
USENIX Association

Proceedings of MobiSys 2003:
The First International Conference on

Mobile Systems, Applications, and Services

San Francisco, CA, USA
May 5-8, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 145

Contact Networking: A Localized Mobility System

Casey Carter Robin Kravets Jean Tourrilhes
Department of Computer Science, UIUC Hewlett Packard Labs

fccarter,rhkg@uiuc.edu jt@hpl.hp.com

Abstract— MobileIP, the standard for Internet mobil-
ity, enables transparent mobility for a mobile node, but
requires communication to take a multihop path through
the node’s Home Agent. Although a user with a multiple-
interface mobile node may desire the ability to communi-
cate locally, perhaps while disconnected from the Internet,
MobileIP offers no such support.

Contact Networking provides lightweight, localized net-
work communication to a node with diverse network inter-
faces. The goal is to provide support for local connectivity
equivalent to that provided by MobileIP for remote con-
nectivity. The concept of link-layer awareness enables Con-
tact Networking to tailor its operation to different links, us-
ing link-layer native services to implement abstract services
when possible. Interface management and autoconfigura-
tion insulate the user from concerns about the number and
type of interfaces available.

In this paper, we motivate the need for localized mobil-
ity, and present the design and architecture of Contact Net-
working. Details of our prototype implementation illustrate
the complexities of providing a localized mobility facility.

1. Introduction

Recent years have witnessed the development of a
new class of mobile computing devices, merging per-
sonal communications and data access into a single de-
vice. One part mouse and two parts remote control, these
mobile nodes are the interface point between users and
the information environment. As users move through the
world, they want to use their mobile nodes to maintain
reachability through access to the global Internet, a form
of mobility that is already well supported by MobileIP
[21]. However, users would benefit from avoiding expen-
sive multihop Internet connectivity and taking advantage
of computing resources and services discovered locally,
using whatever network interface is most convenient.

The inspiration for the name Contact Networking is to
orchestrate direct communication between a mobile node
and its neighbors. This focus on last-hop connectivity
addresses the shortcomings of earlier work that assumes
the presence of a network interface, with no concern for
how that interface is link-layer configured. Contact Net-
working’s approach to mobility support is diametrically
opposite that of MobileIP. MobileIP treats all communi-
cation as though it is remote, even if local, whereas Con-
tact Networking treats all communication as though it is

This work was sponsored by Hewlett Packard Labs and National Sci-
ence Foundation grant number ANI–0081308.

local, even if remote. This difference in philosophy en-
ables Contact Networking to provide lightweight service
by being link-layer aware, tailoring itself to the charac-
teristics of each link layer.

Contact Networking manages both IP and link-layer
configuration, connecting to neighbors using all available
interfaces. Exploring the environment informs Contact
Networking when communication is possible. As long as
some pair of compatible interfaces exists, Contact Net-
working can maintain connectivity between neighbors.
To preserve battery power and maximize flexibility, in-
terface activation is delayed until applications indicate
demand to communicate with a given neighbor. Con-
tact Networking configures network interfaces to provide
link-layer connectivity and bidirectional routing between
the two nodes using a mechanism developed in earlier
work [33]. Communication is maintained as links form
and break by rerouting to other interfaces as necessary.
This neighbor handoff mechanism, P-Handoff in earlier
work [32], is transparent to the user and ensures persis-
tent connectivity.

In addition to active interface configuration and rout-
ing support, Contact Networking provides name resolu-
tion to enable operation without infrastructure. The Con-
tact Naming System (CNS) allows users to refer to local
resources with friendly names. CNS is implemented by
mechanisms native to each link layer. Since distant com-
munication relies on the primitive hop-by-hop interac-
tion of neighbors, Contact Networking extends to man-
age multihop end-to-end communications when infras-
tructure access is available.

In this paper, we present the design of and case for
Contact Networking. Section 2 motivates better mobility
support for mobile nodes, particularly localized mobility.
We present the requirements for localized networking in
Section 3, which is realized by the Contact Networking
architecture of Section 4. Some examples detail the op-
erational requirements for localized networking in Sec-
tion 5. Section 6 discusses our prototype implementation
of Contact Networking, including limitations and lessons
learned. Section 7 contains the natural progression from
Contact Networking to future work.

2. Motivation
We define local and remote communication, and de-

tail the lack of support in mobility solutions for local-
ized networking. We advocate link-layer awareness, the



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association146

idea that the network layer should incorporate link-layer
knowledge to provide better service. The following hy-
pothetical scenario provides a context in which to discuss
the issues of localized networking:

You and your colleague Xue board the train to travel
to the client presentation. Xue hasn’t seen the final ver-
sion of the video, so you both point your PDAs’ infrared
ports at each other, and you push the video file to her
PDA. Your PDAs connect over infrared, establishing a
local communication channel without requiring Internet
connectivity. Seconds after the transfer is initiated, you
put your PDA back in your briefcase. This breaks the in-
frared link, so your PDA switches automatically to 5GHz
radio to continue the transfer.

After a few moments, you decide to walk back to the
dining car. Due to the limited range of 5GHz radio,
that link also soon breaks, forcing the communication to
fall back to 2.4GHz radio. As you walk away, you leave
2.4GHz radio range and your PDA’s only option to pre-
serve communication is to activate its GSM radio and
communicate over the Internet with Xue’s PDA. For the
first time, your PDA registers with MobileIP and begins
using multihop remote communication.

In the dining car, you use 5GHz radio to exchange
business cards with a new acquaintance, without even
needing to see his PDA – you simply push the card to
whichever device in your vicinity responds to the nick-
name “Gerard.” This transaction does not interfere with
the ongoing transfer to Xue’s PDA three train cars away.

As you return to Xue’s car, the PDAs discover they can
again connect to each other over local links. They shut
down the expensive GSM radios and handoff the commu-
nication to the faster, cheaper 5GHz radio channel.

A. Local and Remote Communication

Mobile nodes carry out two fundamentally differ-
ent kinds of communication, which we term local and
remote communication. Local communication is be-
tween a mobile node and another node with which it
shares direct connectivity. The defining characteristic is
locality—interacting with “this” device that the user dis-
covers in the environment, such as a local printer. A lo-
cal communication is a simple unplanned association be-
tween two hosts, requiring no infrastructure access, but
only that the two nodes share compatible communica-
tion hardware. Two users who meet each other and wish
to exchange data between their mobile nodes, like the
video in the scenario, use local communication.

Remote communication is between a node and some
other explicitly addressed node that is not in the immedi-
ate neighborhood. Web browsing is the classic example
of remote communication. The web browser knows the
web server’s identity, but not its location. The mobile
node must have access to the network infrastructure to
communicate. Unlike the case of local communication,

there is no possibility of spontaneous interaction. In the
scenario, when local communication links no longer pro-
vide connectivity, the PDAs automatically fall back to
remote GSM communication over the Internet.

Remote communication is more resource-intensive
than local. A short local transaction could be completed
by briefly powering up a network interface and exchang-
ing packets. A remote communication requires a mo-
bile node to power up an interface, find an infrastructure
provider, register with its home agent and then perform
the communication before unregistering and powering
the interface back down. The setup time necessary to
register the mobile node’s location, together with much
longer delays incurred by the multihop path, keep the
network interface powered over a longer time.

A mix of concurrent local and remote communication
is not supported by current mobility approaches. Mo-
bileIP focuses on multihop remote communication [21].
MobileIP even explicitly forbid a node to directly com-
municate with any neighbor except its Foreign Agent:

While the mobile node is away from home, it
MUST NOT transmit any broadcast ARP Re-
quest or ARP Reply messages. Finally, while
the mobile node is away from home, it MUST
NOT reply to ARP Requests in which the tar-
get IP address is its own home address. . .

The PDAs in the scenario would be unable to com-
municate via MobileIP had access to the Internet been
unavailable, even though they share compatible hard-
ware. If a network administrator was available, the de-
vices could be manually configured. The administrator
must choose between two alternatives:

� Use the shortest range, lowest power link supported
by both nodes. This conserves battery power for
the mobile nodes, but constrains the users’ motion
within the limited range provided.

� Use the longest range, highest power link supported
by both nodes. This provides a large area within
which users can move freely. However, they pay for
this flexibility with battery power.

Neither approach is optimal in all cases. From the users’
perspective, the optimal solution would be to use the low-
est power, shortest range links that provide connectivity
at any given time. This dynamic approach is untenable
for manual configuration.

B. Multiple Wireless Technologies
There is no perfect wireless technology for all appli-

cations. The design of a wireless technology is a trade-
off between range, capacity and power consumption. As
soon as a technology comes to market it is obsoleted by
newer, faster, more efficient technology. There will al-
ways be periods of transition from the current to the new
wireless technology during which mobile nodes will sup-
port multiple links.



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 147

The management of multiple links is not integrated
well into the traditional network stack. A multi-interface
mobile node should be able to simultaneously utilize as
many interfaces as necessary to satisfy its communica-
tion needs. In fact, users should not need to be aware of
the number or type of interfaces available.

Among the many types of wireless technologies we
pay special attention to a distinguished class we call Di-
rectional Area Networking technologies. These Direc-
tional links are characterized by short range and direc-
tional transmission characteristics, for example, infrared
and laser. Although directional technologies are often
deprecated, we see their limitations as features. Short
range and directionality make directional technologies
an ideal choice for a picking mechanism – selection of a
particular device in the environment simply requires the
user to point and click.

C. Link-layer Awareness

One of the best qualities of the Internet Protocol is its
support for a variety of link layers by providing a uni-
form interface at the network layer. Although not ev-
ery link layer was designed for IP, IP works over ev-
ery link layer [3], [5], [10], [15], [23], [25], [26], [27],
[29]. This least-common-denominator approach loses
link-layer specific advantages. By restricting its expec-
tations to simple datagram delivery, IP loses the richness
of the individual link layers.

Link-layer awareness provides access to the ca-
pabilities of each link layer. The advantages are
1) lightweight discovery mechanisms for finding new
neighbors, 2) tighter attachment to neighbor nodes, al-
lowing rapid detection of link failure, and 3) the abil-
ity to perform link-specific optimizations, such as header
compression, when appropriate. The richness of wire-
less links in particular makes link-layer awareness more
attractive.

To clarify, consider two different wireless link layers:
IEEE 802.11 [13], and IrDA (Infrared Data Association)
[17]. Both links natively detect link breakage. These
link failure mechanisms provide useful information to a
link-layer aware network layer. The aware network layer
can immediately stop using the broken route and more
rapidly find a new route. In the absence of link-layer fail-
ure indications, some periodic messaging system must be
used to monitor link integrity. MobileIP monitors links
between mobile nodes and foreign agents with periodic
beacons. Link-layer awareness conserves resources—the
link layer monitors the link, whether the network layer
pays attention or not—and can provide more rapid noti-
fications than higher-layer monitoring. In general, link-
layer awareness enables higher layers to transparently
take advantage of implementations tailored to each link
layer by providing abstract APIs for low-level services.

In the absence of link-layer awareness, the network
layer must provide basic services like neighbor discov-
ery. This duplication of service already in the link layer
wastes resources. In addition, the network layer cannot
possibly provide service of the same quality provided by
the link layer mechanism without tailoring its approach
to specific link layer characteristics. The end result of
this approach is a fragile service only suitable on a single
link layer, precluding true interface heterogeneity.

3. Design Requirements
The user experience of localized networking must be

identical to that of infrastructure networking. The user
should not need to use different interfaces or tools for lo-
cal vs. remote communication. With that goal in mind,
we propose the services necessary to support local con-
nectivity and configuration-free multi-interface network-
ing. We also address deployment, since a scheme to sup-
port localized networking is useless if not deployable in
the current Internet.

A. Support Services

The critical services for localized networking are:
1) Neighbor Discovery
2) Name Resolution
3) On-demand Interface Binding
4) IP Autoconfiguration
5) Neighbor Routing
6) Channel Management
7) Infrastructure Access

We present a justification for each service requirement.
1) Neighbor Discovery: Neighbor discovery allows a

mobile node to determine who its one-hop neighbors are.
Neighbor knowledge enables a node to determine which
interfaces may be used to contact a particular neighbor.
In the absence of a neighbor discovery service, a mobile
node would be incapable of performing local communi-
cation at all.

IPv6 Neighbor Discovery (IPv6ND) [18] is unsuitable
for providing discovery to mobile nodes. First, its op-
eration is not fully specified for multihomed hosts. Sec-
ond, Neighbor Unreachability Detection may be too slow
to support efficient handoffs when a neighbor is actively
supporting a flow. Foremost, any IP-based solution ob-
viously requires IP to be up and configured, conflicting
with the goal of on-demand interface binding. Using
IP as part of the mechanism to bootstrap IP creates a
chicken-and-egg problem that is avoided by performing
discovery at a lower layer.

2) Name Resolution: To support localized naming, a
name-to-address mapping mechanism is necessary, like
DNS provides in the Internet. If mobile nodes are to
communicate directly each node must participate in the
name-to-address mapping. Additionally, it is convenient



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association148

for the user to select a nearby device without needing
to know its proper name. For example, a name that de-
notes “the device my Directional Area Networking port
is pointing at” enables the picking mechanism discussed
in Section 2-B.

3) On-demand Interface Binding: Binding is the pro-
cess of configuring an interface to use a particular link-
layer medium, like plugging an Ethernet card into a jack.
Interfaces have an unbound state in which the interface
is not capable of full communication but may be able
to perform some tasks, such as scanning for neighbors.
Once bound, the interface can send and receive IP pack-
ets. Although they lack jacks, wireless interfaces also
require configuration to select the link-layer medium.
Even broadcast interfaces like 802.11 have parameters
that bind the interface to one physical channel at a time.
To be link-layer neighbors, two nodes must have inter-
faces that are bound to the same medium.

There are two reasons to delay interface binding. First,
it is important to keep interfaces in a low-power state,
since mobile nodes are battery powered. Second, some
interfaces provide point-to-point links and can be used to
communicate with only one neighbor at a time. To save
power and allow flexibility in choosing to which link to
bind, a local communication scheme must delay binding
as long as possible. Therefore, interface binding should
occur on-demand, when an application indicates demand
to communicate with a neighbor. Certainly, it is ineffi-
cient to maintain connectivity with neighbors with which
the node has no need to communicate. Interface unbind-
ing must also be automatic when demand is removed.

4) IP Autoconfiguration: Interface binding does lit-
tle good if the user must manually configure IP address
and netmask. To enable transparent network access, in-
terface IP configuration, including assigning IP address
and netmask, must also be automatic.

Link-local (LL) addresses, in either IPv6 [6], [9] or
IPv4 [4], provide autoconfiguration. Unfortunately, ad-
dresses with scope restricted to a single link provide lit-
tle support for persistent communication. Transient ad-
dresses cannot be used as endpoints for a transport layer
connection, or that connection will fail upon moving.
There is no mapping from LL addresses to home ad-
dresses that identify mobile nodes. These two deficien-
cies render LL addresses little more than IP-layer aliases
for link-layer addresses. Further, both IPv4 and IPv6 ad-
dress require an initial period on the order of several sec-
onds for duplicate address detection before the address
can be used. This delay is hardly conducive to perform-
ing rapid handoffs across multiple interfaces.

5) Neighbor Routing: The final step necessary to
neighbor communication is the establishment of sym-
metric routing state. Neighbor routes are all that is
needed to complete the local communication. Once these

routes are available, application layer communication
can continue normally.

6) Channel Management: The previous services pro-
vide local communication to the mobile node, but do not
shield the user from managing links and interfaces. Two
abstractions are fundamental to the operation of channel
management. First, a connection is a link-layer abstrac-
tion that is formed between two neighbors who wish to
communicate. Presence of a connection indicates that
a handshake has taken place between these neighbors
signifying that both have agreed to the communication.
Second, a channel is the end-to-end abstraction through
which transport flows propagate. We say that the channel
between two nodes is realized by a particular connection
at any given time.

Although connections can break due to mobility, the
goal of mobility support is to preserve the channel across
these breaks. If the user is actively communicating with
a neighbor through a channel over a connection that fails,
the mobile node must maintain the channel by connect-
ing over another interface if possible (see Figure 1). Sim-
ilarly, if a mobile node is connected to a neighbor over
technology A and a new, better path over technology B
is discovered, the channel should automatically switch to
the new interface.

7) Infrastructure Access: Enabling a mobile node to
communicate locally is an achievement, but not if the
local focus completely occludes remote communication.
The ability to access the Internet is far too critical to
sacrifice in the name of other goals. In addition to the
locally-oriented scheme, remote communication is nec-
essary to complete localized networking support.

B. Deployment Considerations

The goals of autoconfiguration, neighbor routing, and
channel management are not achievable by only a single
node of a neighbor pair. Bidirectional communication

MN Mobile Node

802.11 Interface

IrDA Interface

802.11 Link

Connection

Inactive Path

IrDA Link

IrDA blocked, handoff to 802.11

IrDA is connected

MN

MN

MN

MN

Fig. 1. Link-layer feedback and route failover



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 149

necessarily requires support from both neighbors. Con-
sequently, it is impossible to provide localized communi-
cation support when directly communicating with legacy
network nodes.

To be deployable, a localized communication scheme
must not require support from every node in the Inter-
net. The localized scheme can put no special require-
ments on applications; it should allow unmodified bina-
ries to work with existing networking APIs. One way to
achieve this level of transparency is to isolate the scheme
at the network layer or below, so that transport and appli-
cation layers see the standard IP network-layer interface.
Applications and users are presented with the illusion of
continuous network service, with no effect other than a
temporary aberration in service during handoffs.

Application- and transport-layer mobility support ad-
vocates claim that applications must see mobility events
in order to adapt to changed network service [20], [30].
Note that providing the illusion of network stability does
not necessarily preclude the potential to provide mobility
notifications to interested applications. It only reduces
the impact on applications that are not mobility-aware.

4. Architecture
We present Contact Networking’s architecture and dis-

cuss how its individual modules fit the requirements pre-
sented in Section 3. Since the requirements span route
management to interface configuration, Contact Net-
working lies at the junction between the link and network
layers in the OSI network stack, extending into both lay-
ers as depicted in Figure 2. Contact Networking includes
a link-layer agnostic network layer module and several
link-layer aware modules. The components of the net-
work layer module manage routing and select between
multiple paths available to a neighbor through different
interfaces.

Route Table

C. CNS D. ND Iface Management

A. Database
B. Autoconfig

E. Neighbor Routing

G. Infrastructure Access

F. Route Control

Physical

Transport

Application

Link
Link−Layer Aware

Link−Layer Agnostic

IP

Fig. 2. Introducing Contact Networking into the OSI stack

Components of the link-layer-aware modules moni-
tor the environment and report discovery events and link
transitions. For local communication, link-layer mod-
ules also monitor link activity and inform the node when
neighbors move out of range (i.e., a link breakage event).
Contact Networking’s link-layer discovery mechanisms
incorporate the functionality of the Address Resolution
Protocol (ARP) [24], mapping IP addresses to link-layer
addresses.

Our description of Contact Networking architecture
begins with its detailed component structure, as depicted
in Figure 2. The specific architectural components dis-
cussed are:

A. the network database, where the mobile node
stores its model of the environment,

B. the IP autoconfiguration technique, which assigns
addresses to bound interfaces,

C. the Contact Naming System (CNS), a name reso-
lution scheme for Contact Networking nodes,

D. the Contact Networking approach to neighbor dis-
covery,

E. the neighbor routing component,
F. the routing control, which directs interface bind-

ing, neighbor routing, channel management and
infrastructure access,

G. the infrastructure access component, which Con-
tact Networking uses to access the Internet.

For each architectural component, we describe its re-
sponsibilities in fulfilling the design requirements, as
well as how it interacts with other components.

A. Network Database

Contact Networking includes a database that models a
node’s current view of the environment. This database
is the central communication point for all parts of the
architecture. The four basic abstractions with which it is
populated are interfaces, links, neighbors and paths.

� Interfaces are network attachment points on a node,
such as Ethernet interfaces or cellular modems.

� Links are the communication media to which inter-
faces bind. An interface can bind to only one link
at a time. Treating links as first-class entities makes
it possible for the database to model both point-to-
point links, with one neighbor per link, and broad-
cast links, with many neighbors per link.

� Neighbors are the nodes in the environment with
which the user may wish to communicate.

� Paths are a pairing of a link and a neighbor aug-
mented with the neighbor’s address on that link.

An interface can bind to only one link at a time. Con-
tact Networking can simultaneously establish connec-
tions with any and all neighbors to which it knows paths
on a bound link. To establish communication with a
neighbor, route control chooses a path to that neighbor



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association150

MN

SNBS

MN
SN
BS

Mobile Node
Stationary Node
Base Station
802.11 Interface
IrDA Interface

Ethernet Link

802.11 Link

IrDA Link

Path

MN

Fig. 3. Interfaces, Links, Paths, & Neighbors

from the database to activate. Path activation may neces-
sitate interface binding and IP autoconfiguration using
the configuration state for the link in the database. Con-
tact Networking synchronizes path activation between
neighbors, ensuring that both neighbors use symmetric
routes. Once bidirectional path activate is complete, the
paths are considered connected.

A path can be in one of four states:
� Available - The path is believed to exist but is cur-

rently inactive.
� Connected - The path is currently capable of trans-

porting packets to the neighbor.
� Blocked - The path was connected, but is currently

in a transient failure condition.
� Unblocked - The transient condition has passed, but

the path has not been reactivated.
The blocked and unblocked states make it possible for
Contact Networking to temporarily reroute traffic to an-
other path while the primary path is recovering.

To clarify these abstractions, Figure 3 depicts a net-
work composed of two mobile nodes and one station-
ary node. The base station simply bridges the wired and
wireless links, and is therefore not visible to Contact Net-
working. The stationary node has one interface, and each
of the mobile nodes has two. There are two links in
the figure, one IrDA and one 802.11/Ethernet. The two
bridged segments form a single link. Each mobile node
knows a path to the stationary node, and two paths to its
mobile counterpart, one over 802.11 and one over IrDA.

B. IP Autoconfiguration

A network interface must be configured with an ad-
dress and subnet mask before IP can use it. In traditional
IP, providing unique interface addresses is a problem in
its own right, requiring either configuration or protocol
solutions [4], [6], [7], [22]. These heavy-weight solu-
tions require significant setup time to allocate an inter-
face address, and create another problem when consider-
ing mobility—a transport flow cannot outlive the IP ad-
dresses used to identify its endpoints. If those addresses

are transient, interface-specific addresses then mobility
is impossible. The goal of mobility is to provide a com-
munication channel that persists beyond the lifetime of a
single address-to-interface configuration.

Contact Networking embraces and extends the Mo-
bileIP approach to providing a persistent communication
channel in the face of link mobility. A home address
is associated with the mobile node itself with no subnet
mask. MobileIP configures the home address on a partic-
ular interface providing mobile networking through only
that interface, or selectively configures the home address
on the single interface that currently has connectivity, en-
abling vertical handoffs [31]. Contact Networking ex-
tends this notion to its natural conclusion, configuring the
home address on all network interfaces simultaneously.

Due to the expanded role of the home address in Con-
tact Networking, we designate it the Globally Routable
IP address (GRIP). Every node is identified by a unique
GRIP. Contact Networking requires GRIPs to be perma-
nently assigned static home addresses, so that the pres-
ence and uniqueness of the GRIP can be guaranteed even
when disconnected from the infrastructure. Contact Net-
working associates each neighbor’s GRIP with its entry
in the network database. Use of the GRIP for local com-
munication in Contact Networking neatly sidesteps the
problem of providing distinct addresses for each network
interface. Configuring the GRIP on all interfaces allows
the mobile node to persistently communicate through all
interfaces simultaneously. The GRIP is guaranteed to
live longer than any communication channel.

Using the same address on several interfaces is in di-
rect conflict with the traditional IP addressing model in
which one IP address denotes one network interface. Se-
mantically, Contact Networking removes the emphasis
that IP places on the role of the network interface. To
Contact Networking, interfaces are transient entities, but
the GRIP always stays the same. Since all application
communication between nodes uses the GRIP, mobile
nodes are accessible and successfully mobile as long as
at least one network interface is present. The choice of
which interface to use for a particular channel becomes a
pure routing problem, a choice of path from the network
database, and not a question of interface management or
configuration.

C. Name Resolution

The Contact Naming System (CNS) is Contact Net-
working’s name resolution and name-to-address map-
ping facility. CNS names are structured exactly like
DNS names, with textual names separated by dots. CNS
names enable users and applications to transparently
control the operation of Contact Networking by speci-
fying CNS names in place of DNS names.

Every node has a full CNS name, which is exactly
the fully-qualified DNS name that resolves to its GRIP.



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 151

Agreement between CNS and DNS on the proper name
for a node enables remote and local communication to
use the same name.

CNS also supports link-layer specific name aliases,
“wildcard” aliases and service aliases that give a user
flexibility in choosing a neighbor. Link-layer specific
aliases combine a CNS name prefix with a suffix denot-
ing a particular link layer. This facility enables a user to
specify that they want, for example, bob.irda, which
resolves to any neighbor whose CNS name starts with
bob reachable via IrDA. The wildcard alias any can be
used to select any reachable neighbor, perhaps addition-
ally qualified with a link-layer specific suffix. The in-
frared picking mechanism described in Section 2-B can
be easily implemented with the alias any.irda.

A node replies to queries with its CNS record, con-
taining its name and GRIP, and possibly service infor-
mation. For example, the node bob.cs.uiuc.edu,
which provides print service and acts as a MobileIP for-
eign agent, might have the following CNS record:

GRIP: 128.174.244.37
Name: bob.cs.uiuc.edu

Services: printer, MIPFA
Contact Networking attaches each CNS record to the
corresponding neighbor record in the network database.
Name queries that can be satisfied from the database re-
quire no network traffic. Link-specific alias queries that
cannot be answered from the database only result in net-
work traffic on links of the specified type. An request to
resolve bob.irda queries for bob only on IrDA.

CNS is similar to other multicast name resolution
schemes [1], [8], [19]. The main difference is in imple-
mentation. Our goal of link-layer awareness means that
CNS is transported by link-layer specific mechanisms in-
stead of relying on IP multicasting support as in other
approaches. Furthermore, the lifetime of CNS records
is tightly coupled with neighbor knowledge in the net-
work database. This tight coupling allows CNS records
to be cached long-term without refreshing, as long as the
neighbor is still present.

Each node monitors its interfaces for CNS queries re-
questing its configuration, although CNS may not use
this request-reply model on every link layer. A Con-
tact Networking node uses link-layer native mechanisms
when available to disseminate and retrieve CNS records.
Some links perform discovery while in the unbound
state, so link-layer aware CNS conserves power and low-
ers delay over an approach that uses IP to resolve names.
Nodes with sufficient power may also actively adver-
tise their CNS records either through a link-layer dis-
covery method or by periodic broadcast. These adver-
tisements enable other interested nodes to easily collect
CNS records by passive listening.

A node returns its CNS record in response to a the

following types of CNS queries:
� Name queries
� GRIP queries, enabling reverse lookup
� Service queries (e.g., a node that provides MobileIP

Foreign Agent service might respond to the name
MIPFA)

� Wildcard queries, possibly link-layer qualified
These CNS query types provide several ways for users to
choose machines in their environment with which to in-
teract, without requiring changes to IP network software
that uses DNS names. CNS access is integrated along-
side the normal DNS name resolution mechanism on the
nodes, so that application name lookups try CNS resolu-
tion before DNS. A unified name resolution API makes
localized networking easily available to network applica-
tions. For example, to purchase a can of Dr. PepperTM

from a vending machine, a user would point the infrared
port of their device at the vending machine and point
their web browser at http://any.irda. The CNS
resolver would return the vending machine’s CNS record
that specifies its name and GRIP. An exchange of busi-
ness cards with another user named Bob would probably
use the name bob to locate the GRIP of Bob’s mobile
node. We call this “getting a GRIP” on the destination.

D. Neighbor Discovery
Neighbor discovery must incorporate link-layer

awareness. Determining when another node is within the
sphere of communication of a particular interface on a
particular link is necessarily link-layer specific. Link-
layer adaptation modules perform neighbor discovery
and indicate neighbor appearance/disappearance to the
link-layer agnostic module. Each link-layer aware dis-
covery mechanism is tuned to the particular link, using
native discovery mechanisms when available. This level
of link-layer awareness provides high quality discovery
on each link layer without compromising the generality
of the rest of the Contact Networking system.

What other systems term neighbor discovery, find-
ing a reachable peer on a link, is really path discovery
in Contact Networking. Neighbor discovery in Con-
tact Networking is only complete after two neighbors
have exchanged CNS records. After the exchange of
CNS records Contact Networking updates the network
database with a new path entry and a new neighbor en-
try, if the neighbor is not already present.

Contact Networking’s use of CNS records for neigh-
bor discovery combines neighbor discovery, address
resolution and name resolution into a single protocol.
This combination reduces total overhead in contacting
a neighbor, as well as allowing for long-term caching
of name-to-IP address and IP-to-LL address mappings.
The tight coupling of address mappings to neighbor life-
time means that mappings need never be refreshed and
are simply flushed when a neighbor goes away.



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association152

E. Neighbor Routing

Contact Networking takes link-layer network seman-
tics, a flat address space with one-hop communication,
and presents it to the transport layer as a set of host-
specific routes. This IP facade on link-local connectivity
enables IP applications to use the localized networking
facility equivalently to traditional IP support.

Routing necessarily affects the address model of Con-
tact Networking. The use of GRIPs for local commu-
nication creates a class of local routes administered by
Contact Networking. There is exactly one such route cor-
responding to each neighbor in the network database. A
local route can be inactive, serving as an indication that
Contact Networking can provide a path to that neighbor
on demand, or active, enabling packet forwarding across
some connected path.

Traditional IP routing, which views IP addresses as
specifying a location within the internetwork, is re-
tained in Contact Networking for routing to remote
destinations. The result is a bipartite routing system
that provides maximum flexibility in routing directly to
neighbors—via local routes–but does not lose the ability
to interface to the Internet with traditional routes. In-
tegrating both styles of routing enables transitional de-
ployment. Contact Networking mobile nodes can con-
tact the current Internet through access points much like
MobileIP foreign agents that provide Contact Network-
ing service in addition to traditional IP routing. In the
absence of Contact Networking-enabled access routers,
a mobile node must resort to traditional techniques for
unreachability detection and cannot provide rapid hand-
off when the link to the access router fails.

F. Route Control

Route control in Contact Networking handles on-
demand interface binding and channel management.
When a Contact Networking node first wishes to con-
tact some IP address, it performs a lookup in the network
database for a neighbor whose GRIP is that address. If
the neighbor entry is present, its CNS record and at least
one path will be known—the path over which the neigh-
bor was discovered. Route control selects one of the
available paths to connect and negotiates connection with
the neighbor. If no record is present, the node falls back
on traditional IP networking to find a remote route to
the destination, possibly initiating infrastructure access
as detailed in the next section. Route control also per-
forms channel management by disconnecting idle con-
nections and unbinding idle interfaces when the last con-
nection on that interface is dropped. When better paths
are discovered, route control actively switches channels
to better connections.

FA

FA
Internet

MN

Virtual Neighbor

MN

FA

Mobile Node

Foreign Agent

802.11 Interface

IrDA Interface

Ethernet Link

IrDA Link

Path

802.11 Link

Fig. 4. Infrastructure as a virtual neighbor

G. Infrastructure Access

Since Contact Networking views all communication
as direct neighbor communication, some extension is
necessary to support remote communication. Contact
Networking treats remote communication as local com-
munication with a virtual neighbor that represents the en-
tire infrastructure network. This conversion of remote to
local communication enables Contact Networking to ap-
ply its normal mechanisms for on-demand establishment
and channel management to infrastructure access.

In Contact Networking, a network node that wishes
to provide infrastructure network access to others by
performing as a MobileIP Foreign Agent advertises
its willingness to do so through the Contact Naming
System. Mobile nodes that need infrastructure ac-
cess then discover the infrastructure provider normally
through neighbor discovery. Upon discovering an access
provider, Contact Networking creates a virtual path to the
virtual neighbor that corresponds to the real path to the
access provider (see Figure 4).

Integrating dial-up access into this architecture is triv-
ial. A dial-up phone number is essentially a path de-
scription for a type of virtual path. Whenever a mobile
node can use a dial-up interface, it is one hop away from
the virtual neighbor. This virtual path would be stati-
cally configured into Contact Networking, with a simple
monitor module that “discovers” the virtual path when a
modem is plugged in or when within GSM coverage.

Contact Networking route lookups for IP addresses
which do not correspond to neighbors in the network
database are redirected to the virtual neighbor. Connect-
ing a path to the virtual neighbor also connects its cor-
responding real path and performs MobileIP registration
through the neighbor on the real path.

If a mobile node needs to maintain Internet access to
enable externally initiated channels, Contact Network-
ing can be configured to never drop virtual connections
due to idleness. Normal neighbor handoff mechanisms
would then preserve the channel to the Internet when-
ever possible, keeping the mobile node accessible to the
rest of the world.



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 153

BS

DNS FA

Soda Chips
MN

Internet

Vending Machine

802.11 Interface

IrDA Interface

ChipsMobile Node
Base Station
DNS Server

Soda Machine
Foreign Agent

Soda
FA
DNS
BS
MN

Fig. 5. Example network from Section 5

5. Examples
Some simple examples serve to illustrate the operation

of Contact Networking. For these examples, we discuss
a hypothetical user, Prashant, with a mobile node that has
infrared, wireless LAN and wired Ethernet interfaces.
Prashant is a Computer Science graduate student, who
happens to be wandering around the CS building. The
GRIP of Prashant’s mobile node is topologically located
on the Ethernet LAN. There is a building-wide wireless
LAN, which has an attached DNS server and a MobileIP
Foreign Agent, as in Figure 5. All machines on the CS
building network are Contact Networking enabled.

1) Simple Local Communication: In the first sce-
nario, Prashant is walking through the Computer Science
building, when he passes a vending machine. Feeling a
grumbling in his belly, Prashant decides to purchase a
bag of FritosTM. We hypothesize the existence of soft-
ware in Prashant’s mobile node and the vending machine
that is capable of automatically performing a small cash
transaction. To initiate the transaction, Prashant points
his device at the vending machine’s infrared port and
clicks the “pay” button. A flurry of events ensues.

The application on Prashant’s machine tries to re-
solve the CNS alias any.irda. The IrDA-specific
CNS module performs native IrDA discovery to detect
the vending machine nearby. As a part of the dis-
covery process, Prashant’s node and the vending ma-
chine exchange CNS records containing their GRIPs
and DNS names. As a side effect of CNS discovery,
Contact Networking routes are created to enable on-
demand connection of the two machines. The CNS re-
solver on Prashant’s machine returns a struct hos-
tent to the application, informing it that any.irda is
in fact an alias for chips.cs.uiuc.edu with GRIP
128.174.244.91.

Having obtained an IP address for the desired neigh-
bor, Prashant’s application initiates a TCP flow to the ap-

plication in the vending machine. The first packet of this
flow is queued while the path to the vending machine is
connected. Since no better path to the vending machine
is known, Contact Networking connects the IrDA path.
A full path connection occurs:

1) The IrDA interface on the mobile node is bound to
the link between it and the vending machine.

2) The mobile node establishes a connection to Con-
tact Networking on the vending machine.

3) Contact Networking on the vending machine ac-
cepts the connection request and both nodes create
local routes indicating that the channel between the
two GRIPs is using this particular connection.

Upon establishing the connection Contact Network-
ing forwards the queued data packets to the vending ma-
chine. Transaction processing then continues normally
with no further involvement from Contact Networking.
Prashant grabs his bag of FritosTM and starts walking
back to his office to write a paper about scatternet for-
mation in Bluetooth. Within several seconds, the IrDA
module on each machine informs Contact Networking
that the connection has become idle. Contact Network-
ing drops the idle connection and unbinds the IrDA in-
terface since no other connections exist on the link.

2) Local Communication with Handoff: On his way
to the office, Prashant passes a soda machine and decides
to purchase a can of CokeTM to help wash down those
salty FritosTM. The transaction proceeds similarly, un-
til the impatient Prashant returns his mobile node to his
pocket, interrupting the TCP flow over IrDA. The IrDA
module in Prashant’s mobile node informs Contact Net-
working of the premature connection breakage. Since
the connection was being actively used by data traffic,
Contact Networking immediately tries to find an alter-
nate path to the soda machine in the network database.

Luckily for Prashant, the soda machine is also con-
nected to an Ethernet segment bridged to the Wireless
LAN. Contact Networking connects this alternate path.
During the handoff procedure, no connection is avail-
able to support the channel to the soda machine, so any
data packets are queued. After the neighbor handoff
completes successfully, the channel is rerouted over the
new connection and the queued packets are retransmit-
ted. TCP on Prashant’s node retransmits the single lost
packet and recovers the transaction without the applica-
tion’s or the transport layer’s awareness or participation.
As in the previous example, the transaction completes
normally and the connection becomes idle. Contact Net-
working at both ends drops the connection.

3) Infrastructure Access: On the way back to the
office, Prashant decides to load Slashdot into Mozilla
to check for interesting news—which can be chal-
lenging, with a bag of FritosTM in one hand and
a can of CokeTM in the other. CNS resolution of



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association154

www.slashdot.org fails since Prashant is nowhere
near the Slashdot web server. When his DNS resolver
tries to resolve www.slashdot.org, Contact Net-
working connects the path to the DNS server to complete
the resolution, which returns an IP addresses for Slash-
dot’s web server.

In this case, the first TCP packet of the flow is not des-
tined for a neighbor in the network database, so Contact
Networking connects its virtual path to the Internet:

1) Virtual path connection activates the underlying
path to the Foreign Agent on the wireless LAN.

2) Once the Contact Networking connection to the
Foreign Agent is established, MobileIP registra-
tion takes place.

3) When registration is complete, the virtual path is
considered to be connected.

The TCP packet is finally forwarded over the newly es-
tablished channel to Slashdot and Prashant’s browser re-
trieves the web page normally. Several seconds after the
page load completes, the virtual path becomes idle, forc-
ing MobileIP deregistration and disconnection from the
Foreign Agent.

6. Implementation
The prototype implementation of Contact Networking

is developed on Linux atop a modified kernel. The im-
plementation supports three different link types: infrared
(IrDA), Ethernet and 802.11. The centerpiece of the im-
plementation is the Connectivity Manager, a userspace
daemon that runs on each Contact Networking node.
Transparent application access to CNS is realized by an
extension for the name service switch library.

A. Kernel Modifications
We extended the Linux 2.5 kernel by providing a

mechanism for wireless interface drivers to export events
to userspace programs. This extension became Wireless
Extensions version 14 and has since been integrated into
the development series Linux kernel at version 2.5.7, as
well as back-ported into the stable kernel series at ver-
sion 2.4.20. One event type we included in the Wire-
less Extensions is link-layer delivery failure notification.
The drivers for Orinoco 802.11 cards (orinoco cs),
Aironet cards (airo cs) and cards based on the Inter-
sil PrismII chipset (hostap cs) were modified to send
these notification events. These driver modifications are
in various stages of integration into the kernel sources.

B. Connectivity Manager
In Contact Networking, each computer hosts a Con-

nectivity Manager (CM) that configures its network in-
terfaces and coordinates its discovery of and connection
to neighbors, as well as maintaining the Contact Net-
working network database. The CM provides a common
rendezvous point between user programs, the network
stack and the routing tables.

1) Management and Adaptation Layers: The CM
is organized as a process that reacts to asynchronous
events. Low-level events are passed up from the link-
layer specific adaptation modules, collectively denoted
the adaptation layer, to the link-layer agnostic manage-
ment layer. The management layer responds to events by
directing the adaptation modules to connect or discon-
nect paths, or by modifying the network database. The
management layer also responds to application name res-
olution queries from the Name Service Switch (NSS) in-
terface (see Section 6-C), searching the network database
for appropriate CNS records.

Adaptation modules signal the management layer
when the following events occur:

� An interface is inserted/removed from the node
� A link is discovered/lost
� A neighbor is discovered/lost
� A path to some neighbor is discovered/lost
� A path has changed state
� A connection request was received from a neighbor

In response to these signals, the management layer uses
an abstract API to manipulate interfaces, links, and paths.
Each adaptation module provides a concrete implemen-
tation of the abstract API with behaviors appropriate to
its link technology. The management layer uses these
APIs to direct an adaptation module to bind/unbind an
interface to a link, connect/disconnect a path on a bound
link, or reject/accept a connection request from a neigh-
bor by connecting the return path.

Contact Networking takes an approach different from
that of traditional IP in providing network layer services.
Contact Networking is aware of the characteristics of
each link layer and uses link-layer specific functionality
to provide better network service. Contact Networking
has a link-layer specific adaptation module for each sup-
ported link type. Adaptation modules implement CNS
querying and neighbor discovery in a lightweight man-
ner, using native link-layer discovery mechanisms when
available. Link-layer modules also inform the CM of dy-
namic interface insertion and removal or conditions that
represent failure of a connection.

Link-layer modules also provide mechanisms to form
connections to neighbors – path connection sets up bidi-
rectional connectivity with the neighbor over the cho-
sen path, binding an available interface to the path’s link
if necessary. Once a path is connected, the link-layer
module monitors the connection for breakage with link-
native mechanisms (e.g., failure to receive an acknowl-
edgment on 802.11). Link-layer connection break in-
dications cause the CM to reroute the channel to that
neighbor over another path, if possible. Removal of a
bound interface also causes rerouting to occur for any
channels using that interface. The adaptation modules
monitor connections for idleness and signal the manage-



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 155

ment layer to drop the connection. Disconnection tears
down the neighbor connection, causing the interface to
unbind from the link upon disconnecting the last con-
nection. Unbinding and powering down the interface at
the earliest possible time enables power conservation and
allows the interface to be used to bind to other links.

All link-layer adaptation modules use a Linux rt-
netlink socket to monitor interface creation events
[28]. This enables each adaptation module to report in-
terface discovery/loss events to the management layer.

The interface management aspect of Contact Network-
ing is similar to Physical Media Independence (PMI),
“an architecture for dynamically diverse network inter-
face management” [14]. PMI observes the availability of
network interfaces and informs applications of changes
in interface state and availability, as well as coordinating
a vertical handoff of the default route. Unlike the active
interface management of Contact Networking, PMI pas-
sively reacts to network interface state changes.

2) IrDA Adaptation Module: The IrDA [17] adapta-
tion module uses mechanisms native to IrDA and IrNET
to provide services to the management layer. IrDA has a
native discovery mechanism and a link-layer attribute ex-
change protocol (IrIAP). Path connection is realized by
IrNET, which uses synchronous PPP for control, operat-
ing directly on IrDA frames. IrNET generates events to
signal the IrDA adaptation module.

Upon receiving an IrNET discovery event, the IrDA
adaptation module uses IrIAP to exchange CNS records
with the new neighbor and delivers the resulting CNS
record along with a neighbor discovery signal to the man-
agement layer. Since IrDA is a point-to-point technol-
ogy, paths and links are unified in the IrDA adaptation
layer. The architectural constraint of binding an interface
to at most one link at a time mirrors the point-to-point na-
ture of the link layer in Contact Networking. When the
corresponding IrDA neighbor un-discovery event is re-
ported from IrNET, the adaptation module reports both a
lost path and a lost link event to the management layer.

Link block and connection request events are passed
unmodified up to the management layer. The adaption
layer maps link-layer identifiers into the database entry
for the path corresponding to the blocked connection or
the requesting neighbor.

The IrDA adaptation module, when instructed to con-
nect a path by the management layer, forks a child
pppd on the IrNET control channel. The pppd “con-
nect script” argument is actually directions for IrNET to
choose which neighbor to connect. The binding com-
pletes when the IrNET event channel reports successful
connection, which is signaled to the management layer.
If PPP/IrNET connection fails, the pppd will exit pre-
maturely and the IrDA adaptation module notifies con-
nection failure to the management layer.

To force disconnection, the IrDA adaptation module
simply kills the child pppd. When the connection has
finally shut down, IrNET will report disconnection on its
event channel, at which time the IrDA adaptation mod-
ule marks the interface in the network database as once
again available for binding to other links and reports dis-
connection to the management layer.

Forking a child pppd process for neighbor connec-
tion is a heavyweight procedure, so using IrIAP to ex-
change CNS records below IP provides low latency dis-
covery, avoiding IP setup altogether. On a connection-
oriented link layer like IrDA or Bluetooth, it is unclear
how one would perform network-layer discovery. To
which neighbor do you connect your link layer before
sending, say, an ARP request? Contact Networking’s
link-layer awareness enables support for discovery on
connection-oriented link layers.

3) Ethernet/802.11 Adaptation Module: 802.11 [13],
besides being wireless, is as different from IrDA as pos-
sible. 802.11 provides a simple datagram-delivery-port
abstraction, with no additional frills built in. These facil-
ities must then be directly coded in the 802.11 adaptation
module. Interestingly, the additional code this creates is
traded for code the IrDA module uses to monitor the ex-
ternal pppd. Both modules weigh in at almost exactly
2000 lines of C.

The 802.11 layer requires protocol support to handle
many issues that IrNET/IrDA does not. Consequently,
we devised a set of protocol commands that are encod-
able in a trivial subset of XML to facilitate easy com-
munication between neighbor adaptation modules. This
message encoding is used for CNS transport, path con-
nection, path disconnection and idleness monitoring.

Lacking IrIAP, the 802.11 adaption module must pro-
vide an alternate means to exchange CNS records. A
UDP broadcast request/reply protocol enables the adap-
tation layer to query the CNS records of its neighbors
on a link or reply to their CNS queries. Since CNS
record exchange must precede any connection between
two neighbors on the link, a CNS request necessarily
contains an advertisement for the source. Neighbors use
the CNS request/reply as an opportunity to record MAC
addresses and GRIPs. The adaptation layer creates an
ARP table entry for the neighbor’s GRIP with the discov-
ered MAC address. The ARP entry’s lifetime is coupled
to the CNS record, avoiding ARP resolution altogether
for a neighbor whose MAC address is already known.

Neighbor CNS records discovered over 802.11 are im-
mediately reported to the management layer. Unlike with
IrDA, it is possible to discover many paths to different
neighbors on the same 802.11 link. Path connection for
802.11 requires only a simple handshake of XML com-
mands to ensure bidirectional connectivity, so connec-
tion is much lighter weight and lower latency than IrDA.



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association156

The 802.11 adaptation module monitors an rt-
netlink socket for Wireless Event reports, specifi-
cally packet delivery failure notifications from the de-
vice driver. The device driver reports the unreachable
neighbor’s MAC address, which is used to locate the path
corresponding to that neighbor in the network database.
Currently, the prototype treats a single failure indication
as path blockage and reports it as such to the manage-
ment layer. Future work will analyze this decision to de-
termine if some level of hysteresis may provide better
performance than single-packet-loss path blockage.

Although connection establishment needs only a sim-
ple request/reply and a single route creation, connec-
tion monitoring for 802.11 is greatly complicated over
IrDA. In IrDA, monitoring the interface’s send/receive
packet counters is sufficient to indicate idleness of link
and path. In 802.11, it is possible to connect many paths
over the same interface, so that it is impossible to deter-
mine which path or paths are idle by simply examining
the packet send/receive counters. Our prototype uses the
Linux iptables firewall support to add an iptables rule for
each connection that only recognizes traffic on that con-
nection. The adaptation layer can determine connection
idleness by reading the iptables rule’s packet counter.

The iptables rules created by the 802.11 adaptation
layer are a rather problematic piece of state in that they
can outlive the CM process. While under development
and prone to crashing, the CM tends to litter the iptables
with stale rules. To avoid this problem, the adaptation
layer forks a child process that clears out all associated
iptables rules when/if the CM exits unexpectedly.

Path disconnection is relatively simple. At the man-
agement layer’s behest, or in response to a neighbor’s
disconnect request, the 802.11 adaptation layer destroys
the corresponding route and iptables rule and sends a dis-
connect command to the neighbor. After the neighbor
confirms disconnection, the final path disconnect notifi-
cation can be reported to the management layer.

A future goal for the 802.11 adaptation module is to
support access point scanning to determine the Extended
Service Set Identifiers (ESSIDs) of nearby access points.
Each distinct ESSID discovered can be modeled as a dis-
tinct link in the network database. Although we added
access point scanning support to Wireless Extensions
v14, time did not allow completely integrating this fea-
ture into the prototype.

4) Virtual Adaptation Module: This adaptation mod-
ule exists to support infrastructure access via virtual
paths to the virtual neighbor. To Contact Networking,
the single virtual neighbor represents the entire Internet.
In Figure 4, the mobile node has two paths available to
the infrastructure through different providers. When in-
formed of the discovery of a path P to a neighborN that
advertises infrastructure service, the management layer

directs the virtual adaptation module to create a corre-
sponding virtual path P 0 with the virtual neighbor as its
destination. The path P 0 is dependent on P , so that de-
struction of P causes destruction of P 0. Semantically,
this path dependency asserts that infrastructure access on
the pathP 0 is only possible while P is reachable. The de-
pendency relationship between P 0 and P implicitly cap-
tures the fact that the node must direct packets destined
for remote hosts through its neighborN .

Requests from applications to contact non-neighbors
are treated as requests to contact the virtual neighbor.
When the user requires remote access, the normal path
selection mechanisms in the management layer choose a
virtual path P 0. Connection of P 0 causes connection of
the underlying real path P and initiates MobileIP regis-
tration through the neighborN that P reaches, as well as
creation of a default route with next hopN .

Virtual paths are monitored just like other paths.
Therefore, vertical handoff for remote communication
naturally falls out as an effect of neighbor handoff be-
tween virtual paths. When applications communicate
with remote hosts, Contact Networking sees traffic over
the virtual connection to the virtual neighbor. A break of
the underlying connection is treated as a break of the vir-
tual connection, which will cause the management layer
to reroute the infrastructure channel over an alternate vir-
tual path to some other infrastructure access provider.

5) Packet Handling: Contact Networking uses on-
demand path connection and interface binding to pro-
vide maximum flexibility with minimum resources. To
provide on-demand path connection, the CM requires a
mechanism to intercept packets from local applications
for neighbors to which it has valid paths. We call this
mechanism the demand channel. Additionally, the de-
mand channel must also be capable of capturing any non-
local packets to support the virtual neighbor. Captured
packets are queued until a path to the destination can be
connected and then forwarded over the fresh connection.

The demand channel is implemented as a set of routes
in the kernel routing table, one per neighbor, that points
into a universal tunnel interface. The Linux universal
tunnel is a device driver that attaches a network interface
to a device file. Packets routed through the interface by
the kernel may be read from the file and packets written
to the file appear to have been received on the network in-
terface. Packets thus captured are buffered in user-space.

Contact Networking also needs a mechanism to resend
packets that it buffers during interface binding and path
connection. Simply writing the packets into the universal
tunnel will not suffice, since the mobile node is probably
not configured to support packet forwarding. Our CM
prototype uses a raw IP socket to inject unmodified cap-
tured packets into the network stack.



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 157

C. Application CNS Interface

The final piece to complete the Contact Network-
ing architecture is a transparent application interface to
CNS. Name resolution in Linux is handled through the
Name Service Switch (NSS) library. NSS dispatches
name/address queries to multiple name services, notably
DNS and NIS. Contact Networking inserts a CNS name
resolver into the NSS configuration, so that application
queries try CNS before other naming services. Applica-
tion queries are coded in XML and sent to the CM.

The name mapping component of the CM first tries to
resolve queries from the network database. Failing that,
any action taken to resolve the name is dependent on its
structure. If the name ends in a suffix that identifies it as
a link-layer specific alias—Currently irda for IrDA and
wlan for 802.11—the name is passed to the appropriate
adaptation module for on-demand resolution. The link
agnostic suffix adhoc specifies that all adaptation mod-
ules should try to resolve the name on their links. Oth-
erwise, the name mapping component returns a failure
indication to NSS, which then continues to try to resolve
the name with other name services as normal.

The wildcard alias any is handled by matching some
appropriate neighbor entry in the network database. It
is possible for naming conflicts to occur with wildcard
aliases. For example, any.irda probably resolves to a
single neighbor, but any.wlan or any.adhoc poten-
tially aliases a large number of neighbors. When name
ambiguity occurs, the name mapping component cur-
rently reports a “name not unique” error back to the orig-
inal application. A more powerful mechanism for name
disambiguation, possibly with user assistance, is a topic
for future work.

7. Conclusions and Future Work

The main contribution of Contact Networking is to
provide a complete solution for communication manage-
ment on a local scale. Support for naming, routing, chan-
nel management and interface configuration in Contact
Networking place localized networking on par with tra-
ditional Internet mobility. Contact Networking provides
everything necessary for neighbor communication in the
absence of the usual infrastructure service, while pre-
serving ease of integration with the Internet when avail-
able. Unlike earlier work, Contact Networking is not de-
pendent on the presence of the Internet for operation.

Contact Networking realizes the goals of a mobile
node with multiple wireless interfaces through the ap-
plication of link-layer awareness. Support for local com-
munication differentiates Contact Networking from tra-
ditional mobility solutions that are infrastructure depen-
dent. The Contact Naming Service provides on-demand
naming and basic service discovery using link-layer na-

tive support. There are some important avenues we in-
tend to explore to enhance Contact Networking.

Flexible Network Support for Mobile Hosts [35] ex-
tends MobileIP with support for multiple packet deliv-
ery methods, including MobileIP with or without re-
verse tunneling and/or route optimization, and regular
IP. A mobile policy table enables selective mobility on
a per-flows basis. Further, Flexible extends the MobileIP
home agent to allow a mobile node to extend this flow-
granularity routing support back to the home agent. The
Flexible home agent enables different traffic flows to be
routed to different care-of-addresses of the mobile node.
In this way, Flexible enables mobile support for multiple
interface remote communication.

Integration of Contact Networking and Flexible into
a single system, along with a policy control to direct
which traffic should use which interface, is an interest-
ing avenue of future research. Allowing users to express
preferences for network service to the CM would greatly
increase the usability and applicability of the system.

Currently we are improving the interface management
mechanisms present in Contact Networking. The ap-
proach we call co-link configuration will allow two de-
vices to negotiate common link-layer binding configu-
ration for shared interfaces. Co-link uses one interface
to bootstrap others. For example, two PDAs could use
IrDA to exchange a frequency and encoding key for se-
cure 802.11 communication.

With no authentication, the local discovery and route
management components of Contact Networking enable
a local attacker to masquerade as an Internet host of the
attacker’s choice. This vulnerability is a consequence of
the absence of infrastructure support and can be seen as a
magnification of the ARP security hole [2]. Peer-to-peer
authentication approaches from ad hoc networking could
address this issue in Contact Networking [12].

Other work has suggested transport protocols that can
aggregate bandwidth from multiple interfaces simultane-
ously [11], [16]. Contact Networking provides a frame-
work for discovery of multiple paths that these protocols
can use. We are investigating the integration of Contact
Networking with an aggregating transport protocol.

Many network services have static or infrastructure-
dependent configuration. Notable among these services
is DNS. A node is usually configured statically with a
set of DNS servers. DNS, and similar services, could
possibly benefit from the local service discovery model
that CNS makes available. A mobile node that wishes to
avoid the expense of remote communication could then
use local DNS servers that it discovers through CNS.
Generalization of this approach to other services with
similar requirements would also be useful. Use of an
IP-based protocol for service discovery, such as SLP
[34], necessitates IP configuration before service discov-



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association158

ery may take place. An IP-based protocol cannot, there-
fore, be used to bootstrap IP.

Availability

We regret that we are unable to make our prototype
available at this time. The current lack of documentation
makes it nearly impossible for outside interests to install
the prototype. We do intend to make Contact Networking
available soon; interested parties should contact the first
author at ccarter@uiuc.edu.

References
[1] AppleTalk Network System Overview. Addison-Wesley Publish-

ing Company, Inc., 1990.
[2] S. Bellovin. Security problems in the TCP/IP protocol suite. ACM

Computer Communications Review, 19(2), April 1989.
[3] C. Brown and A. Malis. Multiprotocol interconnect over frame

relay. Request for Comments (Standard) RFC 2427, Internet En-
gineering Task Force, September 1998.

[4] S. Cheshire, B. Aboba, and E. Guttman. Dynamic config-
uration of IPv4 link-local addresses. Internet Draft (Work
in Progress) draft-ietf-zeroconf-ipv4-linklocal-
07.txt, Internet Engineering Task Force, August 2002.

[5] R. Cole, D. Shur, and C. Villamizar. IP over ATM: A framework
document. Request for Comments (Informational) RFC 1932,
Internet Engineering Task Force, April 1996.

[6] A. Conta and S. Deering. IPv6 stateless address autoconfigura-
tion. Request for Comments (Draft Standard) RFC 2462, Internet
Engineering Task Force, December 1998.

[7] R. Droms. Dynamic host configuration protocol. Request for
Comments (Draft Standard) RFC 2131, Internet Engineering
Task Force, March 1997.

[8] L. Esibov, B. Aboba, and D. Thaler. Linklocal multicast
name resolution (LLMNR). Internet Draft (Work in Progress)
draft-ietf-dnsext-mdns-12.txt, Internet Engineer-
ing Task Force, August 2002.

[9] R. Hinden and S. Deering. Ip version 6 addressing architecture.
Request for Comments (Standards Track) RFC 2373, Internet En-
gineering Task Force, July 1998.

[10] C. Hornig. Standard for the transmission of IP datagrams over
Ethernet networks. Request for Comments (Standard) RFC 894,
Internet Engineering Task Force, April 1984.

[11] H.-Y. Hsieh and R. Sivakumar. A transport layer approach for
achieving aggregate bandwidths on multi-homed mobile hosts.
In ACM Mobicom ’02, pages 83–94, 2002.

[12] J.-P. Hubaux, L. Buttyán, and S. Čapkun. The quest for security
in mobile ad hoc networks. In Proc. of the ACM Symposium on
Mobile Ad Hoc Networking & Computing (MobiHOC ’01), pages
146–155, October 2001.

[13] IEEE Computer Society. 802.11: Wireless LAN medium ac-
cess control (MAC) and physical layer (PHY) specifications, June
1997.

[14] J. Inouye, J. Binkley, and J. Walpole. Dynamic network reconfig-
uration support for mobile computers. In Proceedings of the Third
Annual ACM/IEEE International Conference on Mobile Comput-
ing and Networking (MobiCom ’97), pages 13–22, September
1997.

[15] D. Katz. Transmission of IP and ARP over FDDI networks. Re-
quest for Comments (Standard) RFC 1390, Internet Engineering
Task Force, January 1993.

[16] L. Magalhães and R. Kravets. Transport level mechanisms for
bandwidth aggregation on mobile hosts. In 9th International
Conference on Network Protocols ICNP 2001, 2001.

[17] P. J. Megowan, D. W. Susak, and C. D. Knutson. IrDA infrared
communications: An overview. http://www.irda.org.

[18] T. Narten, E. Nordmark, and W. Simpson. Neighbor discovery
for IP version 6 (IPv6). Request for Comments (Standards Track)
RFC 2461, Internet Engineering Task Force, December 1998.

[19] NetBIOS Working Group. Protocol standard for a NetBIOS ser-
vice on a TCP/UDP transport: Concepts and methods. Request
for Comments (Standard) RFC 1001, Internet Engineering Task
Force, March 1987.

[20] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and R. W. Kevin. Agile application-aware adaptation
for mobility. In Proceedings of the Sixteenth ACM Symposium on
Operating Systems Principles (SOSP) ’97, 1997.

[21] C. Perkins. IP mobility support for IPv4. Request for Comments
(Proposed Standard) RFC 3344, Internet Engineering Task Force,
August 2002.

[22] C. E. Perkins, J. T. Malinen, R. Wakikawa, and E. M. Belding-
Royer. IP address autoconfiguration for ad hoc networks. In-
ternet Draft (Work in Progress) draft-perkins-manet-
autoconf-01.txt, Internet Engineering Task Force, Novem-
ber 2001.

[23] D. Piscitello and J. Lawrence. Transmission of IP datagrams over
the SMDS service. Request for Comments (Standard) RFC 1209,
Internet Engineering Task Force, March 1991.

[24] D. Plummer. Ethernet address resolution protocol: Or converting
network protocol addresses to 48.bit Ethernet address for trans-
mission on Ethernet hardware. Request for Comments (Standard)
RFC 826, Internet Engineering Task Force, November 1982.

[25] D. Provan. Transmitting IP traffic over ARCNET networks. Re-
quest for Comments (Standard) RFC 1201, Internet Engineering
Task Force, February 1991.

[26] J. Renwick. IP over HIPPI. Request for Comments (Draft Stan-
dard) RFC 2067, Internet Engineering Task Force, January 1997.

[27] J. Romkey. Nonstandard for transmission of IP datagrams over
serial lines: SLIP. Request for Comments (Standard) RFC 1055,
Internet Engineering Task Force, June 1988.

[28] rtnetlink, NETLINK ROUTE - Linux IPv4 routing socket. Linux
Man Page rtnetlink(7), April 1999.

[29] K. Sklower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti.
The PPP multilink protocol (MP). Request for Comments (Draft
Standard) RFC 1990, Internet Engineering Task Force, 1996.

[30] A. Snoeren and H. Balakrishnan. An end-to-end approach to host
mobility. In ACM Mobicom ’99, 2000.

[31] M. Stemm and R. H. Katz. Vertical handoffs in wireless overlay
networks. ACM Mobile Networking (MONET), Special Issue on
Mobile Networking in the Internet, 1998.

[32] J. Tourrilhes and C. Carter. P-Handoff: A protocol for fine
grained peer-to-peer vertical handoff. In Proceedings of the 13th
IEEE International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC’02), 2002.

[33] J. Tourrilhes, L. Magalhães, and C. Carter. On-demand TCP:
Transparent peer-to-peer TCP/IP over IrDA. In Proceedings
of the IEEE International Conference on Communications (ICC
’02), 2002.

[34] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service lo-
cation protocol. Request for Comments (Standards Track) RFC
2165, Internet Engineering Task Force, June 1997.

[35] X. Zhao, C. Castelluccia, and M. Baker. Flexible network support
for mobility. In Fourth ACM International Conference on Mobile
Computing and Networking (MOBICOM’98), 1998.


