
USENIX Association

Proceedings of MobiSys 2003:
The First International Conference on

Mobile Systems, Applications, and Services

San Francisco, CA, USA
May 5-8, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 113

Predictive Resource Management for Wearable Computing

Dushyanth Narayanan† and M. Satyanarayanan†‡

†Carnegie Mellon University and ‡Intel Research Pittsburgh�
bumba,satya � @cs.cmu.edu

Abstract

Achieving crisp interactive response in resource-intensive applica-
tions such as augmented reality, language translation, and speech
recognition is a major challenge on resource-poor wearable hard-
ware. In this paper we describe a solution based on multi-fidelity
computation supported by predictive resource management. We
show that such an approach can substantially reduce both the mean
and the variance of response time. On a benchmark representative of
augmented reality, we demonstrate a 60% reduction in mean latency
and a 30% reduction in the coefficient of variation. We also show
that a history-based approach to demand prediction is the key to
this performance improvement: by applying simple machine learn-
ing techniques to logs of measured resource demand, we are able to
accurately model resource demand as a function of fidelity.

1 Introduction

Resource-intensive applications such as speech recognition,
language translation, and augmented reality pose a dilemma
for wearable computing. Such applications are valuable be-
cause they support hands-free interaction. However, their
peak resource demands can overwhelm the processing speed,
memory, and battery capacity of wearable hardware whose
weight, size and form factor are limited by user comfort. The
result is sluggish interactive response that can seriously dis-
tract a mobile user engaged in a physically and cognitively
demanding task such as bridge inspection, aircraft mainte-
nance or military action.

Technology improvements through Moore’s Law will not
solve this problem. Rather, it is likely to persist because
market forces in wearable computing demand continuous im-

This research was supported by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Materiel Command (AFMC) under contracts F19628-93-C-
0193 and F19628-96-C-0061, the Space and Naval Warfare Systems Center (SPAWAR)
/ U.S. Navy (USN) under contract N660019928918, the National Science Foundation
(NSF) under grants CCR-9901696 and ANI-0081396, IBM Corporation, Intel Corpo-
ration, Compaq, and Nokia. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies or
endorsements, either express or implied, of DARPA, AFMC, SPAWAR, USN, the NSF,
IBM, Intel, Compaq, Nokia, Carnegie Mellon University, the U.S. Government, or any
other entity.
† Dushyanth Narayanan is currently a researcher at Microsoft Research Ltd., Cam-
bridge, UK and can also be reached at � � � � � � � � � � � � � � � � � � � � .

provements in user comfort rather than just improvements in
compute power. This tension leads to the question addressed
by this paper: How can we achieve crisp interactive response
for resource-intensive applications on wearable computers?

In this paper, we show how multi-fidelity computation can
help to bound interactive latency by dynamically trading re-
source demand for output quality, or fidelity. We describe the
design, implementation and evaluation of a system that sup-
ports multi-fidelity computation. The system automatically
makes runtime fidelity decisions on the applications’ behalf,
thus freeing programmers from this burden. To make sound
fidelity decisions, it exploits history-based prediction of ap-
plication resource usage.

Our implementation is based on Odyssey [15, 30], which
originally supported the concept of fidelity for stored data.
This work extends that concept to the broader notion of com-
putational fidelity and demonstrates its applicability to a new
class of applications. In the rest of this paper, the term “fi-
delity” will mean “computational fidelity” and “Odyssey”
will refer to the multi-fidelity support added by us to the base
system.

We have experimentally validated our approach using four
applications. Because of space limitations, we only describe
one application case study in detail here, and summarize the
results of the other three. Full details of the latter can be
found in Narayanan’s dissertation [27]. Our key results can
be summarized as follows:

� Predictive resource management can bound response la-
tency and reduce its variability.� History-based prediction of resource demand is feasible,
accurate, and necessary for this improvement.� Legacy applications can be ported at modest cost to a
multi-fidelity programming model.

Section 2 describes our high-level design principles and ra-
tionale. Section 3 describes our prototype API for multi-
fidelity computation, and the implementation of the runtime
support layer. It also explains our methodology for construct-
ing application-specific resource demand predictors, and de-

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association114

scribes one example in detail. Section 4 presents a compre-
hensive evaluation of the system: we measure the accuracy of
history-based prediction, the performance benefits of predic-
tive resource management, and the programming costs and
runtime overheads. Section 5 describes related work, and
Section 6 concludes with some directions for future research.

2 Design rationale

2.1 Alternatives

There are three fundamentally different approaches to coping
with situations where application resource demand exceeds
supply. One approach is to prevent such situations by us-
ing QoS-based resource reservations [22, 26]. For example,
an application may be able to reserve a minimum fraction of
a CPU and thus guard against insufficient supply of this re-
source due to competition from concurrent applications. As
another example, it may be possible to reserve bandwidth
in a carefully controlled networking environment. Unfortu-
nately, enforcement of QoS-based reservations requires op-
erating system support that is rarely present in standard OS
distributions. More importantly, this approach fails when the
peak resource demand of a single application exceeds the ca-
pabilities of the hardware it is running on.

The second approach is to acquire additional resources
through remote execution. Even a resource-impoverished
wearable computer such as the IBM Linux wristwatch [29]
can use compute servers to run resource-intensive applica-
tions. In previous work, we described Spectra [14], a remote
execution subsystem layered on the multi-fidelity framework
described here. We are further exploring remote execution
in current work [4]. However, there are many situations in
which a mobile user has no access to compute servers and
must therefore rely solely on the resources of his wearable
computer. A different approach must be used to handle those
situations.

The third approach is to reduce resource demand through
multi-fidelity computation. As its name implies, multi-
fidelity computation assumes that an application is capable of
presenting results at different fidelities. Users prefer results
of higher fidelity, but can tolerate results of lower fidelity. A
high-fidelity result requires greater resources to compute than
a low-fidelity result. When resources are plentiful, the ap-
plication generates high-fidelity results; when resources are
scarce, it generates low-fidelity results. By dynamically vary-
ing fidelity, timely results can be generated over a wide range
of resource levels. We elaborate on this in the next section.

2.2 Multi-fidelity computation

The classic notion of an algorithm has a fixed output speci-
fication but variable resource demand. In contrast, it is the
output specification that is variable in a multi-fidelity com-
putation [32]. By setting runtime parameters called fidelity
metrics, we can obtain different outputs for the same input.
One can say, in effect, “Give me the best result you can us-
ing no more than X units of resource R.” R is typically re-
sponse latency in an interactive application, but it can also
refer to memory, energy, bandwidth or any other resource.
Thus multi-fidelity computations are a generalization of any-
dimension algorithms [25]. The latter can be viewed as multi-
fidelity computations which incrementally refine their output,
allowing them to be interrupted at any point to yield a result.

Multi-fidelity computation allows us to choose the best run-
time tradeoff between output quality and performance. In
an interactive application, each interactive operation can be
viewed as a multi-fidelity computation. At the beginning of
each operation, its fidelity metrics can be set to yield the de-
sired response latency at the current resource availability.

2.3 Motivating example

Throughout this paper we will use augmented reality (AR) [3]
as the driving example to illustrate various aspects of our sys-
tem. Although AR is a relatively young technology, it has
already proved useful in a number of domains such as tourist
guides [12], power plant maintenance [11], architectural de-
sign [37], and computer-supported collaboration [5].

In AR, a user looks through a transparent heads-up display
connected to a wearable computer. Any displayed image ap-
pears to be superimposed on the real-world scene before the
user. AR thus creates the illusion that the real world is vi-
sually merged with a virtual world. This requires a precise
correspondence between the two worlds. As a user’s orien-
tation and location change, the displayed image must rapidly
and accurately track those changes. Sluggish tracking can
be distracting to the user and, in extreme cases, can result in
symptoms similar to sea-sickness.

3-D rendering, a computationally intensive operation, lies at
the heart of AR. Even a brief turn of the head by a user can
result in a complex scene having to be re-rendered multiple
times. For example, an architect might use AR for on-site
design. This would allow her to visualize the impact of pro-
posed design changes such as new windows or color schemes.
Before converging on a final design, she may iteratively try
out many alternatives, viewing them from different angles
and under different hypothetical lighting conditions such as
moonlight or sunset.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 115

High fidelity (1.0) Low fidelity (0.1)

Figure 1: Effect of fidelity on 3-D rendering

3-D rendering for AR embodies many of the characteristics
that motivate the work described in this paper. First, it is
extremely resource intensive, particularly of CPU and mem-
ory. Second, to be fully effective it must run on a lightweight
wearable computer. Third, crisp interactive response is crit-
ical. Fourth, there is a fidelity metric, the resolution of the
displayed image, that directly impacts resource consumption.

Figure 1 illustrates the last point. The high-fidelity figure
on the left contains ten times as many polygons as the low-
fidelity figure on the right. Since CPU demand increases with
the number of polygons, the low-fidelity figure can be ren-
dered much faster. In many situations, the low-fidelity figure
may be acceptable; the user can always explicitly ask for re-
rendering at higher fidelity.

2.4 Predictive resource management

Before executing an interactive operation, an application
must determine its fidelity settings. Odyssey serves as an or-
acle in making this decision. Its recommendation is based on
a search of the space of fidelity settings. This search requires
Odyssey to predict resource supply during the operation, as
well as resource demand and operation latency for different
settings. It also requires Odyssey to correctly reflect the user’s
current preferences in the tradeoff between output quality and
operation latency.

Fidelity

Computation

Runtime parameters

System state

(2) demand

(4)

CPU cycles, memory
pages, network

Demand
Resource

CPU cycles/sec,
memory pages,

Supply
Resource

network bytes/sec, ...bytes, ...

Utility

(3) performance predictors

Latency

Output Quality
(5) utility
function

predictors
(1) supply
predictors

network bandwidth, ...
CPU load, memory load,

Figure 2: Mapping fidelity to utility

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association116

As Figure 2 shows, the complete prediction process can be
decomposed into five predictive mappings. Three of the map-
pings relate to predicting operation latency: (1) from system
load statistics to resource supply; (2) from fidelity to resource
demand; and, (3) from resource supply and demand to oper-
ation latency. The other two mappings translate fidelity and
latency predictions into predictions of user satisfaction or util-
ity: (4) from fidelity to output quality; and, (5) from latency
and output quality to utility.

Odyssey performs mapping 1 using supply predictors that
monitor kernel load statistics through standard interfaces, and
make inferences based on gray-box knowledge [2] of kernel
resource management policies. It uses history-based demand
predictors to perform mapping 2, and performance predictors
based on a resource model for mapping 3. These components
are described in Sections 3.3 and 3.4.

Mapping 4 specifies the output quality we can expect at each
setting of each fidelity “knob”. In general, this mapping
would be determined through studies of user perception. In
this work, we make the simplifying assumption that fidelity
and output quality are synonymous; in other words, that the
mapping is trivial. For example, we use the “JPEG level”
parameter of a JPEG compression algorithm as a measure of
the output image quality; the work by Chandra and Ellis [6]
confirms that this is acceptable. Mapping (5) is a utility func-
tion that captures current user preferences. In a deployed sys-
tem, utility functions would be generated automatically from
a GUI or by inferring user intent. In our experimental pro-
totype, we use the hand-crafted utility functions described in
Section 3.5.

3 Interface and implementation

3.1 Programming interface

The multi-fidelity programming model is based on the notion
of an operation. An operation is the smallest user-visible unit
of execution, from user request to system response. Each op-
eration corresponds to one multi-fidelity computation, with
fidelity metrics settable at operation start. Examples include
rendering an augmented reality scene; recognizing a speech
utterance and displaying the recognized text; fetching and
displaying a web image.

Figure 3 shows the basic multi-fidelity API. register f idelity
is called at application startup. Odyssey then reads an Appli-
cation Configuration File (ACF), which specifies the multi-
fidelity operation type, its fidelity metrics, and their value
ranges (Figure 4).

� � � " # � & � " () � + " - � � . / 1 2 3 5 6 7 3 9 �) () � - " :

< = > � � � 7 9 A � . A " (� + A B D

� � � F " # � � () � + " - � � . (9 A / 1 2 3 9 � & � 3 5 6 7 + 6 � 6 � 6 J " :

1 2 � � � 9 A � . A " (� + :

1 2 � � � � N J (A 6 6 J & :

1 2) � + (A 6 6 J (Q 6 - (� 7 A 6 6 J & :

1 2 � � � � N J () � + " - � � � " & :

< = >) � + (A 6 6 J (Q 6 - (� 7) � + " - � � � " & :

< = > � � � 7 9 A � + A B D

� � � " � + () � + " - � � . (9 A / 1 2 � � � 9 A � . A " (� + :

1 2 � � � 9 A � + :

1 2) 6 � - N " (3 9 + ") 6 � - " + B D

C function prototypes for the API described in Section 3.1.

Figure 3: The Odyssey multi-fidelity API

+ " & 3 � A � � 9 � # - Q N W " � + "

- 9 #) � - " Z N & Z 9 + . & & " . Z " � 3 Z # - Q N [" � + " [- 9 #

3 9 � & � 6 � � � - 6 � " � 3 . \ [^

A 6 6 J A 9 - . # 9 � & 9 + " " + ^ _ � �) � � � � .

) � + " - � � . " & 9 - N � � 9 � 9 + " " + ^ [^ \ _ \

5 � � �) � - " Z N & Z 9 + . & & " . Z - � F Z # - Q N (5 � � � & [& 9

5 � � � 3 A N # - Q N (" � + " (3 A N (5 � � �

N A + 6 � " # - Q N (" � + " (N A + 6 � "

N � � - � � . # - Q N (" � + " (N � � - � � .

The first five lines specify a descriptive tag for the operation; a path-
name for writing log data; a target latency for the operation; a non-
tunable parameter; and a fidelity metric. The last four lines specify a
binary hint module and name its entry points.

Figure 4: Application Configuration File for rendering

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 117

The ACF also specifies nontunable parameters: runtime vari-
ables such as input data size that affect resource demand, but
are not adaptable. For example, the resource demand of ren-
dering depends not only on the resolution, but also on the
polygon count of the original, full-resolution scene.

Finally, the ACF specifies an application-specific hint mod-
ule. This binary module contains the application-specific re-
source demand predictors and the user utility function. For
efficient runtime invocation of the demand predictors and util-
ity function, the hint module is loaded into Odyssey’s address
space. We are looking at ways to retain the efficiency, but
improve on the safety, of this approach.

Before each operation, the application invokes
begin f idelity op, and passes in the nontunable param-
eters. Odyssey computes and returns the optimal fidelity
value(s) for the operation. After each operation, the ap-
plication calls end f idelity op. Odyssey then logs the
operation’s measured resource demand: these logs are used
for history-based resource demand prediction (Section 3.4).

3.2 System architecture

Odyssey is implemented as a user-level process on a stan-
dard Linux 2.4 kernel. Its primary functionality — making
fidelity decisions — is triggered by begin f idelity op and im-
plemented in the following steps, numbered as in Figure 5:

1. The application passes in the nontunable parameters.
2. Supply predictors estimate the application’s resource

supply for the near future (mapping 1 of Figure 2).
3. An iterative solver searches the fidelity space for the best

candidate.
4. Demand predictors map fidelity to resource demand

(mapping 2).
5. A performance predictor estimates latency given supply

and demand predictions (mapping 3).
6. A utility function evaluates the proposed fidelity-

performance tradeoff (mapping 5).
7. After several iterations of steps 3–6, the solver returns

the fidelity with the highest utility.

The system’s second function — monitoring and logging —
is triggered by end f idelity op:

8. Demand monitors measure the resources consumed by
the just-concluded operation.

9. A logger records the resource demand, fidelity, and non-
tunable parameter values to a disk file.

10. These values are also passed to the demand predictors,
to update their predictive models.

Section 3.3 describes the generic system components: the
supply predictors, performance predictors, solver, demand
monitors, and logger. Demand predictors are application-
specific: Section 3.4 describes our history-based method for
constructing them. Section 3.5 then describes our approach
to constructing utility functions.

3.3 Generic system components

3.3.1 Supply predictors

Our prototype has supply predictors for CPU, memory, net-
work, energy and file cache. Each of these monitors ker-
nel statistics, and makes predictions of resource availability
for each application at the beginning of each operation. For
brevity, we only describe the CPU supply predictor here.

The CPU supply predictor predicts, at the start of each op-
eration, the CPU supply available to it in cycles/sec. It is
based on some simplifying assumptions: that the operation is
single-threaded; that all CPU-bound processes receive equal
shares; that I/O-bound processes offer negligible CPU load;
and that past load predicts future load at all time scales. These
assumptions give us a simple predictor: a process p’s CPU
supply over the next T seconds is

Scpu `
P

N a 1

where P is the processor clock speed, and N is the predicted
background load over the next T seconds: that is, the average
number of runnable processes other than p. We periodically
sample the instantaneous load average ni from /proc/loadavg,
and subtract out p’s contribution, ni b p c . The latter is 1 if p is
runnable, and 0 if not. We then smooth the samples:

Ni d 1 ` αNi a b 1 e α c b ni e ni b p c c

We set

α ` e f
tp

T

where tp is the load sampling period, 0.5 s in our prototype.
This makes the decay time equal to the prediction horizon
T . In other words, we use more history for predictions over
longer periods.

The clock speed P is read from /proc/cpuinfo at startup. Cur-
rently Odyssey runs on a stock Linux kernel without dynamic
clock scaling support. When such support is available, it
should be possible to update P dynamically from /proc when-
ever the clock speed changes.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association118

Solver

Utility function

Demand
monitors
CPU, network,

memory, energy
remote CPU/memory

predictors

network, energy
CPU, memory,

remote CPU/memory

Supply

Demand predictors
(CPU, network, remote CPU,)

energy,

App

end_fidelity_op

begin_fidelity_op

(1)

Hint module

performance
predictors

latency

Logger

(2)

(3)

(5)(6)

(7)

(8)

(9)
(4)

(10)

Shaded boxes represent application-specific components; components to the right of the dotted line are part of Odyssey. The arrows show the
data flow between components; dashed arrows correspond to interactions that occur many times for a single invocation of the API. The numbers
correspond to the steps in Section 3.2.

Figure 5: System support for the multi-fidelity API

3.3.2 Performance predictors

Our current prototype has predictors for two performance
metrics: operation latency and battery drain [15]. Here we
focus on operation latency, the key metric for interactive ap-
plications.

Our latency predictor computes latency as a function of re-
source supply and demand. It is based on a simple resource
model that assumes sequential use of resources (no overlap-
ping of processing and network I/O). It computes latency as:

L `

Dlocal cpu

Slocal cpu
a

Dxmit

Sxmit
a

Drecv

Srecv
a

Drtt

Srtt
a

Dremote cpu

Sremote cpu

Here Slocal cpu is the predicted CPU supply in cycles/sec
available to the application. Dlocal cpu is the predicted CPU
demand in cycles required by the operation. The other terms
represent the time taken for a remote execution(s): transmit-
ting data to a server, receiving results from it, round trip time
of one or more RPCs, and server-side computation. Network
bandwidth and round trip time estimates are provided by the
base Odyssey infrastructure [30]. The predictor also com-
putes the effects of VM paging and remote file access [27];
for brevity, we do not discuss these.

The default generic latency predictor can be overridden at
runtime by an application-specific predictor: for example,
one that allows for overlapping computation and I/O.

3.3.3 Solver, demand monitors, and logger

The solver searches the space of fidelities and finds the values
that maximize utility. It uses a gradient-descent strategy for
numeric parameters, and exhaustive search for non-numeric
parameters such as enumerated lists. It works well for ap-
plications with a small number of fidelity metrics and well-
behaved utility functions without multiple local maxima; we
could easily substitute more robust and scalable algorithms
such as Lee’s [22] without modifying other system compo-
nents.

Demand monitors measure the resource demand of each op-
eration based on kernel statistics from /proc. For example,
CPU demand is the CPU time used by an operation, scaled
by the processor clock speed. This information is written to a
disk file by the logger.

3.4 History-based demand predictors

A key component of our architecture is the demand predictor:
a function that maps an operation’s fidelities and nontunable
parameters to its resource demand, in units independent of
runtime system state such as load or clock speed. For exam-
ple, CPU demand is measured in cycles consumed per opera-
tion.

We construct demand predictors empirically from applica-
tion history logs [28], rather than relying exclusively on static
analysis. First, the application programmer or domain expert

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 119

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250

M
ill

io
ns

 o
f C

P
U

 c
yc

le
s

g

Thousands of polygons rendered

Taj Mahal
Café
Notre Dame
Buckingham Palace

The graph shows the CPU demand of rendering for four different
scenes at different resolutions (fidelities). For each scene, the cam-
era position was fixed arbitrarily. All experiments were run on the
hardware described in Section 4.1.

Figure 6: CPU demand of rendering (fixed camera, varying
resolution)

identifies fidelity metrics and other runtime parameters affect-
ing resource demand. From a static analysis, they might also
give a functional form relating these parameters to resource
demand: for example, “CPU demand is quadratic in input
data size”.

The remaining steps are automated, requiring little or no user
intervention: we run the computation at different parame-
ter values, and Odyssey automatically logs each operation’s
resource demand. We use statistical machine learning tech-
niques to fit the logged data to the functional form, generat-
ing a predictive mapping function. At runtime, we continue
to refine this function using online learning techniques.

Although demand predictors are application-specific, we be-
lieve our methodology will allow their construction by third
parties without extensive domain expertise. Additionally, de-
mand predictors are separate code modules, and do not re-
quire modification of the application source code. We illus-
trate our method through one detailed example, and describe
two techniques that proved extremely useful in improving
predictor accuracy. Section 4.3 evaluates prediction accuracy
for our chosen example as well as for other applications and
resources.

3.4.1 Example: CPU demand predictor for rendering

Rendering is CPU-bound, and good interactive response de-
pends on accurate prediction and regulation of CPU demand.
For our rendering algorithm, resolution is the fidelity metric:
thus we need to know the mapping from resolution to CPU
demand. CPU demand depends both on the resolution r and

the original polygon count p; from examining the algorithm,
we expected in fact that it would be a function of pr, the ren-
dered polygon count.

To map resolution to CPU demand, we started by logging the
CPU demand at different resolutions for four different scenes,
and plotting CPU demand against rendered polygon count
(Figure 6). We see that CPU demand is linear in rendered
polygon count:

Dcpu ` c0 a c1pr

for a fixed scene and camera position (note that different
scenes have different values of c0 and c1). However, the scene
and the camera position are parameters that can vary at run-
time, and must be tracked. In the following sections, we show
how we track this variation using data-specific prediction and
online learning.

3.4.2 Data-specific prediction

Sometimes resource demand depends on data-specific effects
other than the data size, which are not easily expressed as nu-
meric parameters. For example, the CPU demand of render-
ing depends on the contents of the scene being rendered. In
such cases, data-specific prediction can be extremely useful:
maintaining separate predictor coefficients for each data ob-
jects. Sometimes, these can be computed offline and stored
with the data: for example, JPEG [36] compression ratios
depend on image content, and these “compressibility coeffi-
cients” could be precomputed and stored at the web server.

In other cases, the data-specific coefficients must be com-
puted online, after observing the resource demand of a few
operations on a new data object. This can still be useful if we
perform many operations on the same object: for example,
with rendering, the user will usually navigate a single scene
for a while.

3.4.3 Online learning

Sometimes, we may have portions of application state which
affect resource demand but are not easily used as part of a
predictive model. For example, the CPU demand of rendering
depends not only on the resolution and the scene, but also on
the camera position. Figure 7 shows that the CPU demand of
rendering varies considerably with camera position as a user
navigates a scene, even when fidelity is fixed.

Thus, camera position and orientation are nontunable param-
eters affecting CPU demand. Unfortunately, their effect on
CPU demand is very complex, depending on local properties

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association120

 0

100

200

300

400

500

600

700

800

900

 0 20 40 60 80 100 120

M
ill

io
ns

 o
f C

P
U

 c
yc

le
s

g

Trace step

Notre Dame

The graph shows the CPU demand of rendering the Notre Dame
scene over time, at a resolution of 1. Each point corresponds to one
camera position in a motion trace of a user navigating the scene. All
experiments were run on the hardware described in Section 4.1.

Figure 7: CPU demand of rendering (fixed resolution, mov-
ing camera)

of the scene: mapping them directly to CPU demand requires
large and expensive lookup tables. Instead, we use a much
simpler technique based on the observation that

� At each camera position, the linear relationship Dcpu `
c0 a c1 pr holds, but c0 and c1 vary with camera position.

� In typical use, camera position changes incrementally:
the user follows a continuous path through the scene.

� CPU demand has locality: a small change in camera po-
sition results in a small change to c0 and c1.

We use an online-learning method that uses the linear map-
ping Dcpu ` c0 a c1 pr, but continuously updates the values
of c0 and c1 to reflect the behaviour corresponding to the
current camera position. We use recursive least-squares re-
gression with exponential decay [39], a modification of the
well-known linear regression method [18]. This gives greater
weight to more recent data by decaying the weight of data
exponentially over time. Our predictor uses a decay factor of
0.5, which makes it very agile, effectively remembering only
the last 4 data points. It is also cheap: a 2-dimensional lin-
ear fit requires only tens of bytes of state, and tens of floating
point instructions per update.

The online-learning predictor is also data-specific. For each
new scene, it initializes a predictor with generic coefficients
computed from a variety of scenes and camera positions.
Subsequent renders of that scene result in updates of the
scene-specific predictor, specializing it both for the scene and
the camera position within the scene. In Section 4.3 we show
that these two simple techniques improve prediction accuracy
significantly for rendering; we believe that they have more
general applicability as well.

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2

U
til

ity

Latency (sec)

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2

U
til

ity

Latency (sec)

Figure 8: Sigmoid utility function

3.5 Utility functions

Utility functions represent a user’s tradeoff policy between fi-
delity and performance. Given some estimated fidelity and
performance, the utility function returns a number in h 0 i 1 j
representing the resulting user happiness; 0 represents the
least possible user satisfaction and 1 the most. By default,
we use linear functions for utility as a function of fidelity, and
sigmoids for utility as a function of latency. The product of
these functions gives us a multidimensional utility function
whose range is still h 0 i 1 j . In Odyssey, utility functions are
computed by binary code modules; the user can override the
default utility function with an arbitrarily general one by pro-
viding their own module.

A sigmoid is a smoothed version of a step function. Instead
of having utility fall off a cliff when latency exceeds its target
value, we can now specify a tolerance zone where latency
degrades linearly. Figure 8 shows a sigmoid with a target of
1 s and a tolerance of 10%. There is little gain in utility from
decreasing latency below 0.9 s: this is the sweet spot of the
curve. Above 0.9 s, utility decreases steadily, and latencies
above 1.1 s are unacceptable to the user.

4 Evaluation

This section validates the predictive resource management
approach by answering three sets of questions:

� Is history-based demand prediction accurate? Are data-
specific prediction and online learning useful?

� How does predictive resource management improve per-
formance? Can multiple concurrent applications adapt
successfully without interfering with each other?

� What are the programming costs and runtime overhead
of using the system?

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 121

Before we describe the experiments that answer these ques-
tions, we first describe our experimental setup (Section 4.1)
and evaluation metrics (Section 4.2). Sections 4.3–4.5 then
address each of the above sets of questions in turn.

4.1 Experimental platform and benchmarks

Our platform for all experiments reported in this paper is an
IBM ThinkPad 560 with a 233 MHz Mobile Pentium MMX
processor, 96 MB of RAM, no 3-D graphics hardware, and
running a standard Linux 2.4.2 kernel. We used this rather
than a wearable computer for ease of development and test-
ing; its processing power is comparable with recent wearable
and handheld platforms such as the IBM Linux watch [29]
and the Compaq iPAQ 3650.

Our motivating example — augmented reality — is not a ma-
ture technology, and fully fledged AR applications are not
freely available. Instead, we use as benchmarks two applica-
tions — GLVU and Radiator — which provide one component
of AR: 3-D rendering. Together, these applications approxi-
mate the augmented reality scenario of Section 2.3: an archi-
tect using AR for on-site design.

GLVU [35] is a “virtual walkthrough” program that allows a
user to explore a virtual 3-D scene: its function is to render
the scene from any viewpoint chosen by the user. In our ex-
periments, we simulate a moving user by replaying a trace
of a user navigating a 3-D scene using GLVU’s graphical user
interface. We assume a continually moving user, and do not
insert any think times between render requests.

Radiator [38] computes lighting effects for 3-D rendering us-
ing radiosity algorithms [8]. In an AR scenario, it would
be re-run whenever the user modified the scene lighting, for
example by adding a window to a building. We simulate
this user behaviour by running sporadic radiosity computa-
tions during the virtual walkthrough, with random interven-
ing think times.

Both GLVU and Radiator support multiresolution scaling [17],
which allows each render or radiosity computation to be done
at any resolution — any fraction of the original polygon
count. The overhead of changing the resolution is negligible.
Resolution is thus the single fidelity metric for both compu-
tations.

In a real AR application, the user would be able to interac-
tively edit the scene, and the lighting effects computed by
Radiator would be fed back into GLVU for rendering. In
our version, GLVU and Radiator lack interactive editing fa-
cilities and do not communicate with each other. However,
the benchmarks are representative of AR from a resource and

performance point of view.

4.2 Evaluation metrics

Demand predictor accuracy is measured by running an ap-
plication benchmark on an unloaded system, and measuring
the relative error for each operation: the difference between
the predicted and observed resource demand, divided by the
latter. We use relative rather than absolute prediction error
since it is applicable across a wide range of values. Given the
relative error for a number of operations, we report the 90th
percentile error E90. An E90 of 5% means that 90% of the
time, the predictor was within 5% of the correct value.

Our metric of interactive application performance is opera-
tion latency. Specifically, we measure Odyssey’s ability to
keep latency within user-specified bounds, with low variabil-
ity and without unnecessarily sacrificing fidelity. In other
words, we measure the ability of the adaptive mechanism —
Odyssey — to implement one kind of policy: keeping latency
steady. Our adaptive policies are implemented by a sigmoidal
utility function centred on the desired latency bound (Sec-
tion 3.5), with a tolerance of 10%. Utility also increases lin-
early with fidelity. The net effect is that utility is maximized
at 90% of the latency bound: this is the target latency.

We conduct 5 trials of each experimental run. For each such
set of 5 trials, we report the mean operation latency, and also
the coefficient of variation: the standard deviation of latency
divided by the mean. In some cases, we also show a timeline
of one of the trials, to illustrate the performance and fidelity
over time.

Ideally, we want mean latency to be on target. Higher laten-
cies indicate bad interactive response, while lower latencies
indicate an unnecessary sacrifice of fidelity. We also want the
coefficient of variation to be small: variability in performance
leads to a bad user experience [24]. High variation also indi-
cates that the system is often off-target: in other words, not
implementing the adaptive policy well.

4.3 Demand predictor accuracy

In this section, we show that history-based demand predictors
provide accurate predictions across a range of applications
and resources. For brevity, we describe in detail only the CPU
demand predictor for GLVU, and summarize results for other
predictors.

For GLVU, we measured the accuracy of the data-specific,
online-learning predictor, and also the contribution of data-
specificity and online learning to this accuracy. We compared

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association122

0%

20%

40%

60%

80%

100%

Random resolution Fixed resolution

E
rr

o
r

(E
90

)
Generic

Data-specific

Online-learning + data-specific

We show 90th percentile error (in %) of three different schemes for
predicting the CPU demand of rendering. The CPU demand itself
varies between 0.1 s and 5 s (23–1018 million cycles).

Figure 9: CPU demand prediction error for rendering

� a generic predictor, which fits a single pair of coeffi-
cients c0, c1 to all 4 scenes,

� a data-specific predictor, which specializes c0 and c1 to
each scene,

� the online-learning predictor, which maintains scene-
specific coefficients, and also updates them after each
operation to track runtime variation in CPU demand.

The accuracy of CPU demand prediction depends not only on
the variation in camera position, but also on the variation in
fidelity from one rendering operation to the next. In an adap-
tive system, variation in fidelity is driven by variation in re-
source supply at runtime. To estimate demand prediction ac-
curacy independent of runtime conditions, we evaluated both
the worst case of randomly varying fidelity and the best case
of fixed fidelity.

Figure 9 shows the prediction error of these three predictors
for both random and fixed resolution (1.0), measured on user
traces on four different scenes. Each trace has 100 camera po-
sitions, yielding 400 data points in all. We see that both data-
specificity and online learning decrease prediction error. The
best predictor, online-learning, has a worst-case error of 24%,
which is small compared to the order-of-magnitude variation
in CPU demand. Better learning techniques could improve its
accuracy further.

We also measured demand predictor accuracy for other appli-
cations — Radiator, speech recognition, and web browsing
— and other resources — memory, network, and battery en-
ergy (Figure 10). In each case, we are able to predict to within
a small fraction a quantity with a large dynamic range, show-
ing that multi-fidelity computation can make a big difference
to resource demand, and that we can predict resource demand
to within a small error. Note that all the other predictors have
better accuracy than the CPU predictor for GLVU: our chosen

example case study represents our worst observed case.

4.4 Performance benefits

4.4.1 Single application with background load

Given that demand prediction is accurate, what is the impact
on performance of predictive resource management? To an-
swer this question, we measured the performance of GLVU

adapting dynamically to changes in resource supply. GLVU

plays a trace of a user navigating the “Notre Dame” scene,
while Odyssey attempts to bound operation latency to 1 s. Si-
multaneously, a competing process alternates between spin-
ning and sleeping every 10 s. We chose this square waveform
over more realistic load patterns to explore the effect of load
frequency and amplitude.

We ran this experiment in three configurations:

� Fully adaptive: both supply and demand prediction are
enabled, so GLVU adapts to changes both in application
demand and in background load.

� Demand-only: we enable CPU demand prediction,
which allows GLVU to regulate its CPU demand to the
target value. However, supply prediction is disabled: the
background load is assumed to be 0.

� Static: GLVU’s fidelity is fixed at 1: there is no adapta-
tion at all.

Figure 11 shows one run for each configuration, in our base-
line case: a trace of “Notre Dame” with a 1 s latency bound,
a 0.1 Hz background load frequency, and a peak load of 1.
We see that the “fully adaptive” configuration keeps latency
on target. “Demand-only” is on target only when unloaded,
and “static” almost never. Note that the different experiments
have different run times, the effect of reducing mean latency
on a fixed-work benchmark.

Figure 12 shows mean latency and variation over 5 trials for
each configuration. We see that demand prediction alone sub-
stantially improves interactive performance by bringing mean
latency close to the target value and reducing variability; sup-
ply prediction improves performance further.

To validate our results across a range of experimental pa-
rameters, we tested the “fully adaptive” configuration with
different 3-D scenes, latency bounds, and load patterns. In
each case, we varied one parameter, keeping the others fixed,
and compared the performance against the baseline case: Fig-
ure 13 shows the results of these experiments.

Mean latency was insensitive to experimental parameters, ex-

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 123

Application Tunable Resource Observed range Data Online E90

parameters of resource demand specific? learning?
GLVU Resolution CPU 23–1018 Mcycles Yes Yes 24%
Radiator Resolution, Memory 14–60 MB No No 3%

algorithm CPU 220–46219 Mcycles Yes No 11%
Web browser JPEG level Energy 1.5–25 Joules Yes No 9%
Speech Client-server Network 4–219 KB No No 0.3%
recognizer split, vocab. client CPU 0–2774 Mcycles No No 10%

size server CPU 0–2128 Mcycles No No 16%

The table shows the 90th percentile error E90 (right-most column) of history-based demand predictors for different applications and resources.
In each case, we also show the observed min-max range of resource demand, measured in millions of cycles of CPU, megabytes of memory,
Joules of energy, or kilobytes of network transmission/reception.

Figure 10: Demand predictor accuracy for various applications and resources

 0
 1

 0 50 100 150 200 250 300L
o

ad

Time (sec)

 0

 1

 2

 3

 4

 5

 6

 7

L
at

en
cy

 (
se

c)

 0

 1

F
id

el
it

y

k

Fully adaptive

0 50 100 150 200 250 300 350 400

Time (sec)

k

Demand-only

0 200 400 600 800 1000

Time (sec)

k

Static

Fidelity and latency of GLVU over time when subjected to a time-varying background load, in three different adaptation configurations. Note
the different time scales on the x axes: the same benchmark takes different amounts of time in different configurations.

Figure 11: Adaptation in GLVU

cept when we reduced the latency bound to 0.25 s: in this case
mean latency exceeds target by 20%. Here we hit the limit of
fidelity degradation: on our test platform, rendering can take
up to 0.46 s of CPU time even at the lowest fidelity.

Variability in latency was the same for all scenes, but varied
with other parameters. Variability was lowest for a 0.5 s la-
tency bound. At lower latencies, Linux’s 200 ms scheduler
quantum causes variability. At higher latencies, load transi-
tions are more frequent with respect to operation rate, causing
more operations to deviate from target.

Variability was highest when load frequency matched opera-
tion rate (1 Hz). At lower frequencies, fewer operations are
hit by load transitions. At higher frequencies, load variation

gets smoothed out over the course of an operation. Variability
also increases sharply with increasing load amplitude (peak-
to-trough difference): operations hit by load transitions are
more affected by larger transitions.

We observe that it is most important to predict resource sup-
ply at the time scale of adaptation: higher and lower frequen-
cies impact latency less. If this time scale is comparable to the
scheduler granularity, then prediction accuracy will be low
and performance variability will be high.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association124

0

1

2

3

4

5

Fully Adaptive Demand-only Static

L
at

en
cy

 (
se

c)

Mean latency

0

0.1

0.2

0.3

0.4

0.5

Fully Adaptive Demand-only Static

C
o

ef
fi

ci
en

t
o

f
va

ri
at

io
n

Variability in latency

Error bars show standard deviations; the horizontal line marks the
target latency.

Figure 12: Adaptive performance in GLVU

1
th

re
ad

0.
1

H
z

0.
25

 s
ec

T
aj

 M
ah

al

0.
5

se
c

C
af

é

2
th

re
ad

s

0.
2

H
z

5
th

re
ad

s

1
H

z

1
se

c

N
ot

re
 D

am
e

10
 th

re
ad

s

B
uc

ki
ng

ha
m

 P
al

ac
e

2
se

c

2
H

z

0

1

2

Scene Latency
constraint

Load
frequency

Load
amplitude

C
o

ef
fi

ci
en

t
o

f
va

ri
at

io
n

The graph shows the coefficient of variation for latency under various
experimental conditions. Each set of bars varies one parameter: the
shaded bars represent the baseline case.

Figure 13: GLVU adaptation: sensitivity analysis

4.4.2 Concurrent applications

When we run two adaptive applications concurrently, are they
both able to adapt effectively, or do they interfere with each
other’s performance? To answer this question, we mimicked
an AR scenario by running GLVU and Radiator concurrently
as Linux processes at default priority.

GLVU replays a trace of a user navigating the virtual “Notre
Dame” scene. Meanwhile, Radiator runs sporadic radiosity
computations on a copy of the same scene in the background,
to simulate occasional re-computation of lighting effects by
the user. Between operations, Radiator sleeps for a random
“think time” from 0–10 s. The system’s goal is to maintain
the latency bounds of both applications despite resource vari-
ation. We use a 1 s latency bound for GLVU, as before. Ra-
diator is much more resource-intensive, and runs in the back-
ground: for it, we use a 10 s bound. For both applications,
we use a sigmoid utility function with a 10% tolerance (Sec-
tion 3.5): thus, the sweet spot or target latency is 0.9 s for
GLVU and 9 s for Radiator.

We ran this experiment in 5 configurations:

� Adaptive-both: both applications adapt fidelity to
achieve the target latency.

� Static-optimal: fidelity is static, but tuned for this bench-
mark. We set it to the mean fidelity achieved in the adap-
tive case (0.17 for GLVU, 0.019 for Radiator).

� Static-user: fidelity is static, at 0.5 for GLVU and 0.05
for Radiator: reasonable values that a user might select
without workload-specific tuning.

� Adaptive-GLVU: GLVU adapts, Radiator uses the “static-
user” fidelity.

� Adaptive-Radiator: Radiator adapts, GLVU uses the
“static-user” fidelity.

The last two configurations represent real-world cases where
one application is modified with multi-fidelity support, but
the other is unmodified and must rely on the user to set the
fidelity.

Figure 14 shows one trial each for the first three configura-
tions. In the “adaptive-both” case, GLVU maintains its target
latency despite supply and demand variation. With “static-
optimal”, mean latency is on target but variability is high;
with “static-user”, mean latency is off target and variability is
even higher.

For Radiator, “adaptive-both” and “static-optimal” get la-
tency on target, while “static-user” is off target. Variability
is low in all cases: Radiator’s CPU demand is invariant with
time and camera position. CPU supply does not vary either:

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 125

 0

 10

 20

 30

 0 50 100 150 200 250 300

Time (sec)

LRad

 0
0.02
0.04
0.06
0.08
 0.1

 fRad

 0
 1
 2
 3
 4
 5

 LGLVU

 0
 0.2
 0.4
 0.6
 0.8
 1

 fGLVU

Adaptive-both

0 50 100 150 200 250 300

l

Time (sec)

m

m

Static-optimal

0 100 200 300 400 500 600 700

l

Time (sec)

m

m

Static-user

We show the performance of concurrent applications (GLVU and Radiator) over time, in three configurations. Each graph shows a time line
of GLVU’s fidelity (fGLVU), GLVU’s latency in seconds (LGLVU), Radiator’s fidelity (fRad), and Radiator’s latency in seconds (LRad). Note the
different time scale for the “static-user” graph. For lack of space, we omit the timelines for the “adaptive-GLVU” and “adaptive-Radiator”
timelines: the adaptive and non-adaptive performance in these cases is very similar to that shown for the “adaptive-both” and “static-user”
cases.

Figure 14: Adaptation in concurrent applications

at 10 s time scales, the competing load imposed by GLVU is
constant. “Static-optimal” has slightly lower variability than
“adaptive”, which executes a few operations at the wrong fi-
delity before converging on the correct value.

Figure 15 shows the mean normalized latency (latency di-
vided by the latency bound) and coefficient of variation over 5
trials of all 5 configurations. We see that adaptation keeps la-
tency on target without any workload-specific tuning, and re-
duces variation. Workload-specific tuning (“static-optimal”)
can get mean latency on target, but cannot prevent dynamic
variation due to changes in resource supply or demand. Adap-
tation also insulates each application’s performance from
the other’s: the “Adaptive-GLVU” and “Adaptive-Radiator”
graphs show that the benefit gained from adaptation is inde-
pendent of the other application’s behavior. In other words,
our approach can be useful even without a coordinated effort
to modify all running applications. This is a valuable property
for real-world deployment.

4.5 Costs and overheads

4.5.1 Porting costs

The cost of porting legacy applications to a new API is an im-
portant measure of system deployability. Figure 16 shows the
amount of source code modification required for four appli-
cations to use the multi-fidelity API. Three of these already
had the potential for fidelity adaptation: for example, Radia-
tor comes with support for multiresolution models. GLVU had
to be augmented with multiresolution support, and we include
the cost of this step.

Multi-fidelity support requires 500–1000 new or modified
lines of code, including the ACF and hint module: a mod-
est investment of programmer effort. Many of these lines are
in glue code between application constructs and the generic
multi-fidelity API. We are investigating the use of stub gen-
erators to automatically generate this glue code.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association126

0

1

2

3

4

Adaptive-
both

Static-
optimal

Static-
user

Adaptive-
GLVU

Adaptive-
Radiator

N
o

rm
al

iz
ed

 la
te

n
cy

GLVU
Radiator

Mean normalized latency

0

0.1

0.2

0.3

0.4

0.5

Adaptive-
both

Static-
optimal

Static-
user

Adaptive-
GLVU

Adaptive-
Radiator

C
o

ef
fi

ci
en

t
o

f
va

ri
at

io
n

GLVU
Radiator

Variability in latency

Error bars show standard deviations; the horizontal line marks the
target latency.

Figure 15: Adaptive performance for concurrent applications

Application Original size Modifications
KLOC† Files KLOC† Files

GLVU 27.0 144 0.9‡ 7‡

Radiator 51.1 222 0.6 5
Web proxy 3.9 9 0.9 6
Speech recognizer 126.4 209 1.1 10

† 1 KLOC = 1000 lines of code
‡ Includes multiresolution support (0.4 KLOC, 2 files)

Figure 16: Cost of porting legacy code

Component Overhead
App-Odyssey communication 0.36 ms
Logger (buffered at user level) 0.15 ms
Logger (unbuffered) 0.20 ms
CPU supply/demand monitor 1.38 ms
Memory supply/demand monitor 6.72 ms
Solver 10.56 ms
Total 19.37 ms

Figure 17: Per-operation runtime overhead

4.5.2 Runtime overheads

Figure 17 shows the overhead of each runtime component in
additional latency per operation for a synthetic benchmark.
The total overhead is around 20 ms: only 2% for a 1 s oper-
ation, but an unacceptable 20% for a 100 ms latency bound.
We are looking at reducing the overheads by using a more
efficient and scalable solver; with better interfaces for load
and resource statistics (/proc contributes most of the latency
to our resource predictors); and by replacing the middleware
server with a library implementation.

5 Related work

This work is most closely related to previous work on fi-
delity adaptation [7, 9, 16, 15, 30]. We have generalized
these previous notions of fidelity, which only measured data
degradation, to include arbitrary runtime parameters of an
application. Our system and API also move the burden of
adaptation out of the application: where other systems ex-
pect applications to specify their resource requirements, we
predict resource supply, demand, and performance based on
observations of history. Although resource demand predic-
tion is still application-specific, it has been cleanly separated
from the rest of the system, and our history-based methodol-
ogy and measurement/logging infrastructure make it an easier
task than before.

We also diverge from traditional models of adaptation by
using a predictive rather than a feedback-driven approach.
Rather than adjusting fidelity in small steps in response to
a change in performance, Odyssey can make large yet accu-
rate adaptations in a single step. This is made possible by
Odyssey’s ability to predict supply, demand and performance
across the entire range of fidelities.

Related, but complementary to application adaptation is work
on QoS-based reservations [26, 22] and remote execution [13,
4]: Section 2.1 discussed these in more detail.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 127

Also related is previous work on resource prediction. Sup-
ply prediction — predicting load from past measurements —
is present in many systems. Usually it is present implicitly
in a feedback loop: measurements of load or performance
are used as control signals to adjust system parameters [34].
A few systems use explicit prediction of load: for exam-
ple, Dinda’s Running Time Advisor [10]. Explicit prediction
of resource demand, however, is comparatively rare. Most
systems assume that resource demand is constant, specified
by the application, derived from a static probability distribu-
tion [23, 19], or obtained from compile-time analysis [33].

We know of two systems that explicitly predict resource de-
mand as a function of runtime parameters: however, nei-
ther uses the predictions for application adaptation. Auto-
mated profiling for QoS [1] estimates the CPU utilization
of a multimedia stream as a linear function of task rate and
task size, for admission control purposes. PUNCH [21] uses
machine learning to predict CPU demand as a function of
application-specific runtime parameters, for load-balancing
in a grid framework. To the best of our knowledge, Odyssey
is the first system to use history-based prediction to model
resource demand as a function of fidelity in adaptive applica-
tions.

6 Conclusion

We have shown in this paper that multi-fidelity computation
supported by predictive resource management can improve
performance in mobile interactive applications. Our perfor-
mance evaluation shows that

n We reduce mean latency by 60% and variability by 30%
for GLVU subjected to a time-varying load.

n History-based demand prediction is accurate and effec-
tive, with prediction errors as low as 0.3% for some re-
sources and never higher than 24% in our case studies.

n The cost of using Odyssey is modest, involving 500–
1000 additional lines of code per application and 20 ms
of runtime overhead per interactive operation.

Throughout the paper, we have indicated areas for incremen-
tal improvement; here we mention a few medium to long-
term goals for future research. We would like to test Odyssey
with a full-fledged AR application on wearable hardware, in-
cluding location tracking and machine vision as well as ren-
dering, and 100 ms latency bounds rather than 1 s. We would
like to further automate the construction of demand predic-
tors: for example, by building platform-independent CPU
predictors that can be used across processor architectures. We
would like to combine demand prediction with QoS-based al-
location such that the system can simultaneously optimize

allocation across, and adaptation within, applications [31].
Finally, we would like to explore mixed-initiative [20] ap-
proaches that combine direct user modification of utility func-
tions with automated inference by the system about user pref-
erences.

References

[1] T. F. Abdelzaher. An Automated Profiling Subsystem for QoS-
Aware Services. In Proc. 6th IEEE Real-Time Technology and
Applications Symposium (RTAS ’00), pages 208–217, Wash-
ington, DC, June 2000.

[2] A. Arpaci-Dusseau and R. Arpaci-Dusseau. Information and
Control in Gray-Box Systems. In Proc. 18th ACM Symposium
on Operating Systems Principles (SOSP 2001), pages 43–56,
Chateau Lake Louise, Banff, Canada, Oct. 2001.

[3] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and
B. MacIntyre. Recent Advances in Augmented Reality. IEEE
Computer Graphics and Applications, 21(6):34–47, Nov./Dec.
2001.

[4] R. K. Balan, M. Satyanarayanan, S. Park, and T. Okoshi.
Tactics-Based Remote Execution for Mobile Computing. In
Proc. 1st International Conference on Mobile Systems, Appli-
cations, and Services (MobiSys ’03), San Francisco, CA, May
2003.

[5] M. Billinghurst, S. Weghorst, and T. A. Furness. Wearable
Computers for Three Dimensional CSCW. In Proc. Inter-
national Symposium on Wearable Computers, pages 39–46,
Cambridge, MA, Oct. 1997.

[6] S. Chandra and C. Ellis. JPEG Compression Metric as a Qual-
ity Aware Image Transcoding. In Proc. 2nd USENIX Sympo-
sium on Internet Technologies and Systems (USITS ’99), pages
81–92, Boulder, CO, Oct. 1999.

[7] S. Chandra, C. Ellis, and A. Vahdat. Differentiated Multimedia
Web Services Using Quality Aware Transcoding. In Proc. 19th
Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Proceedings (INFOCOM ’00), pages 961–
969, Tel Aviv, Israel, Mar. 2000.

[8] M. F. Cohen and J. R. Wallace. Radiosity and Realistic Image
Synthesis. Academic Press Professional, Boston, MA, 1993.

[9] E. de Lara, D. S. Wallach, and W. Zwaenepoel. Puppeteer:
Component-based Adaptation for Mobile Computing. In Proc.
3rd USENIX Symposium on Internet Technologies and Systems
(USITS-01), pages 159–170, Berkeley, CA, Mar. 2001.

[10] P. A. Dinda. Online Prediction of the Running Time of Tasks.
In Proc. 10th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC ’01), pages 383–394,
San Francisco, CA, Aug. 2001.

[11] A. H. Dutoit, O. Creighton, G. Klinker, R. Kobylinski,
C. Vilsmeier, and B. Bruegge. Architectural Issues in Mo-
bile Augmented Reality Systems: a prototyping case study. In
Proc. Eighth Asian Pacific Conference on Software Engineer-
ing (APSEC’2001), pages 341–344, Macau, China, Dec. 2001.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association128

[12] S. Feiner, B. MacIntyre, T. Höllerer, and A. Webster. A Tour-
ing Machine: Prototyping 3D Mobile Augmented Reality Sys-
tems for Exploring the Urban Environment. In Proc. Inter-
national Symposium on Wearable Computers, pages 74–81,
Cambridge, MA, Oct. 1997.

[13] J. Flinn, D. Narayanan, and M. Satyanarayanan. Self-Tuned
Remote Execution for Pervasive Computing. In Proc. 8th
Workshop on Hot Topics in Operating Systems (HotOS-VIII),
pages 61–66, Schloss Elmau, Germany, May 2001.

[14] J. Flinn, S. Park, and M. Satyanarayanan. Balancing Perfor-
mance, Energy, and Quality in Pervasive Computing. In Proc.
22nd International Conference on Distributed Computing Sys-
tems (ICDCS ’02), pages 217–226, Vienna, Austria, July 2002.

[15] J. Flinn and M. Satyanarayanan. Energy-Aware Adaptation for
Mobile Applications. In Proc. 17th ACM Symposium on Op-
erating Systems Principles (SOSP ’99), pages 48–63, Kiawah
Island, SC, Dec. 1999.

[16] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting
to Network and Client Variability via On-Demand Dynamic
Distillation. In Proc. 7th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS ’96), pages 160–170, Cambridge, MA, Oct.
1996.

[17] M. Garland and P. S. Heckbert. Surface Simplification Using
Quadric Error Metrics. In Proc. SIGGRAPH ’97, pages 209–
216, Los Angeles, CA, Aug. 1997.

[18] C. F. Gauss. Theoria Combinationis Observationum Erroribus
Minimum Obnoxiae. Royal Society of Göttingen, 1821.

[19] M. Harchol-Balter and A. B. Downey. Exploiting Process
Lifetime Distributions for Dynamic Load Balancing. In Proc.
Joint International Conference on Measurement and Modeling
of Computer Systems (ACM SIGMETRICS ’94), pages 13–24,
Nashville, TN, May 1994.

[20] E. Horvitz. Principles of Mixed-Initiative User Interfaces. In
Proc. ACM SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI ’99), pages 159–166, Pittsburgh, PA, May
1999.

[21] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley. Predictive
Application-Performance Modeling in a Computational Grid
Environment. In Proc. 8th IEEE International Symposium on
High Performance Distributed Computing (HPDC ’99), pages
47–54, Los Angeles, CA, Aug. 1999.

[22] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and
J. Hansen. A Scalable Solution to the Multi-Resource QoS
Problem. In Proc. 20th IEEE Real-Time Systems Symposium
(RTSS ’99), pages 315–326, Phoenix, AZ, Dec. 1999.

[23] W. E. Leland and T. J. Ott. Load-balancing Heuristics and
Process Behavior. In Proc. Joint International Conference on
Measurement and Modeling of Computer Systems (ACM SIG-
METRICS ’86), pages 54–69, Raleigh, NC, May 1986.

[24] R. B. Miller. Response Time in Man-Computer Conversa-
tional Transactions. AFIPS Fall Joint Computer Conference
Proceedings, 33:267–277, Dec. 1968.

[25] D. J. Musliner, E. H. Durfee, and K. G. Shin. Any-Dimension
Algorithms. In Proc. 9th IEEE Workshop on Real-Time Oper-
ating Systems and Software (RTOSS ’92), pages 78–81, May
1992.

[26] K. Nahrstedt, D. Xu, D. Wichadukul, and B. Li. QoS-Aware
Middleware for Ubiquitous and Heterogeneous Environments.
IEEE Communications, 39(11):140–148, Nov. 2001.

[27] D. Narayanan. Operating System Support for Mobile Inter-
active Applications. PhD thesis, Carnegie Mellon University,
Aug. 2002.

[28] D. Narayanan, J. Flinn, and M. Satyanarayanan. Using His-
tory to Improve Mobile Application Adaptation. In Proc. 3rd
IEEE Workshop on Mobile Computing Systems and Applica-
tons, pages 31–40, Monterey, CA, Dec. 2000.

[29] C. Narayanaswami, N. Kamijoh, M. Raghunath, T. Inoue,
T. Cipolla, J. Sanford, E. Schlig, S. Venkiteswaran, D. Gu-
niguntala, V. Kulkarni, and K. Yamazaki. IBM’s Linux watch,
the challenge of miniaturization. IEEE Computer, 35(1):33–
41, Jan. 2002.

[30] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile Application-Aware Adapta-
tion for Mobility. In Proc. 16th ACM Symposium on Operating
Systems Principles (SOSP ’97), pages 276–287, Saint Malo,
France, Oct. 1997.

[31] D. Petrou and D. Narayanan. Position Summary: Hinting for
Goodness’ Sake. In Proc. 8th Workshop on Hot Topics in Op-
erating Systems (HotOS-VIII), page 177, Schloss Elmau, Ger-
many, May 2001.

[32] M. Satyanarayanan and D. Narayanan. Multi-Fidelity Algo-
rithms for Interactive Mobile Applications. Wireless Networks,
7:601–607, 2001.

[33] B. S. Siegell and P. Steenkiste. Automatic Generation of
Parallel Programs with Dynamic Load Balancing. In Proc.
3rd IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC ’94), pages 166–175, San Fran-
cisco, CA, Aug. 1994.

[34] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and
J. Walpole. A Feedback-Driven Proportion Allocator for Real-
Rate Scheduling. In Proc. 3rd Symposium on Operating Sys-
tems Design and Implementation (OSDI ’99), pages 145–158,
New Orleans, LA, Feb. 1999.

[35] The Walkthru Project. GLVU source code and online doc-
umentation. o p p q r s s t t t u v w u x z v u { | x s } t ~ � � s w � � p t ~ � { s
� � � x s , Feb. 2002.

[36] G. K. Wallace. The JPEG still picture compression standard.
Communications of the ACM, 34(4):30–44, Apr. 1991.

[37] A. Webster, S. Feiner, B. MacIntyre, W. Massie, and
T. Krueger. Augmented Reality in Architectural Construction,
Inspection and Renovation. In Proc. ASCE Third Congress
on Computing in Civil Engineering, pages 913–919, Anaheim,
CA, June 1996.

[38] A. J. Willmott. Radiator source code and online documen-
tation. o p p q r s s t t t u v w u v � x u { | x s } ~ � t s w � � p t ~ � { s , Oct.
1999.

[39] P. Young. Recursive Estimation and Time-Series Analysis.
Springer, 1984.

