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Abstract

This paper describes RightSpeed, a task-based speed
and voltage scheduler for Windows 2000. It takes ad-
vantage of the ability of certain processors, such as those
from Transmeta and AMD, to dynamically change speed
and voltage and thus to save energy while running more
slowly. RightSpeed uses PACE, an algorithm that com-
putes the most energy efficient way to meet task dead-
lines with high probability. Since most applications do
not provide enough data about tasks, such as task dead-
lines, for PACE to work, RightSpeed uses simple and ef-
ficient heuristics to automatically detect task character-
istics for such applications. RightSpeed has only 1.2%
background overhead and its operations take only a few
microseconds each. It even performs PACE calculation,
which is quite complicated, in only 4.4 µs on average
due to our extensive optimizations. RightSpeed is effec-
tive at meeting performance targets set by applications
to within 1.5%. Although the PACE calculator does not
save energy for the current generation of processors due
to their limited range of worthwhile speed and voltage
settings, we expect future processors to have greater such
ranges, enabling PACE to reduce CPU energy consump-
tion by 6.1–8.7% relative to the best standard algorithm.
Furthermore, with PACE, giving a processor the ability
to run at additional, higher speeds and voltages reduces
overall energy consumption.

1 Introduction

Reducing energy consumption is important in portable
computers due to their limited battery capacity. Further-
more, rising concerns about energy prices and aggregate
energy dissipation in server farms make energy manage-
ment important for other computers as well. An energy-
saving technology that has recently begun appearing in
modern portable computers is dynamic voltage scaling
(DVS), the ability to change processor voltage without
rebooting. This enables reduced energy consumption, as

lower voltages mean lower energy consumption. Lower
voltages, however, necessitate lower CPU speeds, pre-
senting an interesting operating system issue: how to en-
sure that performance remains reasonable while some-
times lowering speed to save energy.

Traditionally, systems use interval-based strategies.
Such strategies divide time into intervals of fixed length
and set the speed for each interval based on recent CPU
utilization. However, recent CPU utilization is only a
rough indicator of the required speed. An interval-based
strategy cannot distinguish an urgent task that must run
at full speed to meet a tight deadline from a less impor-
tant task with several milliseconds to complete and little
work to do.

A better solution, as suggested by authors such as Per-
ing et al. [18] and Hong et al. [6], is to use task-based
scheduling. Such scheduling considers the computer’s
work to consist of tasks with certain CPU requirements
and deadlines. It then runs the CPU fast enough to meet
those deadlines with reasonable probability. Recently,
some researchers have even built such task-based sched-
ulers [19, 4, 3]. In this paper, we describe how we
built RightSpeed, a task-based scheduler with several im-
provements over these existing schedulers.

The key differentiating feature of RightSpeed is its
PACE calculator, a component that determines the most
energy efficient schedule for meeting each task’s perfor-
mance requirements. PACE stands for Processor Accel-
eration for Conserving Energy, since the optimal way to
schedule a task is to start out slowly, increasing speed
only as necessary to complete the task on time. In [11],
we showed that computing such a schedule requires es-
timating the probability distribution of the task’s CPU
requirement, and gave a method called PACE that uses
such a distribution to compute such a schedule. For
this paper, we extended this method substantially to deal
with issues that arise in real systems: limited available
speed/voltage settings, nonlinear relationship between
speed squared and energy, limited timer granularity, and
I/O wait time.
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RightSpeed also differs from other schedulers in the
heuristic it uses for automatic task detection. A task-
based scheduler can provide an interface letting appli-
cations specify information about their tasks. However,
many application writers will not use it, so a task-based
scheduler should also have an automatic task detector to
let it infer task information from such applications. The
schedulers Flautner et al. describe in [4] and [3] have
such detectors, but they require a great deal of complex,
high-overhead, and Linux-specific system interposition.
In [12], we suggested a method for automatic task detec-
tion with a more efficient heuristic, but did not demon-
strate an implementation. RightSpeed demonstrates an
implementation of our heuristic.

Our scheduler also differs from existing schedulers
by running on Windows 2000 rather than Linux. This
is important because most portable computers sold to-
day run Windows 2000 or its successor Windows XP.
Our work demonstrates that task-based scheduling can
be done even on a closed-source commodity operating
system.

The goal of this paper is to demonstrate that a task-
based scheduler with a PACE calculator and an automatic
task detector can be implemented on a real machine run-
ning Windows 2000. This involves overcoming the chal-
lenges of real hardware and software issues, and demon-
strating that the resulting scheduler places little overhead
on the system.

The structure of this paper is as follows. Section 2
gives background and related work on DVS algorithms.
Section 3 describes the characteristics of the processors
to which we ported RightSpeed, and evaluates the po-
tential effectiveness of DVS techniques on these proces-
sors. Section 4 discusses the design of our task-based
scheduler, and Section 5 describes our implementation
of it. Section 6 gives results of benchmarks showing
the impact of our modifications on performance and en-
ergy consumption. Section 7 discusses avenues for future
work. Finally, Section 8 concludes.

2 Background and Related Work

2.1 Dynamic voltage scaling

In CMOS circuits, the dominant component of power
consumption is proportional to V 2f , where V is voltage
and f is frequency. Energy is power times time, and the
time to run a certain number of cycles is inversely propor-
tional to frequency, so energy per cycle is proportional to
V 2 [22, p. 235]. At a given voltage, the maximum fre-
quency at which the CPU can run safely decreases with
decreasing voltage. Thus, the system can reduce proces-
sor energy consumption by reducing CPU voltage, but
this necessitates running at a slower speed.

However, it is important to not noticeably increase sys-
tem response time, for two reasons. First, other compo-
nents, such as the disk drive and backlight, use power.
Noticeably increasing response time may cause these
components to remain in high-power modes longer than
they otherwise would, which can more than offset pro-
cessor energy savings. Second, the user will object to
unduly extended response times.

2.2 Interval-based DVS algorithms

The first researchers to discuss operating system tech-
niques for DVS were Weiser et al. [21] and Chan et
al. [2]. They suggested an interval-based approach,
meaning that the system divides time into fixed-length
intervals and schedules the speed for each interval based
on the CPU utilizations of past intervals.

Interval-based strategies are used today in real systems
capable of dynamic voltage scaling, such as Transmeta’s
LongRunTM [7]. However, such strategies have prob-
lems, as Pering et al. [17], and later Grunwald et al. [5],
pointed out. The CPU utilization by itself does not pro-
vide enough information about system timing require-
ments to ensure meeting a reasonable number of dead-
lines while saving energy.

2.3 Task-based voltage schedulers

Recently, researchers have started building task-based
schedulers, i.e., schedulers that consider the work of the
system to consist of tasks with certain deadlines. The
goal of a task-based scheduler is to use speeds just high
enough to meet these deadlines with reasonable proba-
bility.

Yao et al. [23] described how to compute an optimal
schedule when task CPU requirements and deadlines are
known. Hong et al. [6] later showed how to compute
such schedules more quickly using various heuristics.
However, systems do not generally have definite knowl-
edge of task CPU requirements, so these approaches are
unrealistic.

Flautner et al. [4] built a task-based voltage scheduler
for Linux. This scheduler requires no modification of
applications—it infers all information about the system’s
tasks via heuristics. It infers that an interactive task be-
gins when a user interface event arrives, and uses a com-
plex work-tracking heuristic to decide when such a task
completes. It infers that a periodic task begins when a pe-
riodic event occurs; it considers an event periodic if the
lengths of intervals between the last n events have a small
variance. To determine the speed for a task, it essentially
computes the average of the speeds that would have com-
pleted past similar tasks on time. In later work [3], they
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refined their period detector (but not their task comple-
tion detector) to use a simpler heuristic and they extended
their interactive performance-setting algorithm with two
other policy layers: one for application-specific policies
and one for a per-task interval-based policy.

Pillai et al. [19] built a task-based scheduler for real-
time embedded systems that runs on Linux. This sched-
uler assumes complete knowledge of the deadlines and
worst-case CPU requirements of all tasks in the system,
and assumes these tasks are periodic. The scheduler
uses different algorithms, some of which make provi-
sions for tasks completing before their deadlines. One
such algorithm slows down the CPU when a task creates
slack in the schedule by completing early. Another algo-
rithm anticipates that tasks will likely complete early and
therefore starts tasks as slowly as possible and only uses
higher speeds when these become necessary to guarantee
on-time completion.

2.4 PACE

One premise of task-based scheduling is that DVS can
exploit deadlines to save energy without significantly re-
ducing performance. This is possible since a task’s com-
pletion time is irrelevant as long as it completes before
the deadline. Thus, in evaluating the performance of a
DVS algorithm, we can consider all tasks that complete
by the deadline to have the same effective performance.

A DVS algorithm essentially chooses a schedule de-
scribing how speed will vary with time. In [11], we
showed that two schedules that have the same average
pre-deadline speed and identical post-deadline parts will
give the same effective performance no matter how much
work a task requires. This means that one can get the
same performance as any existing DVS algorithm by us-
ing different, yet performance equivalent, speed sched-
ules; these new schedules may even consume less energy.

We then described an algorithm, PACE, for choosing
a speed schedule that minimizes expected energy con-
sumption for a given performance constraint. The PACE
algorithm assumes some knowledge of task CPU require-
ment distribution; we showed how to dynamically and
effectively estimate this distribution. One limitation is
that PACE assumes the processor speed and voltage are
continuously variable and that energy is a linear function
of speed squared; in this work, we extend PACE to real
DVS systems without these properties.

PACE requires the ability to detect when tasks begin
and end. In [12], we showed that there is a simple heuris-
tic for inferring task completion that is nearly as effective
as Flautner et al.’s scheduler [4] and requires substan-
tially less operating system modification. Our approach
considers a task complete when either all threads in the
system are blocked and no I/O is ongoing, or when a new

user interface event is delivered to the same application.

In [12], we pointed out that user interface events be-
longing to different types, categories, and applications
differ significantly from each other. This difference is
large enough that PACE benefits, rather than worsens,
by inferring the probability distribution of a task from a
sample of only those recent past tasks that have nearly
identical characteristics. Therefore, in RightSpeed, we
keep separate samples for tasks triggered by user inter-
face events of different types, categories, and applica-
tions.

3 Platforms

In this section, we examine the characteristics of
Transmeta and AMD processors to which we ported
RightSpeed. As we do so, we will discuss how these
characteristics influence how we should use PACE on
these processors.

First, we introduce some definitions. A setting is a
speed and voltage combination at which a processor can
properly operate. The efficiency of a setting is the amount
by which power consumption is reduced by using this
setting instead of emulating its speed using the best pos-
sible combination of all other settings. For example, sup-
pose there are three settings: 300 MHz consuming 2 W,
500 MHz consuming 3.6 W, and 700 MHz consuming
6 W. We can emulate 500 MHz by running half the time
at 300 MHz and half the time at 700 MHz. This con-
sumes 4 W, while the 500 MHz setting consumes only
3.6 W, so the 500 MHz setting has efficiency 10%. We
can emulate 300 MHz by running 60% of the time at
500 MHz and turning the CPU off 40% of the time; this
emulation has average power consumption 2.16 W, so the
300 MHz setting has efficiency 7.4%. If a setting has effi-
ciency of 0% or less, it is not worthwhile, i.e., one should
never use it since one can get lower power consumption
at the same speed using other settings.

For PACE to be effective, a processor must have at
least three worthwhile speed/voltage settings. Further-
more, the more settings, and the higher their efficiency,
the more effective PACE will be. This is because PACE
works by choosing among speed schedules with identical
performance to find the one with least expected energy
consumption. If there is little choice in such speed sched-
ules, and/or if there is little difference between choos-
ing one setting versus emulating that setting’s speed with
other settings, there will likely be little benefit to choos-
ing among them.
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Speed Voltage Power Energy/ Effi-
cycle ciency

297.3 MHz 1.2 V 1.349 W 4.537 nJ 0.5%
396.6 MHz 1.225 V 1.809 W 4.561 nJ 11.0%
497.8 MHz 1.35 V 2.714 W 5.461 nJ 11.8%
598.5 MHz 1.55 V 4.348 W 7.265 nJ 0.4%
631.1 MHz 1.6 V 4.915 W 7.787 nJ N/A

Table 1: Characteristics of the Transmeta processor at
various settings

3.1 Transmeta system

Our Transmeta system contains a TM5400-633
CrusoeTM processor and 128 MB of memory (64 MB of
SDRAM and 64 MB of DDRAM). 16 MB of this mem-
ory is reserved for the Code-Morphing Software, whose
primary function is to dynamically translate x86 code
to the underlying machine language of the VLIW chip.
This code also implements LongRunTM, the DVS policy
Transmeta chips use. Transmeta told us how to override
LongRunTM policies and change the speed ourselves.

The processor can run at 300–633 MHz and 1.2–1.6 V.
Table 1 gives the available speeds and voltages, as well as
the power the CPU consumes at each level. We measured
power consumption by running a tight loop of additions
while using hardware monitoring equipment Transmeta
provided.

We see that the 300 MHz and 600 MHz settings have
very low efficiencies, and are therefore barely worth-
while. With only three reasonably worthwhile settings,
we do not expect PACE to be very effective on this ma-
chine.

Incidentally, we note that the formula 1.179 · 10−9 ·
s3.41 + 3.681, where s is speed, gives a very close ap-
proximation to the energy consumption in nJ/cycle for
all but the 300 MHz setting. The power of 3.41 differs
substantially from the power 2 predicted by simple scal-
ing models, e.g., in [21].

3.2 AMD system

Our AMD system contains a pre-production version
of the 900 MHz Mobile Athlon 4 processor, based on the
Palomino core, as well as 128 MB of memory. We were
given documentation about PowerNow!TM, the interface
the chip uses for dynamically changing speed and volt-
age.

The chip indicates it is capable of five settings, shown
in Table 2. We were unable to directly determine the
power consumption of each setting since we lacked the
necessary measurement equipment, so we estimate it us-
ing P ∝ V 2f . We assume a power consumption of

Speed Voltage Power Energy/ Efficiency
(est.) cyc (est.) (est.)

500 MHz 1.25 V 10.6 W 21.3 nJ 7.6%
600 MHz 1.3 V 13.8 W 23.0 nJ 1.4%
700 MHz 1.35 V 17.4 W 24.8 nJ -0.9%
800 MHz 1.4 V 21.3 W 26.7 nJ -3.6%
900 MHz 1.4 V 24.0 W 26.7 nJ N/A

Table 2: Characteristics of the AMD processor at various
settings, with power and energy values approximated

CPU capable of dynamic voltage scaling

Operating system routines for scheduling speed and voltage
PACE calculator to compute energy efficient schedules

System calls to describe task boundaries and deadlines

Applications
instrumented
to describe
their tasks

Oblivious applications

Automatic task detector that infers
task information

Figure 1: Overview of RightSpeed

24 W at the maximum speed, as specified in the AMD
data sheet [1].

We see that the 700 MHz and 800 MHz settings have
negative efficiency, so they are not worthwhile. (It is not
surprising that the 800 MHz setting is not worthwhile,
since it has the same voltage as the 900 MHz setting,
and thus the same energy consumption, but it runs more
slowly.) Furthermore, the 600 MHz setting has rather
low efficiency. With only three worthwhile settings, one
of which is only barely worthwhile, we expect PACE to
be largely ineffective.

We suspect that some settings have poor efficiency be-
cause AMD made overly conservative choices of maxi-
mum stable speed for certain voltages. One reason for
this is that their current design requires processor speeds
and voltages to attain only a certain set of values. More
flexibility in either dimension would let them choose set-
tings closer to the curve of maximum ideal efficiency.

4 Design

4.1 Overview

Figure 1 gives an overview of the RightSpeed design.
Applications convey information about their tasks to the
operating system using system calls. This information
includes when tasks begin and end and what performance
targets the application wants for those tasks. Some ap-
plications are oblivious to the existence of these system
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calls, so an automatic task detector infers task informa-
tion about them and generates task specification system
calls on their behalf. The system uses information about
ongoing tasks to determine what speed to use at var-
ious times, and implements this schedule using timers
and special processor instructions that change speed and
voltage. The system uses a PACE calculator to compute
the most energy efficient schedules that have the perfor-
mance requested.

In addition to the above functionality, we had three
overall goals for RightSpeed. First, we wanted it to be
efficient, creating low overhead on the system both when
running in the background and when actively invoked.
Second, we wanted it to be stable, relying only on docu-
mented system interfaces so that it would run even when
the operating system was upgraded. Third, we wanted
it to be easily portable to different processors despite
such processors having different commands dealing with
speed and voltage settings.

4.2 Task specification interface

A key piece of information an application must specify
about a task is its type. An application may define types
any way it chooses; there are two reasons applications
will want to classify different tasks into different types.
First, it may want to specify different performance tar-
gets for different types of tasks. For example, an MPEG
player may require a faster speed for processing its I-
frames than its smaller P-frames. As another example, it
may want a short and hard deadline for its frame play-
back tasks but a longer and soft deadline for its user in-
terface tasks. Second, tasks of different types may have
different CPU requirement distributions, so it is helpful
to direct PACE to only consider tasks of the same type
when estimating the probability distribution of a task’s
CPU requirement.

RightSpeed uses this notion of task type to simplify
its communication with applications. When an applica-
tion begins a task, it need only tell RightSpeed the type
of that task. RightSpeed can figure out all other informa-
tion about the task, such as its performance requirements,
from that type. RightSpeed can give the application a
unique identifier to identify this task, so the application
can specify when the task completes by merely passing
RightSpeed that identifier. RightSpeed can then deter-
mine how many CPU cycles that task used and use this
datum to compute a new optimal PACE schedule for the
next task of that type.

An application specifies performance targets for task
types via a separate part of the task specification inter-
face. An application need only specify this data once,
when it is installed. Because task type data is persistent,
i.e., it is retained even when the application terminates

and even when the system shuts down, a logical abstrac-
tion to use for this data is a file. Thus, applications create
files containing data for their task types.

An application may specify a performance target in
two ways. First, it may specify a number of CPU cy-
cles to be completed by a certain deadline. Second, it
may specify a deadline and a particular DVS algorithm,
such as Transmeta’s LongRunTM, and dictate that perfor-
mance be the same as would be achieved via that algo-
rithm.

4.3 Automatic task detector

Since RightSpeed has not been released, no applica-
tion currently exists that explicitly communicates its task
information to RightSpeed. Furthermore, even when it
is released, we expect few application writers will be
both willing and able to communicate such information.
Therefore, for RightSpeed to be useful, we require an au-
tomatic task detector to infer task information from such
applications and to call the task specification interface on
their behalf.

Our approach focuses on the tasks the user cares about
most: those triggered by user interface events. User in-
terface studies have shown that response times under 50–
100 ms do not affect user think time [20]; we thus con-
sider 50 ms the soft deadline for handling a user interface
event. An exception is mouse movements, whose track-
ing may require response times of only 25–50 ms [13];
we thus consider 25 ms the soft deadline for handling
them.

We consider a task to begin when an application re-
ceives a user interface event. We classify tasks into
types, and deduce the task type from the event character-
istics, i.e., whether it is a keystroke, mouse movement,
or mouse click; which key or mouse button was pressed
or released; and to what application the event was deliv-
ered. As shown in [12], separating tasks into types this
way makes estimation of task work distribution more ac-
curate, and enables us to set different policies for, for
instance, keystrokes and mouse clicks.

As suggested in [12], we use the minimum speed
available as the pre-deadline speed for mouse movement
events. Such events require little processing, so this is
sufficient to meet practically all task deadlines. We use a
default pre-deadline speed of 0.7M for keystroke events
and 0.85M for mouse click events, where M is the max-
imum speed available on the machine. A better approach
might be to compute a variable pre-deadline speed based
on the distribution observed and the likelihood of miss-
ing deadlines at various pre-deadline speeds, as sug-
gested in [12]. Unfortunately, this requires accurate esti-
mation of the tails of nonstationary distributions, and we
do not yet know how to do this; this is future work.
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We also need a heuristic to determine when such an
inferred task is complete, since it is difficult to determine
what CPU activity belongs to a given task. We use the
heuristic from [12] described in Section 2.4: we consider
a task complete when either (a) all threads in the system
above the idle priority level are blocked and no I/O is
ongoing, or (b) another user interface event is delivered
to the same application. An advantageous side effect of
this is that time spent by unrelated threads is considered
part of the task. Thus, the speed schedule chosen will
automatically account for the work performed by other
threads during the task. Without this accounting, the
presence of such unrelated activity could interfere with
RightSpeed meeting its target deadlines.

4.4 PACE calculator

Computing the optimal speed schedule satisfying cer-
tain performance constraints requires knowledge of task
CPU use distribution, which typically an application
lacks. RightSpeed keeps track of how long tasks of each
type have taken, and uses this information to compute
such an optimal speed schedule with PACE.

In [11], we described how to compute an optimal
schedule assuming a linear relationship between energy
and speed squared. Since the processors on which
RightSpeed runs do not satisfy this property, we devel-
oped a more general formula that does not rely on it.
We discovered that the optimal speed schedule satisfies
s2E′(s)F c(w) = K, where s is the speed to run after
completing w cycles of a task, F c(w) is the probability
the task takes more than w cycles, E(s) is the energy con-
sumption at speed s, and K is a constant chosen to satisfy
the performance constraint. For more details about this
formula and a proof that it works, see [9, pp. 83–99].

In [11], we assumed that the CPU had arbitrarily vari-
able speed settings that could be changed at arbitrary
times. Our real systems have only a limited number
of speed settings, and Windows 2000 only allows us to
change speed at certain fixed times, once per millisec-
ond. Thus, for RightSpeed we need an algorithm that
takes these realities into account yet still computes a
near-optimal schedule. Our algorithm uses the follow-
ing four steps.

1. Create an idealized schedule using the formula
above. Apply the granularization techniques of [11]
to get a schedule consisting of consecutive phases,
each having a constant speed.

2. For each phase, round its speed to the closest speed
that is available on the CPU and worthwhile.

3. Round the length of each phase to an integer multi-
ple of the scheduling granularity.

4. As the rounding may have altered the schedule’s

performance characteristics, i.e., changed the pre-
deadline speed, adjust the time spent at each speed
by multiples of the scheduling granularity to make
performance close to, but no less than, requested
performance.

As an optimization, we precompute a set of param-
eterized speed schedules when RightSpeed is installed,
based solely on the CPU characteristics. Thus, deter-
mining a speed schedule involves only a binary search
through the schedules to find the lowest-energy one that
nevertheless satisfies the constraint. With this optimiza-
tion, the algorithm takes time O(n) where n is the num-
ber of worthwhile speed settings. For details of this and
other optimizations, see [9, pp. 224–226] and the code at
the website associated with this paper.

4.5 Dealing with I/O

I/O time, unlike CPU time, is unaffected by changes
in CPU speed. The model from which PACE arises ac-
counts only for task CPU time, so PACE does not give
optimal results when I/O can occur. Essentially, the oc-
currence of I/O will delay the completion of a task, pos-
sibly causing it to miss its deadline.

We deal with this in the following way. Since the
problem is to complete the CPU work and the I/O by
the deadline, we must complete the CPU work within a
period equal to the deadline minus the I/O time. If we
knew I/O time in advance, PACE could compute the op-
timal schedule merely by substituting the deadline minus
I/O time for the deadline. Since we do not know I/O time
in advance, we initially assume it is 0. If I/O occurs later,
we determine how long it took and accelerate the sched-
ule to make up for the lost time.

Theoretically, accelerating the schedule properly re-
quires performing a new complex calculation using the
PACE formula. However, we can use a shortcut: we
multiply all speeds in the schedule by a constant factor,
where we choose that factor such that after rounding all
resulting speeds to the nearest worthwhile speed we get a
schedule that meets the new deadline constraint. The ar-
gument why this works is as follows: The distribution of
task work remaining has by assumption not changed, but
the deadline has effectively gotten shorter. Thus, all that
has changed is the optimal value of K. This means the
ratio of the new optimal speed to the old optimal speed is
roughly the same for all points in the schedule, assuming
that the function of energy versus speed has a reasonable
shape.

4.6 Scheduling simultaneous tasks

When multiple tasks are ongoing, the ideal speed is
not necessarily the sum of all the speeds for all those
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tasks. This is because power is not a linear function of
speed, so superimposing schedules consumes a different
amount of energy than running them sequentially. Un-
fortunately, computing a reasonable speed schedule that
is the conjunction of two is extremely complex, so we
avoid the issue by simply running at the maximum speed
available when there are multiple tasks, and continue at
that speed until no tasks remain.

Fortunately, in a mobile computer (and frequently in
a desktop computer) there is only a single user and typi-
cally he will only notice the performance of the task with
which he is currently actively involved. Therefore, typi-
cally there will be only one ongoing task at a time. Evi-
dence supporting this comes from workload analyses we
performed in [12] on months-long traces of eight desk-
top computers. We found that, depending on the user,
between 94.7 and 99.3% of all user interface tasks fin-
ished before the next one began.

4.7 Scheduling no ongoing tasks

When no tasks are ongoing, nothing of importance is
occurring, so the best speed to use is generally the mini-
mum available. However, since our inference of tasks is
imperfect, there may be ongoing tasks even when Right-
Speed believes there are no such tasks. For instance, a
task may have been triggered by a timeout instead of by
a user interface event. We deal with this by reverting to a
traditional interval-based scheduler when we know of no
ongoing tasks. Such a scheduler divides time into inter-
vals of some fixed length and chooses a speed for each
interval based on the CPU utilization of recent past in-
tervals. This way, if the CPU becomes busy from work-
ing on a task we cannot detect, the interval-based sched-
uler will nevertheless increase speed to deal with this un-
known work.

One caveat is that when the number of known tasks
becomes zero, recent past CPU utilization will likely be
high because the system just finished working on a task.
RightSpeed knows that this recent utilization is a poor
predictor of future CPU utilization because it reflects a
task that is no longer active. However, an interval-based
scheduler has no knowledge of tasks, so it will interpret
the high recent utilization as a sign that the next intervals
will have high utilization. Accordingly, it will use an un-
necessarily high CPU speed. To prevent this problem,
when the number of known tasks becomes zero, Right-
Speed waits for a short period of time at the minimum
CPU speed before initiating the interval-based scheduler.

User Mode
Kernel Mode

Application 1 …
RSLib

Application 2

RSLib

Application 3

RSLib

RSLib loads itself into each application’s address space. There, it can
automatically detect tasks by installing a message hook. Also, applications can, if
so designed, directly call its functions to tell it when tasks begin and end.
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Figure 2: Architecture of RightSpeed

5 Implementation

In this section, we discuss how we implemented our
approach on Windows 2000.

5.1 Architecture

Figure 2 shows the architecture of RightSpeed. The
main component is RSTask, a kernel module that re-
ceives requests to begin and end tasks and schedules the
CPU speed accordingly. Its main components are the
speed controller, the task type group file manager, the
automatic schedule computer, and the idleness detector,
each of which we will discuss later. Alongside RSTask
is RSIoCnt, a kernel module that interposes on all file
system requests to monitor when any synchronous I/O’s
are ongoing. The next kernel component is RSLog, a
low-overhead logger we use for benchmarking and de-
bugging. The last kernel mode component is RSInit, a
driver that starts before all other drivers and facilitates
communication between them. In user mode we have
RSLib, a user-level library that the system loads into the
address space of every application. It interacts with the
GUI to interpose the user interface event delivery system
and thereby implement the automatic task detector. This
library also exports functions that applications can use to
communicate with RightSpeed.

5.2 Speed controller

The lowest-level component of RSTask is the speed
controller. This component accepts requests to start
and stop speed schedules and to transition to idle and
maximum speed states. A speed schedule consists of
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a sequence of phases, each with a speed to use and
a duration in multiples of the scheduling granularity.
The speed controller internally handles any CPU-specific
commands to change the speed. This modularity aided in
porting RightSpeed to two different chips with different
voltage scaling commands.

The scheduler also exports routines to pause and re-
sume the current schedule when the CPU starts and stops
waiting for I/O. A pause changes the speed to the mini-
mum available. A resume determines how long the CPU
spent waiting for I/O, accelerates the remaining part of
the schedule accordingly, and resumes that schedule.

5.3 Timer resolution controller

The default timer resolution on Windows 2000 ma-
chines is about 10 ms. Our timer resolution controller
reduces the timer resolution as much as possible using
well-documented system calls [16]. On the systems we
used, this makes timer resolution, and thus scheduling
granularity, 1 ms.

5.4 Task type group file manager

Certain persistent information is associated with each
task type: its deadline, its performance target, a sample
of recent task CPU requirements, and a schedule to use
for the next task. Thus, it makes sense to consider task
types to be part of a virtual file system. We could have
used one file per task type, but instead a file in this vir-
tual file system is a task type group file, containing in-
formation about multiple related task types. A task type
is uniquely identified by its file and its index within that
file.

RSTask thus exposes a virtual file system interface
consisting of these files. RSTask stores the informa-
tion in these virtual files in real files in a reserved
directory on the real file system, but RSTask exposes
them as existing in the special directory \\.\RSTask.
(The Unix analog would be /proc/rstask/.) Subdirec-
tories of this directory are valid and supported; for
instance, an application could choose to use a file called
\\.\RSTask\AcmeCo\AcmeAppName\MyTasks.ttg.
For performance, RSTask caches open files in memory
and does not pass along changes to the copy to the
on-disk file until the file is closed or until a global hourly
timer goes off. (Users may change this period.)

Applications communicate with RSTask by perform-
ing I/O control requests on these virtual files. Supported
control requests include beginning a task of a certain type
and acquiring a task ID for it, ending the task with a
given ID, changing the deadline for a task type, reset-
ting the sample of recent work requirements for a task
type, and various other minor ones. RSTask supports fast

I/O control requests [15], a Windows 2000 optimization
that speeds up I/O operations. As a further optimization,
RSTask has a control request that ends one task and be-
gins another; the automatic task detector in RSLib uses
this to quickly signal the end of the previous user inter-
face task when an application receives a new one.

5.5 Task manager and sample queue

RSTask keeps track of ongoing tasks and makes ap-
propriate calls to the scheduler when tasks begin and end.
Also, when a task ends, the task manager queues the in-
formation about how long this task took in the sample
queue. It does not immediately invoke the PACE calcu-
lator since PACE calculation is best done when the CPU
is otherwise idle.

As stated in Section 4.7, when no tasks are ongo-
ing, we wait for a short period then initiate an interval-
based scheduler. We do this on the Transmeta system
in the following way. When RSTask detects the de-
parture of the last ongoing task, it switches to the low-
est available speed and sets a 50 ms timer. When the
timer expires, it enters the LongRunTM automatic speed
scheduling mode, which uses an interval-based strategy.
We chose 50 ms because this is further backward than
LongRunTM’s scheduler ever looks. We have not yet im-
plemented a scheme using an interval-based scheduler on
the AMD system.

5.6 Idleness detector and automatic sched-
ule computer

The idleness detector is another major component of
RSTask. It is a thread running at priority 5, just above the
idle level, so that it can easily detect when no important
threads remain unblocked. If it is scheduled when an I/O
is ongoing, it tells RSTask to pause the current schedule;
RSIoCnt will later tell RSTask to resume the schedule
when no synchronous I/O’s remain in the system. If the
idleness detector runs when no I/O is ongoing, it notifies
RSTask that all tasks are complete. The other respon-
sibility of the idleness detector is to invoke the PACE
calculator on all unprocessed entries in the sample queue
when the system is otherwise idle. Not only does this
cause the overhead of PACE calculation to occur only
when the system is idle, it also eliminates overhead due
to saving and restoring floating-point state, as we will
now describe.

The Windows 2000 kernel does not use floating-point
instructions, so for performance reasons it does not save
floating-point state when entering kernel mode or re-
store such state when leaving it. If we ran the PACE
calculator in the kernel at arbitrary times, e.g., when-
ever a task completed, it would have to save and restore
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floating-point state to avoid corrupting the state of what-
ever thread it interrupted. By doing PACE calculation in
the context of its own special thread, we make such save
and restore operations unnecessary.

5.7 I/O counter

The other kernel module we will discuss is RSIoCnt.
Its job is to count the pending synchronous I/O’s and
store this count in shared memory where the idleness de-
tector can access it. It must also tell RSTask to resume
any paused schedule whenever this count becomes zero.

We implemented RSIoCnt as a file system filter driver.
A filter driver implements a filter device, a special kind of
device extremely helpful in tracing system events in Win-
dows NT/2000. A filter device can attach to an existing
device, causing it to intercept any requests destined for
that existing device. For more information about them,
see [15, 10]. Our filter driver has low overhead because
it merely counts the requests as they start and stop and
passes them on.

Unfortunately, our approach limits one to filtering only
non-network file systems. There are undocumented ways
to filter network file systems and network devices, as
shown in [10], but we do not do this in our prototype
due to our stability goal.

5.8 User-mode library

We use a well-documented method to load RSLib, a
user-mode library, into the address space of every pro-
cess that makes GUI calls [14]. The main activity of
this library is interposing on the delivery of user interface
events to the application by using a message hook [14].
With this mechanism, we tell Windows to call a given
function just before it successfully completes an applica-
tion’s request for the next message from the GUI.

RSLib also exports functions that applications can use.
Most of these allow applications to specify task infor-
mation. Applications can interact with RSTask without
these calls, but they are helpful to application writers
who prefer to use a function call interface rather than
make I/O control calls to a virtual file system. RSLib ex-
ports other miscellaneous functions letting applications
do things like disable automatic detection of their tasks.

6 Results

6.1 General overhead

In this subsection, we evaluate system overhead just
from RightSpeed running unused in the background.
There are two main sources of this overhead: (a) mak-
ing the timer interrupt every 1 ms instead of every 10 ms
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Figure 3: Time to perform various benchmarks without
RightSpeed and with various components of RightSpeed
enabled, shown with 95% confidence intervals. Note that
the Y-axis origin is not zero.

causes interrupt-processing time to increase; and (b) fil-
tering I/O requests to count them increases the time to
perform each I/O.

To evaluate these effects, we ran the following bench-
marks on a system with a 450 MHz Pentium III:

1. Read an uncached 32 KB file
2. Write a 100 KB file with write-through
3. Read 32 KB directly from the disk
4. Compile the RightSpeed logger device with the

Windows DDK
5. Format a Ph.D. dissertation with LATEX
6. Perform a CPU-intensive mathematical loop

We ran them without any RightSpeed modules loaded,
with only the RSIoCnt module loaded, with only the
RSTask module loaded, and with both of those two mod-
ules loaded. In all cases, we disabled the network to
avoid interference from network interrupts. None of
these benchmarks use RightSpeed at all; indeed, we did
not even install RSLib to perform these experiments. We
ran each benchmark enough times that the 95% confi-
dence interval about the sample mean included no values
more than 0.01% away from the sample mean, or 10,000
runs occurred, or 2,000 seconds passed, whichever came
first. Figure 3 shows results.

We see that RSIoCnt adds 0.3–1.5% overhead, with
an average of 0.5%, due to filtering I/O operations. If we
did not have to use a file system filter to do this, e.g., if
Microsoft provided hooks allowing one to simply count
ongoing I/O’s and be notified when the last I/O leaves
the system, this overhead would likely be lower. We also
observe that RSTask, by virtue of it reducing timer gran-
ularity from 10 ms to 1 ms, increases operation times by
0.7–1.6% with an average of 1.1%, presumably due to
the system responding to more frequent timer interrupts.
Combined, the overhead is 1.2% on average.
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Operation Time

Load and initialize RSLib for a process 1.401 ms
Install message hook 8.532 µs
Open system auto task type group file 159.777 µs
Get application name 12.583 µs
Open per-app auto task type group file 121.229 µs

Intercept non-user-interface message 2.265 µs
Intercept & handle user interface message 7.605 µs

Evaluate message type 1.013 µs
End task and begin another 3.575 µs

Simple I/O control request to RSTask 1.162 µs
Begin a task 3.450 µs

Kernel-mode component 1.345 µs
End a task 2.530 µs

Kernel-mode component 1.134 µs
End one task and begin another 3.462 µs

Kernel-mode component 1.441 µs

Table 3: Average time RightSpeed takes to perform com-
mon operations on the AMD machine at 900 MHz

6.2 Time to perform RightSpeed opera-
tions

The next set of results evaluates the time to perform
various RightSpeed operations. We performed these
measurements on the AMD system, since accurately
evaluating performance on the Transmeta system is diffi-
cult for two reasons: (a) the dynamic translation of code
the chip performs can cause large differences from one
run to another, and (b) confidentiality agreements pre-
clude us from publishing certain measurements of the
prototype system. In all cases speed changing was dis-
abled to not confound the measurement of durations, so
all runs are at 900 MHz. Most of these results we mea-
sured directly by making an entry in the log each time
an operation started or stopped. However, some of them,
such as intercepting a message, involve hidden overhead,
so we measured them by running with and without the
operation and subtracting. We ran each operation 10,100
times and discarded the first 100. Table 3 shows the mean
results.

We see that the overhead of linking RSLib into each
application is about 1.4 ms; this occurs only once per ap-
plication, when it starts. Some of this is RSLib’s initial-
ization, including installing the message hook and open-
ing the automatic task type group files, but this accounts
for little of it. In these benchmarks, the application task
type group file is in the file cache, but even if it were not
the time to load would not be significantly more.

The overhead of hooking all messages delivered to
applications is also small. For non-user-interface mes-
sages, the overhead is 2.3 µs per message. For user in-
terface messages, the message hook must determine the

event type and communicate that this task is beginning
and the previous task is ending to RightSpeed. The to-
tal extra time is small, approximately 7.6 µs per mes-
sage. Considering that messages arrive on the order of
every few milliseconds, and that user interface messages
arrive even less often (at worst about every 14 ms in the
case of rapid mouse movement, and more typically about
once every 150 ms if the user is typing at 40 words per
minute), the total overhead is low.

RightSpeed operation microbenchmarks show more
detail about the cause of overhead. Each I/O control re-
quest takes about 1–2 µs due to the time to trap into ker-
nel mode and to check and copy data from user buffers
to kernel buffers. Inside RSTask, the time to begin a
task is about 1.3 µs and the time to end a task is about
1.1 µs. The most common operation, beginning one task
and ending another that is already considered complete,
takes about 1.4 µs of kernel time. Note that this is less
than the sum of the time to begin a task and to end a task
because of various optimizations for this case. For ex-
ample, we look up the task type group file only once and
we acquire and release the spin lock controlling access
to the ongoing tasks list only once.

6.3 Effect on performance

Applications can specify performance targets for
tasks. However, since Windows 2000 is not a real-time
operating system, scheduling decisions do not necessar-
ily happen precisely when they should, so RightSpeed
will not necessarily meet these targets. In this subsec-
tion, we evaluate how closely it does.

These evaluations require workloads. We derived
these workloads from traces of users performing their
normal business on desktop machines running Win-
dows NT or Windows 2000. For more details on the
tracing, see [10]. Each workload corresponds to all tasks
requiring no I/O that were triggered by keystroke and
mouse click events delivered to a particular application
for a particular user during the several months that user
was traced. Table 4 gives a brief description of each
workload; for more details about the users and applica-
tions, see [12] and [11]. We inferred when tasks began
and ended using the method from [12].

Our traces do not give us sufficient information to
precisely recreate the workloads. For instance, we do
not collect disk contents and we irreversibly encrypt al-
phanumeric keystrokes. To simulate RightSpeed, how-
ever, we need only know when and for how long each
task ran. Thus, we use a simulator that simulates each
task by performing additions repeatedly in a tight loop
for the same number of cycles as the original task took.
Our workload simulator indicates the beginning of each
task to RightSpeed with an explicit RSLib call; it sleeps
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Workload User Application Key Click
events events

1 1 explorer 17,105 9,549
2 2 explorer 27,972 19,866
3 3 explorer 9,905 2,617
4 4 explorer 11,276 6,301
5 5 explorer 21,297 9,291
6 6 explorer 6,096 5,381
7 7 explorer 6,938 4,443
8 8 explorer 24,208 9,337
9 1 netscape 797,642 22,512

10 2 iexplore 193,823 59,667
11 3 psp 64,229 3,320
12 4 outlook 359,839 14,984
13 5 outlook 109,202 2,633
14 6 grpwise 275,972 13,576
15 7 winword 50,799 2,766
16 8 excel 13,891 2,016

Table 4: Traced application workloads we use in certain
simulations

for 2 ms at the end of each task to let RightSpeed auto-
matically detect the end of the task. We run this workload
simulator on the AMD machine to measure the perfor-
mance obtained when RightSpeed schedules the speeds.

We evaluate RightSpeed’s performance as follows. We
assign performance targets corresponding to an average
pre-deadline speed of 630 MHz for keystroke tasks and
765 MHz for mouse click tasks. For each workload,
we calculate how many deadlines it theoretically should
miss and how much total delay past deadlines it should
achieve. We then simulate RightSpeed to see how many
deadlines it actually misses and the total delay it actually
achieves.

We find that RightSpeed misses 1.5% fewer to 0.3%
more deadlines than the target, with an average absolute
error of 0.4%. It has delay from 0.5% less to 0.1% more
than the target with an average absolute error of 0.2%.
Since RightSpeed conservatively rounds speeds for inter-
vals to maximize the probability of making deadlines, it
is not surprising that it tends to miss fewer deadlines and
have less delay than the target. Nevertheless, the absolute
error is very low, showing that RightSpeed is effective at
meeting performance targets even though it must use the
millisecond-granularity timer of Windows 2000 and even
though Windows 2000 makes no guarantees about when
speed-changing routines will actually execute.

6.4 Time to perform PACE calculations

We also measured the average time to perform PACE
calculations for tasks. We performed this experiment for
the user 1 workload running explorer. We found that

adding the sample value to the task type group informa-
tion and recomputing the schedule accordingly took an
average of 4.447 µs ± 0.312 µs, the 95% confidence in-
terval. (The standard deviation is very high, 143.633 µs,
because occasionally PACE calculations are interrupted
by a context switch and take milliseconds instead of mi-
croseconds to complete.) Note that these calculations
were always performed at the slowest, 500 MHz setting.
So, we see that PACE calculations can be made quite
quickly given all our optimizations.

6.5 Effect of overhead on energy consump-
tion

To evaluate the effect of RightSpeed overhead on en-
ergy consumption, we ran some workloads on the Trans-
meta machine both with and without RightSpeed. To
equalize performance, we instructed RightSpeed to not
use the PACE calculator but instead use an algorithm
identical to Transmeta’s LongRunTM strategy. Table 5
shows the results for five short workloads derived from
VTrace traces. We observe that the performance char-
acteristics (deadlines missed and total delay) of Right-
Speed mimicking LongRunTM are very close to that of
LongRunTM by itself, so it is meaningful to directly com-
pare the energy consumption of the two. We see that sim-
ulating LongRunTM with RightSpeed has little effect on
the total energy consumption. In other words, the over-
head of signaling the beginnings and ends of tasks, and
of implementing the speed schedule in software instead
of hardware is insignificant.

6.6 Effect of PACE on future processors

Because the real processors on which we implemented
RightSpeed derive little efficiency from using one setting
versus another, PACE cannot save sufficient energy on
them to make its implementation worthwhile. To evalu-
ate the effectiveness of our PACE calculator, in this sec-
tion we conduct simulations assuming future processors
with better DVS characteristics. Our simulations differ
from those in [11] since we do not make the same as-
sumptions about scheduling capabilities. In particular,
we consider a finite number of settings and limited timer
granularity.

For our simulations, we consider three processors,
each with a minimum setting running at 200 MHz and
consuming 1 W, and each with power consumption pro-
portional to speed cubed. (This cubic relationship as-
sumes either a very low threshold voltage or a threshold
voltage that is varied proportionally to supply voltage us-
ing technology like that in [8].) The three processors dif-
fer only in their maximum speeds: 600 MHz, 800 MHz,
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Relative
Without RightSpeed With RightSpeed mimicking LongRunTM energy

Workload Deadlines missed Delay Energy Deadlines missed Delay Energy increase
A 21 out of 30,635 0.947 s 172.8 J 21 out of 30,635 0.940 s 174.0 J +0.7%
B 8 out of 19,310 1.172 s 94.58 J 8 out of 19,310 1.172 s 94.86 J +0.2%
C 1,792 out of 32,288 118.833 s 1007 J 1,796 out of 32,288 118.860 s 1006 J -0.1%
D 61 out of 19,770 2.364 s 126.8 J 61 out of 19,770 2.366 s 126.8 J 0.0%
E 99 out of 20,641 4.070 s 379.1 J 99 out of 20,641 4.061 s 376.1 J -0.8%

Table 5: Comparison of using built-in LongRunTM scheduling versus doing this scheduling with RightSpeed

and 1 GHz. We assume the processors can only run at
multiples of 50 MHz and the timer granularity is 0.1 ms.

Since our simulations occur on virtual hardware, we
can run them much faster than real time. So, we can
use longer workloads than those in Table 4, which were
restricted to a single application. Instead, we use eight
workloads, each corresponding to all activity of a traced
user.

All the algorithms we simulate, except for the no-DVS
algorithm, will use the same performance target, so that
we can compare them fairly using only energy consump-
tion. The performance target is to have an average pre-
deadline speed of 400 MHz and a post-deadline speed of
600 MHz. The four algorithms we consider are:

• Flat. The pre-deadline speed is constant.
• Stepped. The pre-deadline speed begins at

200 MHz and is incremented by 50 MHz after
each interval. Interval length is chosen to achieve
the desired average pre-deadline speed. This mod-
els algorithms such as that used by Transmeta’s
LongRunTM [7].

• Past/Peg. The pre-deadline speed is constant at
200 MHz for the first interval, then is pegged to
the maximum. Interval length is chosen to achieve
the desired average pre-deadline speed. This mod-
els the algorithm suggested in [5].

• PACE. The pre-deadline speed schedule is com-
puted by PACE using an estimate of task work dis-
tribution derived from the most recent tasks of the
same type.

Results are in Table 6 and summarized in Figure 4. Note
that Flat does not change its behavior for different maxi-
mum speeds, so we present its results only for a 600 MHz
maximum speed.

One interesting observation is that the greater the
range of speeds available on the CPU, the more energy
efficient the Stepped and PACE algorithms become. For
example, per-task average CPU energy consumption un-
der PACE decreases 19.5% when switching from a CPU
with maximum speed 600 MHz to one with maximum
speed 1 GHz. This is because the availability of a higher
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Figure 4: Summary of Table 6, showing average per-task
energy consumption averaged over all workloads for var-
ious algorithms. Numbers after an algorithm identify the
maximum CPU speed made available to that algorithm.

speed on the CPU allows a schedule to begin a task run-
ning more slowly, since it can more easily make up for
this slowness by running even faster later in the schedule.
The ability to run slowly at the beginning saves energy
in the common case where the task requires little work,
since the schedule never proceeds past the low-energy
beginning part. PACE takes advantage of the broader
range of speeds to find a better schedule, while Stepped
just happens to work better with the larger set of speeds.
Past/Peg, on the other hand, does worse with a greater
range of speeds. Essentially, Past/Peg ignores all but the
two extreme settings of the CPU, and we see that this is
costly in terms of energy consumption; we conclude that
using intermediate speeds can save energy.

We also see from these results that PACE is always
the best algorithm, followed by Stepped, followed by
Past/Peg, followed by Flat. This echoes the results
from [12], and shows that even when we require PACE
to deal with limited settings and timer granularity, it is
still an improvement over existing DVS algorithms.

Furthermore, we predicted in Section 3 that the greater
the available CPU speed range, the better PACE would
do in comparison to other algorithms, and we see this
borne out in our simulation results. On the CPU with
maximum speed 600 MHz, PACE reduces energy con-
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Maximum speed 600 MHz Maximum speed 800 MHz Maximum speed 1 GHz
User No DVS Flat P/Peg Stepped PACE P/Peg Stepped PACE P/Peg Stepped PACE
1 44.83 23.29 16.11 14.80 13.67 15.85 13.29 11.87 16.90 12.38 10.92
2 112.36 67.00 64.62 57.07 53.60 69.44 49.37 45.59 81.19 44.75 40.93
3 81.93 39.62 31.19 25.25 23.34 35.78 23.80 21.05 42.44 22.93 20.06
4 48.07 22.20 8.44 9.04 7.78 8.90 8.66 7.39 9.75 8.44 7.18
5 80.24 41.70 25.45 24.59 23.43 25.76 21.86 20.70 28.26 20.23 19.13
6 51.20 23.47 12.02 11.12 10.09 11.71 10.80 9.39 12.39 10.61 9.17
7 132.34 77.22 73.37 64.29 61.26 78.65 55.99 52.48 91.16 51.00 47.47
8 84.75 45.02 40.32 33.74 32.10 44.84 30.43 28.55 53.09 28.44 26.61

Avg 79.46 42.44 33.94 29.99 28.16 36.37 26.77 24.63 41.90 24.85 22.68

Table 6: Simulation results showing average per-task energy consumption, in mJ, for various algorithms, workloads,
and maximum CPU speeds. All algorithms except “No DVS” achieve the same performance target by using a 400 MHz
average pre-deadline speed and a 600 MHz constant post-deadline speed. P/Peg stands for Past/Peg.

sumption by 6.1% compared to Stepped; with maximum
speed 800 MHz, the reduction is 8.0%; with maximum
speed 1 GHz, the reduction is 8.7%.

In conclusion, we find that even when a finite set of
speeds are available and the timer granularity is lim-
ited, PACE is still an improvement over other algorithms.
We find that having higher speeds available on the CPU
helps PACE reduce energy consumption, and further-
more PACE does better the greater the range of speeds
available on the CPU. This is an important lesson for
chip designers, who may think that providing the ca-
pability of running at high voltages and therefore high
speeds will increase energy consumption. We see here
that with proper energy management using PACE, pro-
vision of higher speeds can actually reduce energy con-
sumption.

7 Future work

7.1 Modifying applications

An important next step in this research is to insert calls
to RightSpeed into various applications, such as movie
players, to communicate task information to RightSpeed.
We have shown that RightSpeed is good at meeting dead-
line targets, and this will pay off better once we modify
applications in this manner.

7.2 User testing

In this paper, we have relied on user interface stud-
ies that suggest a connection between making deadlines
and user-perceived response time instead of conducting
user experiments ourselves. It will be important in future
work to make sure that the performance targets Right-
Speed assigns to automatically detected tasks ensure a
satisfactory user experience.

7.3 PACE calculator

We hope in future to test the PACE calculator on a
real system with a large range of worthwhile settings to
evaluate its actual effect on the energy consumption of
such a system.

7.4 Specification of performance targets

For some applications, the best way to specify the
performance target may not be an average pre-deadline
speed or an equivalent DVS algorithm, but rather a tar-
get fraction of deadlines to make, e.g., to say that 99%
of tasks should complete by their deadline. In future, we
would like to devise a way for RightSpeed to meet this
kind of performance target with high accuracy and en-
ergy efficiency.

7.5 Predicting I/O

Our approach to dealing with I/O is somewhat unsatis-
factory, as we do not consider the I/O time a task requires
until after it actually occurs. A better approach would
be to model the probability distribution of task I/O re-
quirements for each task type and use this distribution
to compute a more optimal schedule at the outset of the
task. This requires a more complicated model of speed
and voltage scheduling, and consequently a more com-
plicated solution to computing an optimal schedule than
PACE currently uses.

8 Summary and Conclusions

We implemented RightSpeed, a task-based speed and
voltage scheduler for systems running Windows 2000
on Transmeta or AMD processors. Unlike traditional
DVS schedulers, which use interval-based methods to
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change speed merely according to recent CPU usage,
RightSpeed considers tasks and their performance con-
straints. RightSpeed is an improvement over other task-
based schedulers since it uses PACE to compute optimal
speed schedules and uses an efficient heuristic to auto-
matically detect tasks triggered by user interface events.
RightSpeed also distinguishes itself by running on Win-
dows, the most popular laptop operating system.

RightSpeed obtains task information in two ways.
First, applications can directly indicate when tasks begin
and end, what type of task each task is, and the perfor-
mance targets for each task type. Second, RightSpeed
uses an automatic task detector to infer task information
for applications not using the RightSpeed task specifi-
cation interface. This detector infers that a task begins
whenever it observes a user interface event such as a
keystroke.

RightSpeed also features a PACE calculator. This al-
lows RightSpeed to automatically monitor the work re-
quirements of tasks as they complete, deduce a prob-
ability distribution of work requirements for each task
type, and from those to compute optimal schedules for
scheduling CPU speed when tasks of those type run. It
computes these schedules using the theory of PACE, de-
scribed in [11].

We demonstrated that RightSpeed can meet perfor-
mance targets applications specify, despite the fact that
Windows 2000 does not provide scheduling guarantees.
We also demonstrated that the overhead due to using
RightSpeed is small. The overhead due to low-level sys-
tem modifications, including monitoring I/O and increas-
ing timer resolution, is only 1.2% on average. The over-
head due to other aspects of RightSpeed is also modest,
on the order of a few microseconds to perform most op-
erations. Even PACE calculation, involving complicated
floating-point operations, takes only about 4.4 µs per task
on a 500 MHz processor, thanks to several optimizations.

The systems to which we ported RightSpeed have
DVS characteristics quite different from the idealized
conditions given in [11], since they have limited schedul-
ing granularity, a limited supply of speeds, and a nonlin-
ear relationship between speed squared and energy. We
therefore developed techniques to apply PACE to such
real systems, and implemented them in RightSpeed.

Unfortunately, these processors derive so little effi-
ciency from using one setting versus another that ac-
tual savings from the PACE calculator are minuscule.
One system even contains settings that are never worth-
while for PACE schedules to use. This departure from
the theoretical model may result from overly conserva-
tive speed/voltage settings from the chip manufacturer
or poor circuit engineering, or it may reflect problems
with voltage scaling not reflected in the standard theo-
retical model. In any case, assuming that the problems

are with the chips and not with the model, we therefore
performed simulations on theoretical processors whose
settings’ efficiencies more closely match those expected
from semiconductor theory.

We found in our simulations that our version of PACE,
optimized for speed and modified to take into account
limits of speed and time granularity on real systems,
saves energy compared to other algorithms. Further-
more, PACE is most effective at improving algorithms
when the CPU has a large speed range. PACE reduces
energy consumption compared to the Stepped algorithm
by 6.1% when the speed range is 200 MHz–600 MHz;
this relative improvement rises to 8.7% when the speed
range expands to 200 MHz–1 GHz.

We also found that as long as one uses the PACE al-
gorithm, CPU energy decreases when the range of avail-
able speeds increases. For example, on a CPU with a
speed range of 200 MHz–1 GHz, we consume 19.5%
less energy than on a CPU with a speed range of only
200 MHz–600 MHz. An important lesson from this is
that the current practice of reducing the maximum speed
of processors marketed for mobile environments may be
misguided. Providing the ability to run at a high speed,
even if it can only be for a short time due to thermal con-
straints, can not only make a processor more attractive to
consumers evaluating them in terms of their maximum
performance, but can also actually reduce energy con-
sumption by providing DVS algorithms with more op-
tions. To take advantage of these options, however, the
system needs to use an algorithm like PACE that only
uses high speeds when necessary.

The code for RightSpeed is available on the
World Wide Web at http://www.cs.berkeley.edu/∼lorch/
rightspeed/. Although Jacob Lorch is currently affiliated
with Microsoft, he performed all implementation work
while still a student at UC Berkeley. Thus, the imple-
mentation used no internal Microsoft knowledge or doc-
umentation.
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