routing decisions, 
this approach of handling the dynamism of the system 
at the routing level inherently suffers from the 
following problems.  
• The planning policy, used to select the best match to 

application requirements, is hidden from the 
application in the routing infrastructure and, worse, 
distributed in the network. Therefore, it cannot be 
tailored to suit the requirements of the various 
different applications found in a pervasive mobile 
system.  

• Such content-based routing systems [4][8] only 
provide connection-less datagram semantics; every 
datagram carries the required service description 
which is resolved by, often an overlay of, network 
resolvers to deliver the message to an appropriate 
host. Therefore, such systems lack application-level 
session semantics, in that there is no concept of an 
application-level connection; two successive 
datagrams generated by an application can be routed 
to two different hosts, transparently to the application. 
This coupled with the characteristic fluctuations in the 
performance of wireless links and mobile hosts, 
means that an application has little control over which 
resource gets accessed, precluding applications with 
inherently connection-oriented semantics e.g. multi-
media streaming applications.  Such a system is also 
prone to thrashing between service-providers in the 
presence of frequent performance fluctuations and 
node failures. 

• From a performance point of view, content-based 
routing, performed by resolving complex service 
descriptions at every hop in an overlay network, is 
considerably slower than traditional address-based 
network routing [4] since it introduces the cost of 
resolving a service description to a network address in 
the critical path of message delivery. Furthermore, 

including a full service description of the required 
service with every network message is wasteful of the 
scarce bandwidth available in a wireless network. 

• Finally, content-based routing systems introduce a 
new API for network communication [4][21], which 
is often different from the traditional operating system 
interface, for accessing services in the system.   

We propose Service-oriented Network Sockets 
(SoNS) to access services in a highly dynamic 
networked environment. A service-oriented network 
socket takes a high-level description of a service and 
opportunistically connects to the best provider of that 
service in the changing characteristics of a mobile 
system. An application states its requirements as a set of 
constraints on the properties required in a suitable 
resource and SoNS continuously monitors, evaluates 
and compares the available resources and (re-)connects 
to the resource that best satisfies the specified 
constraints.  

Unlike content-based routing systems, SoNS is an 
end-host system, interposed at the session-binding 
layer, and offers connection-oriented semantics. Most 
importantly, SoNS allows an application to configure, 
and even replace, the planning policy used to evaluate 
and compare available alternatives and the semantics 
used for rebinding a network connection when a better 
alternative becomes available.  SoNS integrates a 
service-oriented abstraction with the traditional 
operating system interface for accessing network 
services, making it simpler to develop pervasive mobile 
applications. 

We favor this approach over a content-based 
routing scheme as it handles the dynamism of a mobile 
system at the stage of binding a network connection at 
an end-host, and hence 1) offers connection-oriented 
semantics 2) does not introduce the overhead of 
resolving a service description in the critical path of 
network communication, 3) does not require a service 
description to be carried with every network message, 
and 4) does not require any changes to the network 
routing architecture.  

The rest of the paper is organized as follows. 
Section 2 identifies the design goals for SoNS and 
Section 3 describes the architecture of SoNS. Section 4 
describes the operation of the SoNS constraint  parser, 
section 5 describes the SoNS resource discovery 
framework, section 6 describes the architecture of the 
module used to evaluate resources and section 7 
presents the support for network connection migration. 
In section 8 we describe the API exported by a service-
oriented network socket and present a representative 
context-aware application built using SoNS. Section 9 
describes the implementation of SoNS for a mobile 
handheld device, and section 10 presents performance 
analysis and evaluation. Section 11 describes related 
work and, finally, in section 12 we conclude the paper 
and outline future directions of our research. 
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2 Design Goals 

In order to identify the goals for a system designed 
to provide opportunistic access to services in a 
dynamically changing system, we consider a simple 
example application of such a system.  

In our example, a video-stream played by a user’s 
handheld device is automatically redirected to the 
nearest display as she moves in an environment 
populated with displays, possibly from different 
vendors and conforming to different standards. In order 
to provide this follow-me-video functionality, the 
application requires opportunistic access to the nearest 
display of a decent size, located in the same subnet as 
the user. Furthermore, though the application requires 
access to a better display as soon as one becomes 
available, it would not like the video-stream to be 
switched between displays due to transient fluctuations 
in their access latency or when a display device is 
quickly carried past it by another user. Finally, the 
application must be notified before a session is migrated 
to a new resource so that, for instance, it can transfer 
some application-specific state to the new resource to 
resume access to the service or to even decline the 
rebinding suggestion all together.  

In order to support such applications, our system 
must meet the following goals.  
• Resource Discovery and Selection:  The system 

must be able to discover resources based on a high-
level service specification. Additionally, the system 
must define a planning framework capable of 
evaluating and comparing the properties of available 
alternatives in order to find the closest match to 
application requirements.    

• Expressiveness: An application must be able to state 
its requirements such that they can be used for both 
discovering and, subsequently, comparing the 
suitability of available alternatives.  An application 
must be able to state the attributes required in a 
suitable resource, the range of acceptable values for 
each attribute, the preferred values for an attribute and 
the relative importance of each attribute to the 
application.  

• Extensibility: In order to support a diverse set of 
applications in a variety of network characteristics 
and standards, the system must not enforce any fixed 
policies that could limit the use or efficacy of the 
system. Instead, the system must define an 
architecture that may be extended to handle different 
application requirements, network characteristics and 
standards.   

• Connection Rebinding Semantics: It must be 
possible for an application to configure the semantics 
of rebinding a network session when a better 
alternative becomes available.  Based on our target 
applications, we identify the following parameters to 

provide an application with the flexibility to configure 
the semantics of session rebinding.  

o Context It must be possible for an application 
to configure the context within which it wants to 
find the best resource for its requirements e.g. 
current subnet, current room.  

o Agility: It must be possible for an application 
to configure the agility with which it wants the 
system to react to valid changes in its context.  

o Hysteresis: It must be possible for an 
application to configure the hysteresis of the 
system, indicating how long the system should 
wait before reacting to a change, in order to avoid 
reacting to transient fluctuations that are not of 
interest to an application, and to protect against 
thrashing.  

o Application-notification: It must be possible 
for an application to register a call-back method, 
which is invoked by the system to notify the 
application about the availability of a better 
alternative. This notification can be used by the 
application to prepare for the rebinding of the 
network session. It must also be possible for the 
application to decline the suggestion of rebinding 
the session to the new resource. 

• Performance: Where the system must include a 
planning function capable of evaluating and 
comparing a set of resources competing against 
application requirements, this planning task must be 
fast enough to quickly respond to changes in the 
system.  Furthermore, as our system is interposed at 
the operating system socket level, it must be 
comparable in performance with the traditional 
socket-based communication. Finally, it must not 
introduce an overhead for applications that do not 
require service-oriented communication.  

2.1 Service-oriented Network Sockets 

Our service-oriented network session layer includes 
an attribute-based discovery framework for discovering 
resources in the system, as well as an evaluator module 
for computing the suitability of available alternatives 
against application requirements. 

Since a network socket provides a portal between 
an application and the network communication support 
of an operating system, it presents a natural interface for 
incorporating application-level policies for establishing 
a service-oriented network connection by discovering 
and evaluating the available alternatives.  

Service-oriented Network Sockets offer an 
additional socket domain that takes a high-level service 
specification as the destination name, instead of a 
network address, and defines additional socket options 
to configure the rebinding semantics for the service-
oriented session. Using this interface, applications 
configure a network socket with an appropriate context, 
agility and hysteresis, and connect the socket by 
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providing a service description to open a service-
oriented network session. Using these application-level 
semantics, SoNS locates the most appropriate resource 
in the given context and establishes a network 
connection. If any subsequent changes in the system 
render another resource more suitable for application 
requirements, in accordance with the agility and 
hysteresis semantics of the application, SoNS notifies 
the application and migrates the session to the better 
alternative.    

A service description is expressed as a set of 
constraints on the properties of an acceptable resource. 
As opposed to the resource discovery systems that find 
a resource by performing an exact pattern-match on its 
attribute-value pairs [3][4], the use of a constraint 
language in SoNS, for stating an evaluation criteria, 
offers the flexibility to evaluate and compare the 
alternatives available in a given context in order to find 
the closest match to the requirements of an application. 

The design of SoNS handles the heterogeneity of 
discovery standards and application requirements by 
using a modular and extensible architecture for resource 
discovery and evaluation. Protocols for discovering 
resources and the policy for evaluating available 
choices can be tailored according to the application 
requirements and discovery standards used by different 
resources.  

By handling the dynamism of the system at an end-
node, SoNS does not require any changes to the 
network routing infrastructure. Therefore, as opposed to 
systems that employ application-level content-based 
routing [4] to address the dynamism of the system, 
SoNS architecture does not introduce extra routing 
complexity in the participating nodes, achieves better 
performance, and leverages the underlying network 
support for quality-of-service.    

 
3 System Architecture 

Figure 1 shows the architecture of a Service-
oriented Network Sockets system. In order to facilitate 
application-specific extensibility, portability, 
accounting and fault-isolation, Service-oriented 
Network Sockets are implemented as a user-space 
wrapper around a traditional socket interface, instead of 
as a kernel module. 

The SoNS architecture has four components: a 
resource discovery module, an evaluator module, a 

connection migration module, and a socket-wrapper 
module. Below we describe these modules in detail.  

 

3.1 SoNS Interpreter 

The SoNS Interpreter, shown in figure 2, lies at the 
heart of the system and drives the different modules of 
the SoNS architecture; it parses the constraints specified 
by an application, discovers matching resources by 
invoking the resource discovery module, invokes the 
evaluator module to evaluate the suitability of any 
matching resources, and finally, in the case when a new 
resource becomes a better choice for the application, 
notifies the application and requests the connection 
migration module to migrate the connection to the new 
resource. 

In order to allow this processing to be accounted on 
a per-connection basis, SoNS system forks a new 
Interpreter for every service-oriented network socket 
created by an application.  

3.2 SoNS Interface 

SoNS is designed as an extension of the operating 
system socket interface; it implements all the methods 
and options of a traditional AF_INET Unix socket, with 
additional options for establishing service-oriented 
network connections.  

A service-oriented network socket extends a 
traditional network socket in the following ways: 
1) The call to create an operating system socket accepts 

an additional domain, AF_SONS, for creating a 
service-oriented network socket. AF_SONS extends 
an AF_INET socket and allows an application to 
choose between (sock_stream) and UDP 
(sock_datagram) as the transport protocol for a 
service-oriented session, including support for the 
various options associated with these transport 
protocols e.g. TCP_NO_DELAY for TCP. 

2) The connect method of a service-oriented network 
socket takes a high-level service description, instead 
of a network address, to establish a service-oriented 
network session. The service description is expressed 
in a simple constraint language, described in detail 
later in the section.  

3) A service-oriented network socket can be configured 
with four additional options (as arguments to 
setsockopt), context, agility, hysteresis and 
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application-callback, to tailor the session rebinding 
semantics according to application requirements.  

4) Finally, when configured with the optional 
application-callback, a service-oriented network 
socket invokes a callback method to notify (and seek 
permission of) the application before rebinding a 
network connection to a better alternative.  

3.3 SoNS Constraint Language. 

Though previous resource discovery systems offer 
varying degrees of sophistication for looking-up 
resources based on their attributes [9][4], these systems 
do not offer support for evaluating and comparing the 
suitability of matching resources against application 
requirements.  SoNS, on the other hand, allows 
applications to specify the criteria for discovering, 
evaluating and comparing the available alternatives as a 
set of constraints expressed in a simple constraint 
language.  

Though several sophisticated constraint languages 
have been proposed in other problem domains [10], the 
constraint language used to express a service-
requirement in the SoNS system achieves a delicate 
balance between the expressiveness required for 
evaluating the suitability of available service-providers 
and the simplicity of design necessitated by the paucity 
of resources available in a mobile device.  

The grammar for the SoNS constraint language is 
shown in figure 3. An expression in the SoNS constraint 
language lists the attributes that must be present in the 
selected resource, along with a range of acceptable 
values for each attribute. In order to define an 
evaluation and comparison criterion, a constraint also 
includes an operator, (less-than “<”, or greater-than 
“>”), to indicate the preferred extreme in the range of 
acceptable values; resources with attribute values closer 
to the preferred extreme are favored over the resources 
with values further away towards the other extreme. 
This approach of allowing an application to express its 
requirement as a range of acceptable values, instead of a 
single scalar value, has the following merits. 1) It 

provides the flexibility to satisfy the requirements of an 
application with imperfect resources in its environment 
2) It provides the system with a yardstick to compare 
and evaluate the matching resources against application 
requirements. 3) It encourages an application to 
explicitly declare its scale of tolerance for an attribute 
value; a change k in a range L 

� � � � � 	 � � � � � � � � � � � �

than the same amount of change k in a larger range, L � � � �  "
 

In the case where an application is interested in the 
least or the greatest value for an attribute, irrespective 
of the specific value of the attribute, the application can 
leave the range unspecified. This could be used by an 
application to, for example, connect to the least loaded 
server in its environment, expressed as “< load”.   

SoNS also allows open ended ranges in the case 
where the application is interested in having an attribute 
value to be greater than (or lower than) a certain 
threshold, but perceives no marginal gain as the value 
of the attribute moves further away from the specified 
threshold. SoNS handles this case by treating the 
unbounded end of a range as 0 or a large positive 
integer, depending on which side of the range is 
unspecified.                

Not all attributes of a resource required by an 
application are of the same importance to the 
application. SoNS handles this requirement by allowing 
an application to specify the relative importance of the 
listed attributes by attaching a (integer) weight with 
every attribute; an attribute with a weight of 4 is twice 
as important to an application as an attribute with a 
weight of 2.  

Attributes that are allowed to have only a single 
value, including the attributes with textual values, use 
an equality ( “=” ) operator and do not specify a range 
or attach a weight to the attribute; a resource description 
that does not match an equality constraint is simply 
rejected. Attributes that must be present in a matching 
resource, but whose value is not of interest to the 
application, are specified as a don’t care value, stated as 
ANY.  

Finally, the constraint language includes two 
logical operators, conjunction and disjunction, to allow 
individual constraint-expressions to be combined into a 
composite constraint specification. A composite 
constraint specification can have a hierarchical 
structure; constraints can be grouped (associated) and 
nested using braces, and the logical operators are 
distributed over nested constraints when evaluating a 
constraint.  

(and (= device display) 
        (> (size 15 30) 
        (= color yes) 
        (or (> video-streams 1) 
              (= load 0))) 
 
Figure 4: An example constraint specification 
expressed in the SoNS constraint language  

ConstSpec = Nested | Cmplx | Smpl 
Nested = Cmplx (Cmplx+) 
Cmplx = (Logical (Smpl  Smpl+)) 
Smpl =  (Relation Attribute)  | 
     (Relation Attribute Range | Value) | 
     (Relation Attribute Range | Value) Weight  
Logical = AND | OR 
Relation = < | > | = 
Attribute = String 
Weight = Integer 
Range = Numeric Numeric 
Value = String | Numeric 
String = [a-z]+[a-z1-9]* 
Numeric = Integer | Float 
Integer = [1-9]+  
Float = [1-9]+.[1-9]*  
 

Figure 3: Constraints Language for SoNS 
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To illustrate the expressiveness of the SoNS 
constraint language, we show how the requirements of a 
follow-me-video application, presented in section 2, 
will be expressed in our language. Such an application 
can impose the following constraints on the display 
used by it. 1) The display must be more than 15 inches 
in size, for clear viewing, but less than 30 inches, due to 
the resolution limitations of the video-encoding scheme, 
2) it must be capable of rendering colors, 3) and should 
be either capable of displaying more than one video-
stream simultaneously or must not be in use. These 
requirements would be expressed in the SoNS 
constraint language as shown in figure 4. It is worth 
noting that the use of an open-ended range for the 
number of video-streams supported by the display 
device implies that the application is indifferent to the 
number of streams being displayed on the screen. If the 
application prefers to use a less cluttered screen, it will 
provide a closed range, and will use the “<”operator to 
indicate that a display capable of showing fewer 
streams is preferable. Therefore, the use of a range to 
express a constraint, in fact, encourages an application 
to be more precise in defining the, often assumed, 
precincts of context-awareness.  

3.4 Semantics of Session Rebinding 

Besides the constraints specified by an application 
to define the criteria for comparing available resources 
against application requirements, SoNS also allows an 
application to tailor the semantics of rebinding the 
network session by controlling the parameters for 
detecting and reacting to changes in the system. A 
service-oriented network socket takes four additional 
options as arguments to the setsockopt library call.   
Context: An application can specify its context as a 
sub-net address, location of the looked-up resources, 
number of network hops traversed by a discovery 
message or any other metric meaningful for the 
discovery protocols part of the SoNS architecture. For 
example, the current implementation adjusts the 

SCOPE of an SLP [9] network query to limit the 
context of the discovery.   
Agility: An application can specify the agility with 
which it reacts to changes in the system by adjusting the 
frequency to probe the system for changes. The agility 
is specified as the interval between successive probes, 
stated in seconds.  
Hysteresis: An application can keep the system from 
reacting to transient changes, not of interest to the 
application, by specifying a value for hysteresis. The 
hysteresis is stated in terms of the number of probes for 
which an application requires the properties of the 
resources in its context to be consistent before SoNS 
(notifies an application and) switches the connection to 
a better alternative.  
Application-Callback: Finally, an application can 
register a callback with the socket, which, if registered, 
is used to notify the application when a better 
alternative becomes available. This notification, 
parameterized with the description (including the 
network address) of the new resource, can be used by 
an application to prepare itself to switchover to the new 
resource or to reject the change by returning a false 
value from the callback. It is worth noting that since a 
connection migration can only happen when the 
application returns control from the call-back, the 
application can use the call-back to delay the migration 
to a “migration-safe” point in its control flow.     

 
4 Constraint Parsing 

The constraints specified by an application are used 
both for discovering and evaluating resources in the 
context of an application. To accomplish this, the 
constraints are parsed into a tree data-structure, which 
serves as an in-core representation of the application 
requirements for discovering and evaluating resource 
descriptions.   

  (or 
  
(> (a 1 2)1) 

  
(and 

  
(< (b 0 9)2) 

  (= (c 9)1 ))   int connect(int fd, struct sockaddr * addr)  

or  

and   

<  
range:[0 - 9]   

attr: b   
weight: 2   

>   
range:[1 - 2]   

attr: a  
weight: 1   

=   
range:[0 - 9]   

attr: c   
weight: 1   

Attribute 
  Value

  a 
  1.5  
b 
  3   
c 
  10  

  

or  

and 

<   
range:[0 - 9]   

attr: b   
weight: 2  

>  
range:[1 - 2]  

attr: a   
weight: 1   

=   
range:[0 - 9]   

attr: c  
weight: 1   

0   .66  

0  .5  

.5   

 

Figure 5: An illustration of constraint parsing and evaluation by the SoNS Interpreter 
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Constraints are read as a plain-text string from the 
sockaddr_sons structure passed by the application in a 
connect()socket call (refer to figure 5).  The string is 
then parsed using a standard GNU Flex/Bison 
lexer/parser into a constraint tree. The parser makes a 
distinction between composite constraints and simple 
constraints.  Simple constraint, specifying a range over 
a single attribute, are placed at the leaves of tree, while 
composite constraints, containing nested constraints 
composed by taking disjunctions (OR) and conjunctions 
(AND) of simpler constraints, are represented at the 
intermediate nodes of the tree (refer to figure 5).   

The parser also fills-in any missing bounds, 0 for 
less than constraints and a large integer for greater than 
constraints, as well as missing weights with a default of 
1. 

 
5 Resource Discovery 

After constructing a constraint tree, the SoNS 
interpreter invokes the discovery module with the list of 
attributes at the leaves of the constraint tree. The 
discovery module invokes the discovery protocols 
registered with it and returns the matching resource 
descriptions to the interpreter.  

The interpreter then passes this list to the evaluator 
module, which assigns each resource a score by 
comparing the values of its attributes against the 
constraints stored in the constraint tree. The evaluator 
invalidates the resource descriptions with attribute 
values outside the range specified by the application, as 
well as the resources that fail to meet an equality 
constraint.   

After the initial setup, this procedure is repeated 
every time the probe period specified by the application 
expires. An application can also force a probe/evaluate 
cycle, for instance on the command of a user.  After 
receiving the score for each resource, the interpreter 
removes all the resource descriptions that were rejected 
and forms the “n-best-list” for the probe.  If the 
application forced the probe (by invoking connect on an 
already connected socket), then the resource with the 
highest score is chosen from the n-best-list and the 
socket is migrated to its network address (just like the 
initial setup). However, if the probe was a normal 
periodic probe, the system enters the hysteresis phase. 
In the hysteresis phase the n-best-list from one 
probe/evaluate cycle is compared to the n-best-list 
stored from the previous cycle and the resources present 
in both new and old probes have their hysteresis value 
increased by one. Resource(s) with a hysteresis value 
greater than the hysteresis value specified by the 
application are separated and the connection is migrated 
to the network address of the resource with the highest 
score. In the case where an application has registered a 
call-back, SoNS invokes the callback method, with the 
description of the chosen resource, before performing 

the migration, and migrates only if the application-
callback returns a true value (indicating application’s 
approval of the connection migration). Upon migration 
of the network connection, the n-best-list is reset and 
the process is started anew. 

5.1 SoNS Resource Discovery Framework 

Our target network environment often comprises of 
resources conforming to different resource discovery 
protocols, e.g. IETF SLP [9], INS [4] and SSDP [11], 
due to both commercial and technical reasons. 
Therefore, a service discovery framework based on just 
a single discovery protocol is not sufficient to discover 
the various resources found in a pervasive mobile 
system.  

SoNS handles this heterogeneity by defining an 
extensible resource discovery framework, capable of 
employing different discovery protocols to discover 
resources in the system. A discovery protocol is added 
to SoNS by registering a pointer to its look-up method, 
while SoNS performs resource discovery by invoking 
the look-up methods of all the discovery protocols 
registered with it.  

However, various discovery protocols found in our 
target environment offer different degrees of 
expressiveness for looking-up resources in the system. 
Protocols like INS [4] and SSDP [11] simply take a list 
of attributes and match them with the attributes of the 
resources being looked-up, whereas more sophisticated 
protocols like SLP [9] and SSDS [3] can perform 
complex queries containing conjunctions and 
disjunctions on nested lists of attributes, as well as 
range comparisons for attributes with numerical values.   
In order to interoperate with such diverse protocols, 
SoNS translates a service specification to a very basic 
query format common to all discovery protocols.  

SoNS resource discovery framework invokes a 
constituent discovery protocol with a simple list of 
ASCII-encoded attribute names, constructed by taking 
the attribute names from the leaves of the constraint tree 
created by the SoNS parser. Upon invocation, a 
discovery protocol finds the resources containing the 
specified attributes, and returns their descriptions in a 
list of feature-sets: sets of attribute-value pairs. The 
matching resource descriptions, encoded as feature-sets, 
are passed on to the evaluator module to evaluate their 
suitability against the constraints specified by an 
application.  

It is worth noting that, in order to achieve 
compatibility with simpler protocols, this scheme does 
not require any filtering involving value comparisons to 
be performed by a discovery protocol. Rather, 
discovery protocols look-up resources by simply 
performing a pattern match on the specified attributes, 
and the suitability of a resource, based on the values of 
the looked-up attributes, is computed in the SoNS 
evaluator module.   
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Passing a query as a simple ASCII-encoded list of 
required attributes also has the virtue that it can be 
easily converted to a more ornate format, by a simple 
wrapper around the lookup interface, if required by a 
more sophisticated discovery protocol.  

5.2 Context of Discovery 

Along with a pointer to a look-up method, a 
discovery protocol can also register a pointer to a 
method for setting the scope of the network queries 
generated by the discovery protocol. This method is 
invoked by SoNS when an application specifies a 
context of interest as an option to a service-oriented 
network socket. For example, SLP and SSDS register a 
pointer to a method that sets the value of SCOPE of the 
discovery agent to configure the context of the network 
queries. Though some simpler protocols, e.g. SSDP, 
lack support for scoped queries, and hence, do not 
register this method, we believe that such support is the 
key to the scalability of a pervasive discovery protocol 
and will soon find its way in mainstream discovery 
protocols.   

5.3 Probing vs. Advertising 

A mobile device wishing to discover resources in 
its environment can either passively listen to 
advertisements by other resources in the system or can 
actively probe the network with periodic discovery 
messages.  

SoNS uses active probing as it makes it simpler to 
support application-level semantics for session-
rebinding. Applications configure the session rebinding 
semantics by setting 1) the frequency of probing, to 
adjust the agility with which resources are discovered, 
2) the scope of a probe message, to adjust the discovery 
context and 3) the number of probes for which the 
properties of a resource must be consistent, to set the 
hysteresis of the system.  

We favor probing over advertisements because in 
an advertisement based system the scope and frequency 
of the messages generated by a resource to advertise 
itself to the system cannot be adjusted to suit the 
requirements of any single application. Furthermore, 
with resource advertisements arriving asynchronously 
at different frequencies from various resources, there is 
no clean way to specify the hysteresis of the system.  

From a design point of view, in an advertisement-
based system, where resources are required to 
continuously advertise themselves to the system in the 
hope that some application might be interested, 
introduces a continuous overhead of network messages 
and processing of advertisement messages even when 
there is no application listening to the advertisements.   

Finally, probing is supported by all the resource 
discovery protocols found in our target environment 
(though some protocols can also be configured to 
operate in an advertisement-based mode).  

5.4 Directory-based versus Peer-to-peer 
Discovery 

Resources can either respond to queries directly, in 
a peer-to-peer setup, or could register their descriptions 
with a directory service which could be searched to 
locate resources.  

SoNS’ extensible design does not impose a 
restriction on which of the two methods is employed by 
a constituent discovery protocol to discover resources in 
the system. However, we believe that a peer-to-peer 
model is more suitable for supporting application-
specific session rebinding.  

Though a directory-based setup avoids query 
broadcasts, and, hence, presents a more scalable design, 
it suffers from the following limitations in a 
dynamically changing system. 1) A directory-based 
architecture depends on the availability of host(s) in the 
system that are capable and willing to answer queries 
on behalf of other resources. 2) A directory-based 
scheme introduces the overhead of keeping the 
directory state consistent with the (oft-changing) 
properties of resources in the system. 3) The directory 
service can itself cause a bottleneck in the system. Since 
in a peer-to-peer setup resources themselves report 
their, up-to-date, properties, the rate of probing provides 
an accurate mapping for the rate of adaptation expected 
by the application; this can only be guaranteed in a 
directory based system when the directory service is 
always consistent with the changes in resource 
properties.    

 

6 SoNS Evaluator Module 

The discovery framework returns all the matching 
resource descriptions returned by the various discovery 
protocols to the interpeter, which passes these resource 
descriptions to the evaluator module. The SoNS 
evaluator module performs the planning required to 
select the resource, among the available alternatives, 
that comes closest to satisfying the service requirements 
of an application.  

To motivate the evaluation strategy used by the 
SoNS evaluator module, consider a situation where the 
follow-me-video application mentioned above moves 
into an environment with two displays: one closer to the 
handheld device but the other larger in size and with 
better resolution. In this situation, there is no clear 
winner (that is better than all the other available 
alternatives in every aspect).  A naïve solution could be 
to count the number of attributes for which a resource 
“beats” other alternatives and pick the resource with the 
maximum number of “wins”. However, such a solution 
not only leads to a combinatorial explosion but also 
requires every sample of attribute values to be kept for 
later comparisons according to application’s hysteresis 
requirements.   
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SoNS evaluator is designed to be simple and 
responsive to changes and does not require the attribute 
values of every resource to be preserved across multiple 
probes. SoNS achieves this by using a simple scoring 
scheme which sums-up the suitability of a resource in a 
single scalar value for efficient comparisons.  

SoNS evaluator takes a list of feature-sets, along 
with the application’s constraint tree, and returns a 
corresponding list of positive integer scores reflecting 
the suitability of each resource. A resource with an 
attribute that fails to meet an equality constraint or has a 
numerical value outside the range specified by an 
application is assigned a score of zero.  

Figure 5 shows the operation of the default SoNS 
evaluator. SoNS’ default evaluator performs a depth-
first search of the constraint tree.  On reaching a simple 
constraint at a leaf node, it extracts the value of the 
corresponding attribute from the resource’s feature-set 
and compares the value with the range specified in the 
constraint.  If the value satisfies the constraint, then a 
score between 0 and 1 is calculated based on where the 
value falls in the valid range.  If the constraint specifies 
that smaller is better, then a value equal to the lower 
bound is assigned score 1 and a value equal to the upper 
bound is assigned score 0, with all other values being 
assigned linearly within that range.  The reverse occurs 
for constraints indicating that larger values are better.  If 
the constraint specifies only equality or the ANY 
keyword, then any value fitting the constraint is given a 
score of 1.  Finally, the score is multiplied by the 
constraint’s weight and returned as the value of that leaf 
node. 

After assigning scores to the leaf nodes, scores for 
the intermediate nodes, containing conjunctions and 
disjunctions, are calculated using the following 
algorithm. An OR node acquires the score of a child 
node with the highest score in its sub-tree, while a score 
of zero is assigned if all of its children nodes have a 
score of zero. An AND node is evaluated in a 
complimentary way: the score of an AND node is 
calculated by adding the scores assigned to its child 
nodes, while any child node with a score of zero causes 
the AND node to be assigned a score of zero. The 
overall score of a resource is the score calculated for the 
root of the constraint tree using the attribute values in 
the resource’s feature-set.  

We have found this simple evaluation strategy to 
be sufficient for our purposes for the following two 
reasons. 1) It keeps the design of SoNS simple enough 
to be hosted in resource constrained mobile devices and 
2) the simplicity of the algorithm used for evaluating 
and comparing the available alternatives incurs minimal 
penalty in terms of the responsiveness of the system; 
where a more elaborate scheme could be used for 
comparing the suitability of available alternatives, it 
would increase the time spent in evaluating a resource, 
resulting in an increased latency between the time a 

viable resource become available and when the system 
recognizes its superiority.  

As described earlier, the scores returned at each 
probe are compared by the Interpreter according to the 
hysteresis semantics of the application and a winner is 
chosen if a resource consistently scores better than other 
resources. 

The extensible design of SoNS also allows the 
default evaluation policy to be replaced by more 
efficient or specialized algorithms better suited to 
individual application requirements. An application can 
replace the default evaluation policy by registering a 
pointer to an application-specific evaluator with the 
SoNS evaluation module. This allows more involved 
constraint satisfaction engines, for example as proposed 
in [12], to be employed for calculating the relative 
utility of available resources. Such planning and 
constraint satisfaction systems are a topic of our current 
research.  

 
7 Connection Migration Module   

Once a better resource has been selected, the SoNS 
Interpreter requests the connection migration module to 
migrate the network connection to the new resource.  

The semantics of migrating the network connection 
from one resource to another depend on both the 
stateful-ness of the service being accessed and the 
reliability guarantees offered by the underlying message 
transport protocol [13]. Migration of an unreliable 
network connection to a stateless service is 
accomplished by simply closing the old network 
connection and opening a fresh connection to the new 
resource. However, additional support is required for 
migrating reliable connections and for managing 
stateful services [13]. Migration of a reliable connection 
requires support for preserving the sequence of 
messages across migration, while a connection to a 
stateful service can be migrated transparently across 
resources only when the state accessed at the old 
resource is also available at the new resource in the 
form that the access to the service can be resumed at the 
new host from where it left-off at the old resource.  

The former requires a reliable transport protocol 
with support for migrating an active connection, while 
the later also requires a system for distributing and 
maintaining consistent state across replicated instances 
of a stateful service.   

This paper focuses on enabling a client to utilize 
the best provider of a service in its changing context; 
the subject of replicating and synchronizing stateful 
services has been extensively researched by others [14] 
and is not covered in this paper.  

SoNS uses the Migrate system [15] for migrating 
network connections between resources. We chose the 
Migrate system as it provides support for securely 
migrating both reliable and unreliable network 
connections, as well as a lightweight, soft-state based 
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consistency management system to support connection 
migration across stateful servers. Unlike other 
connection migration systems, like SCTP[16], that 
require the network addresses of all the potential servers 
to be known at connection setup time, Migrate allows a 
connection to be migrated to a newly available server 
using the TCP migrate options. Having said this, the 
modular design of SoNS allows other connection-
migration systems to be used as well, though we have 
not integrated other such systems with SoNS as yet.   

 

8 Applications 

This section describes the API of SoNS and a 
simple, yet representative, application we have 
developed to demonstrate the utility of service-oriented 
network connections offered by the SoNS architecture.  

Our test applications were developed for a Compaq 
iPAQ, fitted with a backPaQ and running familiar 
Linux. Our backPAQ is fitted with an 802.11b wireless 
card, video-camera, accelerometer and the Cricket 
Location detection system [17].  

8.1 Follow-me-video 

We have used SoNS to develop a follow-me-video 
application. A follow-me-video application running in a 
handheld device carried by a user re-directs the video 
stream to the display closest to the user as she moves in 
the system. In our test environment, all resources 
(server devices) are also fixed with Cricket Beacons to 
measure their distance relative to other Cricket-enabled 
devices (including our handheld device).  

The relevant code snippet from our example 
application, mentioned in section 3.3, is shown in figure 
6. Our example application generates an MPEG-1 
encoded stream and is interested in the nearest display  
with 1) Resolution: 640x800 – 1280x1600 (with 
preference for displays with higher resolution), 2) Size: 
larger than 15 inches to allow viewing from a distance, 
but less than 30 inches due to the limitation of the 
encoding resolution (with preference for a larger 
display)  

The application creates an AF_SONS domain 
socket, and specifies the following options: Context: 6th-
Floor, Agility: 5 (seconds between probes), Hysteresis: 
3 (number of probes), Call-back: pointer to method that 
forced a base frame to be transmitted. The application 
then connects the socket by giving it a composite 
constraint specification for the properties of the display 
device.  

SoNS sets the SCOPE of the SLP user agent to 6th-
Floor, probes the network for display devices, and 
connects to a display that scores the highest points 
among those present on the 6th floor. The distance to a 
display device is measured by invoking the Cricket 
location system (added to the system just like another 
discovery protocol). After making the initial 
connection, the network is probed, using SLP and 

Cricket, every 5 sec and available resources are 
compared according to the hysteresis. If a better display 
becomes available, SoNS invokes the application 
callback, which forces a base MPEG frame to be 
transmitted upon migration, so that the playing of video 
at the new display can be resumed without jitter.  

Our example application also monitors the 
accelerometer embedded in the backPAQ to find out if 
the device is moving and with what speed. If the 
application discovers that the handheld device is 
mobile, the application can increase the rate of probing 
and reduce the hystersis value, according to the degree 
of movement reported by the accelerometer, in order to 
take advantage of the displays that become available for 
a short time when, for example, a user walks down a 
hallway.  

 

int main(int argc, char ** argv) { 
  int sockfd; 
  int intopt; 
  char * charopt; 
  size_t opt_sz; 
  sons_callback_t cbsons; 
  struct sockaddr_sons sasons; 
  sockfd = socket(AF_SONS, SOCK_STREAM, 0); 
  intopt = 5; 
  opt_sz = sizeof(int); 
  setsockopt(sockfd, SOL_SOCKET,  
             SO_PROBE_PERIOD, &intopt, opt_sz); 
  intopt = 3; 
  opt_sz = sizeof(int); 
  setsockopt(sockfd, SOL_SOCKET,  
             SO_HYSTERESIS, &intopt, opt_sz); 
  charopt = "floor-6"; 
  opt_sz = strlen(charopt) + 1; 
  setsockopt(sockfd, SOL_SOCKET,  
             SO_SERVICE_SCOPE, charopt, opt_sz); 
  cbsons = force_b_frame(); 
  opt_sz = sizeof(sons_callback_t); 
  setsockopt(sockfd, SOL_SOCKET,  
             SO_CALLBACK, &cbsons, opt_sz); 
  charopt =   

   “(and (= service display)\n” 
             “(= media mpeg1) \n" 
              "(> xresolution 800 1600) \n" 
                   "(> yresolution 640 1280)) \n" 
              "(> displaysize 15 30) \n" 
              "(< distance))"; 
  sasons.sin_family = AF_SONS; 
  memcpy(sasons.query, charopt,  
         strlen(charopt)); 
  connect(sockfd, (struct sockaddr *) &sasons, 
          sizeof(struct sockaddr_sons)); 
  //...read and write using standard socket                 
  // calls... 
  close(sockfd); 
  return 0; 
} 

Figure 6: Code snippet from the follow-me-video 
application developed using SoNS. 
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9 Implementation 

SoNS was implemented in GNU C/C++ on 
GNU/Linux. The code is divided into four modules: the 
socket interface library, SoNS interpreter, wrappers for 
the resource discovery protocols, and the evaluator 
module.   

9.1 Socket Library  

The socket library code overrides the socket 
interface to offer the extended SoNS interface, and 
spawns an interpreter daemon to periodically discover 
and evaluate available resources.  

In order to provide an extended interface, we either 
needed to modify the underlying Linux libc or use a 
package that captures system calls and redirects them 
through other functions.  We chose the latter route and 
specifically chose to use TESLA [18].  TESLA allows 
arbitrary handlers to be inserted between an 
application’s socket call and the underlying socket 
kernel calls, precisely matching our needs.  
Furthermore, the Migrate architecture, which we use for 
connection migration, also uses TESLA, so the 
overhead of using TESLA would be present in our 
system anyway. 

We wrote TESLA handlers to override the calls to 
socket(), connect(), getsockopt(), setsockopt(), and 
close() functions. The most interesting overridden call 
is connect().  The connect call exercises the entire 
system since it sends a message to the interpreter 
daemon telling it to force a network probe, then picks 
the best service, and finally calls connect on the 
underlying socket structure.  getsockopt() and 
setsockopt() simply update socket-related data in the 
daemon. The interpreter daemon itself merely sits in a 
loop waiting either for an event from the TESLA 
handler or an alarm signal indicating that it should 
perform a periodic poll/evaluate cycle. 

9.2 Resource Discovery Protocols 

The interpreter invokes the run_query method of 
all the discovery protocols registered with it. The run 
query method takes an array of required attribute names 

and returns a list of attribute-value bindings. This 
method is the sole interface between the interpreter and 
the discovery protocols so that discovery protocols can 
be easily added/replaced.   

The current implementation employs two discovery 
protocols to find resources in the system: IETF Service 
Location Protocol [9] and the Cricket Location System 
[17] (for estimating distance to available resources). We 
use the OpenSLP implementation of SLP, with the User 
Agent configured to perform discovery in a peer-to-peer 
fashion, by multicasting the query on the SLP multicast 
channel.  

 
10 Performance Analysis and Evaluation 

Unlike content-based routing systems, the session-
oriented approach of SoNS moves the cost of resolving 
service descriptions from the critical path of a network 
message delivery to the stage of establishing and, 
subsequently, rebinding a network session. Therefore, 
we evaluate the performance of SoNS by measuring 1) 
how quickly it can setup a service-oriented network 
session and 2) how quickly it can rebind the network 
session when a better alternative becomes available.  

All tests were performed on a Pentium III with 
256MB of RAM running Linux 2.4.  Since we wanted 
to isolate our system from network latency, we used an 
in-memory stub SLP rather than the OpenSLP SLP.  
We expect most constraint specifications to have 
between 1 and 15 elements and be a combination of 
both simple constraint specifications and composite 
constraint specifications.  Our tests span this space: we 
vary the number of attributes in a straight-line set of 
simple constraint specifications and also vary the height 
of the tree of composite constraint specifications. 

10.1 Session-setup Latency 

The SoNS system adds latency in two places, at a 
socket() call where we fork a daemon and initialize all 
the discovery protocols installed in the system, and on a 
connect() call  where we must decide which device is 
the best device available. 
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Figure 7: The cost of a connect() call (averaged over 100 tests) increases only linearly with  the number of constraints. 
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In all of our tests, the socket call took between 2ms 
and 5ms.  This is fairly high, but represents the cost of 
forking a process and all inter-process communication 
between the daemon and the SoNS TESLA handler. 

Figures 7 summarizes the cost of a connect call as 
we varied the number of constraints.  The cost of the 
connect call increases only linearly as the number of 
constraints, both nested and non-nested, are increased. 
The connect latencies in our system hover around 1ms, 
which, though higher than expected, is acceptable when 
amortized over the life of the connection. 

10.2 Session-rebinding Latency 

Another form of latency shows itself as the time 
between the discovery of a resource and signaling the 
application that the SoNS system has found a new best 
resource.  Ideally, this should be zero, but we must 
evaluate the services returned, which has a non-zero 
cost.  Figure 8 show the time elapsed from when a call 
to run_query() method returns — with matching 
resources on the network— and when SoNS invokes the 
application-callback to  notify the presence of a better 
alternative (given the hysteresis semantics). This 
latency again increases only linearly with the number of 
constraints (both for nested and non-nested constraints), 
and more importantly, hovers only around 200-500µs of 
latency. 

In order to achieve compatibility with simpler 
protocols, SoNS does not require any filtering involving 
value comparisons to be performed by a discovery 
protocol. Instead, discovery protocols return all those 
resources that contain the required attributes and the 
evaluator module performs the value comparisons to 
compute the suitability of matching resources. 
However, since all the value comparisons in this 
scheme are performed by the evaluator module, the 
evaluator must be able to efficiently compare a 
moderately large number of matching resource 
descriptions. Figure 9 shows the time spent in the 
evaluator module as we increased the number of 
resource descriptions processed by the evaluator. This 

cost increases only linearly and hovered only between 
0.8 – 1.0 msec in our tests.  

The simplicity of our system makes it suitable for 
mobile handheld device. The memory footprint of our 
system varied between 0.8 MB to 1 MB during our 
experiments.  

10.3 Evaluation 

Where our system achieves acceptable 
performance, we found that the following 
implementation choices incurred unwanted overhead: 
• Per-socket interpreter daemon processes, 
• Use of standard IPC between the socket wrapper 

and the per process interpreter deamon, and  
• fixed-point arithmetic. 

Our implementation would be faster if we were 
able to communicate with the daemon without copying 
through interprocess communication channels.  This 
could be accomplished by using a thread library at the 
cost of making our code less portable.  Secondly, we 
maintain a separate daemon process for each socket to 
allow for fine-grained accounting. However, this is 
inefficient compared to an implementation in which a 
single deamon process handles the discover/evaluate 
cycles for all the sockets, since such an implementation 
would save the cost of spawning a daemon every time a 
socket is created, and might allow for optimizations by 
batching queries by different applications.  

Finally, our system is slowed down by the use of 
the fixed-point math system we wrote for computing 
resource scores.  This is because the iPAQs we include 
in our target platforms do not have floating point units 
and incur an order of magnitude performance hit on 
floating point performance.  Since scoring and 
weighting is an inherently floating-point process, we 
were forced to write our own, non-optimized, 
implementation of fixed-point arithmetic.  We are 
currently working on a more efficient implementation 
in the light of these observations.  
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Figure 8: Latency (averaged over 100 tests) between the time a better alternative becomes available and the time 
SoNS realizes its presence (and signals the application about its presence). 
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Figure 9: The hysteresis latency increases linearly with the 
number of services returned by the SoNS discovery 
framework. 

11 Related Work 

SoNS integrates a service-oriented abstraction with 
a traditional operating system communication interface. 
Using SoNS, applications open a network connection 
with an abstract service specification, instead of a 
network address, and the system automatically connects 
the application to the most suitable server in its 
changing environment. SoNS combines resource 
discovery and evaluation with a connection migration 
system to provide application-specific opportunistic 
access to service providers. SoNS’ modular architecture 
can be extended with various resource discovery, 
location-detection, and connection migration protocols, 
and its evaluation policy can be customized to 
individual application preferences.  

Therefore, SoNS is designed to complement and 
leverage recent research in resource discovery, location-
detection and connection migration protocols, not to 
replace such systems. In fact, SoNS was motivated by 
the desire to combine pervasive mobile computing 
technologies developed for MIT’s Project Oxygen, e.g. 
INS, Migrate and Cricket, to leverage context-aware 
applications in a mobile handheld device.  

The recent interest in pervasive computing 
environments has given rise to a proliferation of 
systems that allow resources to be dynamically 
discovered based on their attributes. As opposed to the 
white-pages style lookup offered by systems like DNS 
that simply resolve a resource name to its network 
address, such systems do not require a priori knowledge 
of some unique identifier of the resource, like its 
network address, and hence can be used to dynamically 
discover and utilize resources as they become available 
in a pervasive system.  

Such attribute-based resource discovery systems 
differ in the format used by them to describe resource 
properties, expressiveness offered by their look-up 

interfaces, whether they offer push-based or pull-
based discovery and whether queries are mediated 
by a directory service or resolved in a peer-to-peer 
fashion in the system. In addition to the classical 
examples like Grapevine, GNS [19] and X.500 
[20], a range of industrial standards like 
Microsoft’s UPnP resource discovery protocol 
(SSDP) [11], IBM’s T-Spaces, and IETF’s Service 
Location Protocol [9], and experimental systems 
like MIT’s INS [4] and Berkeley’s SSDS [3] have 
emerged over the last few years. For example, 
where SLP offers a rich LDAP-based [20] query 
interface, systems like INS and SSDP define 
simple attribute-based resolvers that can be hosted 
in resource constrained mobile devices.  

SoNS is designed such that different discovery 
protocols can be added to its resource discovery 
module, possibly via a simple wrapper function to 
covert the SoNS attribute list to the specific format 
used by a discovery protocol, e.g. XML (used by 

Berkeley’s SSDS).  
Unlike existing resource discovery protocols that 

simply match queries against resource descriptions, 
SoNS uses an applications-specific evaluation 
framework that continuously monitors, evaluates and 
compares the available alternatives in order to pick the 
closest match to application requirements. Indeed, the 
problem of satisfying high-level requirements with 
imperfect resources has been extensively researched in 
the AI domain [12]. However, where systems like 
MetaGlue [12] propose to use general-purpose 
constraint satisfaction engines over complex utility 
functions, SoNS default evaluator is designed to be 
simple and responsive to changes in the system.  

Content-based routing systems like INS’s late 
binding architecture [4] and Information Bus [21], as 
well as application-level anycast routing systems like 
[8], allow applications to send messages without 
specifying the network address of the recipient, and 
route the messages to the appropriate server by looking 
at the content of each network message and matching 
that with the properties of the available servers. Where 
such systems offer an alternative to our approach, they 
inherently lack application-level session semantics, do 
not offer a clean interface for configuring the 
application-specific policy for resource comparison and 
session-rebinding, introduce the overhead of resolving 
service descriptions within the critical path of every 
message delivery, and, by defining their own routing 
framework, do not leverage the support for QoS offered 
by the underlying network.  

 
12 Conclusions and Future Work 

This paper establishes the need for service-oriented 
network connection, and presents the design and 
implementation of the SoNS system. SoNS presents an 
application with an extended socket interface to open a 
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service-oriented network connection by providing a 
high-level service-specification. When asked to 
establish a connection, SoNS discovers the available 
resources and connects the application to the resource 
that best provides that service in its context. Once 
connected, SoNS continuously monitors, compares, and 
evaluates available alternatives, and reconnects the 
application to a better alternative if one becomes 
available.  

As opposed to content-routing systems, SoNS 
moves the cost of discovering and evaluating resources 
against application requirements at the connection set-
up time, and allows the application to exercise control 
at the level of a network session. Since the cost of 
discovery and selection in SoNS is amortized over the 
life of the network session, it allows SoNS to be 
significantly more sophisticated in terms of 
expressiveness, evaluation and selection of available 
resources, as compared to systems that perform 
message-level service-selection-and-routing.   

As SoNS integrates support for context-awareness 
with a traditional operating system communication 
interface, we have found it much simpler to use than 
other systems that require the use of additional, and 
often several different [7], APIs to build a context-
aware application. Though we believe that SoNS has 
the potential to become an integral part of future 
operating systems in a pervasive computing 
environment, it relies on the wide-spread deployment of 
network devices embedded with service advertisement 
protocols, as well as the availability of location 
detecting mechanisms to estimate the distance of a user 
with the devices embedded in her context. 

The design of SoNS pays special attention to 
extensibility in order to take advantage of the wide 
range of emerging technologies for resource discovery, 
location detection and network connection migration.    

The current design of SoNS does not include a 
security framework. Security in such a system is 
required at several levels: to protect resources against 
illegitimate access, to protect the SoNS system against 
malicious extensions, and to protect the connection 
migration system against connection hijacking. Though 
some discovery protocols, like SSDS and SLP, and 
connection migration schemes, like Migrate, define 
their own security models, we are currently 
investigating an extensible security framework that 
would allow security policies to be defined 
independently of the constituent modules.  
SoNS makes it simpler to develop context-aware 
applications. Our experience with SoNS has shown us 
that unlike message-based routing systems that are 
better suited to command-based applications e.g. 
“sending a document to the nearest printer”, SoNS is 
equally useful for connection-oriented applications as 
well, e.g. follow-me-video/audio. We are currently 

developing more applications to demonstrate the utility 
of SoNS in pervasive mobile environments. 
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