
USENIX Association

Proceedings of MobiSys 2003:
The First International Conference on

Mobile Systems, Applications, and Services

San Francisco, CA, USA
May 5-8, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 173

Energy-Conserving Data Placement and Asynchronous Multicast in

Wireless Sensor Networks

Sagnik Bhattacharya, Hyung Kim, Shashi Prabh, Tarek Abdelzaher
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

Abstract

In recent years, large distributed sensor networks have
emerged as a new fast-growing application domain for
wireless computing. In this paper, we present a
distributed application-layer service for data
placement and asynchronous multicast whose purpose
is power conservation. Since the dominant traffic in a
sensor network is that of data retrieval, (i) caching
mutable data at locations that minimize the sum of
request and update traffic, and (ii) asynchronously
multicasting updates from sensors to observers can
significantly reduce the total number of packet
transmissions in the network. Our simulation results
show that our service subsequently reduces network
energy consumption while maintaining the desired data
consistency semantics.

1. Introduction
Sensor networks are ad hoc wireless networks made of
large numbers of small, cheap devices with limited
sensing, computation, actuation, and wireless
communication capabilities. Such a network, for
example, can be dropped from the sky on a disaster
area to form collaborative teams of programmable
nodes that help with rescue operations. Sensor
networks are made possible by advances in processor,
memory and radio communication technology, which
enable low-cost mass-production of sensor-equipped
wireless computing nodes.

The sensor network paradigm is motivated by
applications such as guiding rescue efforts in disaster
areas, monitoring poorly accessible or dangerous
environments, collecting military intelligence, tracking
wild-life, or protecting equipment and personnel in
unfriendly terrains. In such environments, it is usually
impractical to build fixed infrastructures of powerful
and expensive nodes. Instead, the sensor networks
philosophy advocates the use of myriads of
inexpensive nodes strewn arbitrarily in the
environment and left largely unattended.

The primary function of sensor networks is the
collection and delivery of sensory data. Power is
identified as one of the most expensive resources. Due
to the difficulty of battery recharging of thousands of
devices in the remote or hostile environment,

maximizing battery lifetime by conserving power is a
matter of great importance.

In this paper, we develop a distributed framework
that improves power conservation by application-layer
sensor data caching and asynchronous update
multicast. The goal of the framework is to reduce the
total power expended on the primary network function;
namely, data collection and delivery.

The importance of optimizing communication cost
is also supported by measured data from recent
prototypes of sensor network devices, which show that
the main power sink in the network is, indeed, wireless
communication. For example, the Berkeley motes [15]
consume 1 µJ for transmitting and 0.5 µJ for receiving
a single bit, while the CPU can execute 208 cycles
(roughly 100 instructions) with 0.8 µJ. Assuming full
load, CPU power consumption is about 10mW,
compared to 50mW for the radio. The high power cost
of communication makes it a prime candidate for
optimization.

The remainder of this paper is organized as
follows. Section 2 presents the service model and the
formulation of the power minimization problem.
Section 3 presents the details of the data placement
middleware and its API. Section 4 presents an
evaluation using experimental as well as simulation
results. Section 5 reviews the related work. The paper
concludes with section 6.

2. Service Model
Consider a dense ad hoc wireless sensor network with
multiple observers, spread over a large monitored area.
At any given time, the observers’ attention is directed
to a relatively limited number of key locales in the
network, where important events or activities are
taking place. We call them focus locales. For example,
in a disaster area scenario, rescue team members may
be interested in monitoring survivors. The locations of
found survivors therefore represent the focus locales of
this application. The total number of sensor nodes is
assumed to be much larger than the number of focus
locales at any given time.

Sensor nodes at each focus locale elect a local
representative for communication with the rest of the
world. Distributed leader election algorithms may be

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association174

borrowed for this purpose from previous literature and
are not the goal of this paper. Our service adopts a
publish-subscribe model, as shown in Figure 1. In this
model, each representative publishes sensory data
about its focus locale to observers who subscribe to a
corresponding multicast group to receive such data.
The size of the published update stream originating at a
given locale is time-varying, depending on the
volatility of the environment and the type of sensors
involved. An environment, which changes frequently,
will generate more update traffic than a quiescent
environment. Similarly, sound sensors (microphones)
will generate more traffic than temperature sensors.

Contrary to previous multicast frameworks for
sensor networks, update traffic is multicast from focus
locales to receivers in an asynchronous manner. Data
caches are created at the nodes of the multicast tree. A
lazy algorithm is used for propagating data updates
among neighboring caches along the tree in the
direction of the receivers. These receivers may be
wireless hand-held devices or laptops, for example, in
the possession of rescue team members operating in a
disaster area. We assume that receivers do not move, or
move slowly compared to communication delays in the
network.

In general, data updates can be either accumulative
or non-accumulative. An example of accumulative
updates is recorded sound. To receive a continuous
recording, all (or most) sound samples should be
communicated. An example of non-accumulative
updates is thermal measurements. If the application is
interested in the current temperature only, past
temperature updates need not be reported. Most real-
time sensor outputs, with the general exception of
multimedia data, are non-accumulative in that current
measurements subsume stale measurements. Hence,
our scheme is restricted to non-accumulative updates.
This decision is also motivated by the fact that current
sensor network technology is too slow to handle
multimedia traffic in a cost-efficient way.

While in this paper we do not consider streaming
multimedia, an argument in favor of addressing such
traffic in sensor networks is that more powerful devices
may become available in the foreseeable future at an
affordable price. We argue, however, that advances in
sensor network technology are most likely occur in two
directions: developing more powerful devices of the
same form factor, and developing smaller devices of
the same processing and communication capacity.
Research reported in this paper is more relevant to the
latter direction.

In our model, observers who join the asynchronous
multicast tree specify a period at which the requested
data should be reported. Flurries of changes in the
environment need not be individually reported if they
occur at time-scales smaller than this period. Different
observers may specify different period requirements
for the same measurement. For example, an observer
who is close to the measured activity may request a
higher reporting rate than a distant observer.

Our middleware achieves four main functions; (i)
it determines the number of data caches for each focus
locale, (ii) it chooses the best location for each cache
such that communication energy is minimized, (iii) it
maintains each cache consistent with its data source at
the corresponding focus locale, and (iv) it feeds data to
observers from the most suitable cache instead of the
original sources.

A key difference between this problem and the
problem of caching in an Internet context is that in the
latter case, the topology of the network restricts the
choice of cache locations. In contrast, we assume a
sensor network that is dense enough such that a data
cache can be placed at any arbitrary physical location
in the monitored region, offering new degrees of
freedom to the data placement algorithm. Another key
difference is that the number of Internet proxy caches
is typically much smaller than the number of different
web sites. Hence, such caches are centralized powerful
machines, which gather and retain content from a large
number of distributed sources. In contrast, in this
paper, we consider a middleware caching service,
which runs on every sensor node. Since the number of
sensor nodes is larger than the number of focus locales,
the storage requirements of this service on any single
node are very small.

We assume that sensor nodes know their location.
Algorithms for estimating geographic or logical
coordinates have been explored at length in the sensor
network research [5][6]. These efforts address the
problem of location awareness using algorithms that do
not require high cost devices such as GPS on every
node. Classical ad hoc wireless routing protocols like
AODV [8], and DSDV [9] may be used along each
unicast edge of our data dissemination tree. These
protocols, however, are not location-aware which may

Physical
Devices

Network Layer: Routing and Location Services

Middleware Layer: Data Placement, Consistency
Management, Asynchronous Multicast

API: Subscribe (x,y)

Fig. 1: Middleware Architecture

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 175

affect performance. Several more recent adaptations
such as Location-aware routing (LAR) [7] and
geographical forwarding [4] make use of the location
information. These routing algorithms would be a
natural choice for the network layer underneath our
service. We now formulate our data placement problem
mathematically.

2.1. Problem formulation
Consider a sensor network that is monitoring a set of
focus locales at which events of interest occur. Given a
locale (X,Y) in a sensor network, let BS= {BS1,
BS2,….., BSM} be a set of M observers that request data
from that locale with rates Rreq={R1, R2,…., RM}. Let
sensor updates at (X,Y) occur at an average rate Rupdate.
A tree of copies is created for the sensor as shown in
Figure 2.

We define the cost of message transfer between

two nodes in the tree as the power expended on a
packet’s transfer on the shortest route multiplied by the
packet rate. Consider the case of placing a single data
copy to minimize cost as defined above. Let the data
copy be placed at a distance ni hops from the ith
observer and at a distance nsens hops from the sensor
node serving the data. In a densely populated network,
the hop counts will be large. The cost of sending a

single packet is proportional to the hop count. Hence,
the net cost of serving all observers is:

T = nsens . Rupdate
 + ∑1≤i≤M ni . Ri (1)

To place the copy at the optimal location, T has to be
minimized. Figure 3 shows the situation with three
observers. We can reduce this problem to the following
geometric optimization. Given N points, where point i
is at location (Xi,Yi), find a point (x,y) such that D =
∑1≤i≤N (di . wi) is minimum, where, di is the distance of
the ith point from (x,y), and wi is the weight of the edge
from the ith point to (x,y). This is illustrated in Figure 4.
A heuristic solution to this problem is to place (x,y) at
the center of gravity of the N input points in question,
i.e.:
 x = ∑1≤i≤N xiwi /∑1≤i≤N wi (2)
 y = ∑1≤i≤N yiwi /∑1≤i≤N wi (3)

Hence, in a minimum-cost tree with multiple
copies (i.e., multiple internal vertices), each copy (x,y)
should be at the center of gravity of those vertices to
which it is connected. The objective of our algorithm is
to find such a tree.

In the following, we compare our formulation to
other popular variants of content placement problems
described in prior literature. If the number of copies in
the tree is known in advance, a popular variation of the
problem is expressed as a Minimum K-median
problem, stated as follows. Given n points (possible
copy locations), select K of them to host data copies,
and feed each observer from a copy such that total
communication cost D is minimized, where:

D = ∑1≤j≤K ∑1≤i≤N cij . yij (4)
cij is the cost of the edge from i to j and yij is 1 if the jth
copy serves the ith observer, and 0 otherwise. Many
Internet-based content placement algorithms adopt this
model. In this case, the possible locations of the caches
are fixed. Hence, cij is fixed for the given network
topology. The problem is NP-hard, but heuristic
solutions are possible, e.g., [10] and [11]. If the cache
locations are specified, a minimum spanning tree can
be constructed to disseminate information from senders
to receivers at the lowest cost.

i

- observer

- Level-i

copy

- Sensor

1

1

1

2
2

2

Fig 2: Creating a hierarchy of copies

n3

Optimal
Position Sensor

Client

Client

Client

nsens
n2

n1

Fig. 3: Scenario for M = 4. The three
base-stations are served by the same copy.

Fig. 4: Corresponding geometric problem for N=4.

d1,w1

d4,w4

d3,w3

d2,w2

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association176

Our model differs in that copy locations are not
known a priori. In a dense sensor network, the number
of nodes n approaches infinity. Copies can essentially
be placed anywhere in the Euclidean plane without
restrictions. In this case, the problem is that of
constructing a minimum-cost weighted Steiner tree,
which connects the sensor node to the observers.

The Steiner tree formulation differs from the K-
median and spanning tree problems in that it allows
one to create new nodes in the tree as opposed to
having to choose from a pre-specified set of possible
node locations. This difference separates our paper
from similar work in web caching and content
distribution literature.

Note that Rupdate in our algorithm is not a fixed
sampling rate, but rather refers to the average rate of
change of the environment. Hence, it may vary
dynamically with environmental conditions. For
example, it may decrease when the environment is
quiet. An advantage of such dynamic adaptation is that
no energy is wasted when no updates occur. A
disadvantage is that an application is unable to tell
when it has missed an update (e.g., due to message
loss), since it does not expect updates to arrive at
particular time intervals. This problem can be solved in
several ways.

First, we may let Rupdate be a fixed sampling rate.
The formulation of our algorithm remains the same. In
this case, if a sample does not arrive in time, the
application can tell. Alternatively, the origin sensor
may number the updates. If a gap occurs in the
received update numbers, the application is aware that
a previous update was lost. The occasional loss may be
acceptable since we assume that only the latest update
is relevant at any given time. A potential problem with
the latter approach is that in the absence of subsequent
environmental changes, an important update may be
lost, unbeknown to the application, indefinitely. One
solution is to enforce an upper bound, B, on the update
period. Hence, when the environment is quiet a
message is expected at least once every B seconds.
Otherwise, the application is aware of a problem. In the
rest of the paper, we shall not address the issue update
loss any further.

3. Data Placement
Upon perturbation, distributed physical systems such as
weights interconnected by strings settle into an
equilibrium position, which represents a minimum
energy state. Our data placement algorithm is inspired
by such systems. Assuming environmental conditions
don’t change, each step of the algorithm reduces a
measure of total energy until a minimum energy tree is
found. More specifically, we use a distributed greedy
heuristic that iteratively places each node at the center

of gravity of its neighbors. Note that, while in a
physical system, energy has a direct meaning, in our
system energy is an abstract mathematical quantity. We
call the depth of the copy in the distribution tree rooted
at the origin sensor, the copy level. The original data at
the sensor is referred to as the level-0 copy. A heuristic
is used to add or remove copies in the tree. The
algorithm is described in more detail next.

3.1 The Algorithm
Each node on the multicast tree rooted at the sensor
maintains a location pointer to its parent as well as a
location pointer to each of its children. One can think
of these pointers as an application-layer routing table.
For each child, the node maintains the maximum
propagation rate, which is the maximum of all
requested update rates of all observers served by that
child. A node never forwards updates to a child at a
rate higher than the child’s maximum propagation rate.
This way, flurries of environmental updates that exceed
some receivers’ requested rates are not propagated
unnecessarily to those receivers.

3.1.1 Joining the Multicast Tree
An observer, k, joins a multicast tree by sending a
join() message to the location of the origin sensor, i.e.,
to the level-0 copy. The message indicates the location
of the observer and its desired update rate Rk. The
origin sensor forwards the message along the multicast
tree in the direction of the new observer as follows.
Each level-i copy (starting with the origin sensor),
upon receipt of the join message, determines if the new
observer is closer to any of its children than to itself. If
so, it forwards the join message to the corresponding
child, i.e., to a level-(i+1) copy. If the maximum
propagation rate for that child is lower than Rk it is
changed to Rk. This recursive forwarding terminates
when a node is found with no children that are closer to
the observer. We call this copy the nearest neighbor.
The nearest neighbor adds the observer to the set of its
children. The maximum propagation rate for the
observer is initialized to its requested update rate.
Figure 5 illustrates the message exchange in the join
process.

3.1.2 Copy Creation and Migration
For the purposes of creation of new cache copies,
nodes are differentiated into fixed and migratory. The
origin sensor and observers are fixed nodes. Other
nodes are migratory nodes that can move to better
locations of fork off new copies.

When a newly joined observer is connected to its
nearest neighbor N, node N computes the center of
gravity of itself and all its neighbors. It then computes
the savings, if any, resulting from creating a new copy

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 177

at that center of gravity. If the savings from creating
the copy exceed a threshold, the option of creating this
copy is deemed viable. Before we proceed further, let
us look more closely at how the copy may be created.

 New Link

Sensor

Join Request

Nearest Neighbor

New Node

Fig. 5: Joining the Multicast Tree

If N (the nearest neighbor) is the origin sensor, the

new copy can only be created downstream from it. The
copy would be fed from N and in turn feed N’s children
as shown in Figure 6-a. Otherwise, if N is not the origin
sensor, the new copy can in principle be created either
downstream or upstream from N. An upstream copy
would be fed from N’s parent and would feed both N
and N’s children as shown in Figure 6-b. A
downstream copy would be created as described above
(Figure 6-a). Observe that, if N is not a fixed copy, a
third option is also possible. Namely, it is possible to
simply move N to a new position. This is called copy
migration. In copy migration, when a newly joined
observer is connected to a migratory nearest neighbor
N, the node computes the center of gravity of all its
neighbors (including the new observer), and evaluates
the savings that would arise if it moves to the
computed position. If the difference is larger than a
fixed threshold the option of migration is deemed
viable. This is illustrated in Figure 6-c.

A viable option with the maximum savings among
three data placement options described above is
executed. It is easy to show that no new copies are
created unless there are three nodes in the system, and
that at most one copy is created for every newly joined
member. Hence, the algorithm creates at most m-2
copies where m is the total number of observers.

3.1.3 Leaving the Multicast Tree
An observer, k, leaves the multicast tree by sending a
leave() message to its parent N. The parent stops
forwarding messages to the departed observer. If k had
the highest maximum forwarding rate among N’s
children, N resets its own maximum forwarding rate to
that of the next-highest rate child. If N is a migratory
node, it computes the center of gravity of all remaining

neighbors, computes the savings that result from
moving to that center, and moves there if the savings
exceed a threshold. If there is only one child left for the
migratory node, the node is deleted and its parent takes
over its child.

Prospective Copy

Nearest Neighbor (Origin Sensor)

New Node

(a) Nearest neighbor creates downstream copy

Prospective Copy

Nearest Neighbor
New Node

(b) Nearest neighbor creates upstream copy

Prospective Move

Nearest Neighbor

New Node

(c) Nearest neighbor moves

Fig. 6: Copy Creation and Migration Rules

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association178

3.2 Sampling Rupdate
To perform center of gravity computations, nodes must
know not only the requested observer rates, but also the
environmental sensor update rate, Rupdate. There are two
simple approaches towards the measurement of that
rate. One approach is to measure the number of updates
over the last n seconds. A disadvantage of this
approach is that it has a fixed time horizon after which
it forgets the past. It may be more advantages to adapt
the horizon to the current rate of updates itself, such
that system agility is increased when activity is high.
An approach for calculating Rupdate, which has the
aforementioned adaptive property, is to take the inverse
of the average of the last k inter-arrival times. More
complicated methods like predictive modeling could
have been used but this would be limited by the
computation and storage resource constraints of the
nodes. For our simulation purposes we have used a
simple model where Rupdate is calculated as the inverse
of the average of the last five inter-arrival times. The
number five is selected as the sample size to reflect that
we expect any five consecutive updates to be strongly
correlated, though a larger or smaller number could be
chosen according to how volatile we expect the
environment to be.

4. Evaluation
Our current service implementation utilized Berkeley
motes [15] as the underlying distributed platform.
These are tiny computing devices, which run a
microthreaded operating system called TinyOS [16].
Each node has up to three sensors. It runs on an 8-bit 4
MHz micro-controller and has 128KB of program
memory and 4KB of data memory. However, the
number of motes available to us at present is
insufficient for large-scale experiments. Hence, in the
first set of experiments, we use the motes only to
derive communication and power consumption
characteristics that are then fed to a simulator.
Accordingly, we also implemented our data placement
middleware in the ns-2 simulator [20]. Our goal in
simulating the data placement algorithm is to test
whether it actually conserves power as expected given
the power and communication characteristics of the
motes. Our simulation model is a network of (200≤ N ≤
500) nodes in a 200m x 200m grid each having a radio
range of 20m. The packet sizes are kept as 30 bytes, as
used by the Berkeley motes running TinyOS. The
number of base-stations is roughly 5% the number of
nodes in the network. Since we have to model a
location-aware network, we assume that each node
knows it own location. We implemented a wrapper,
which works on top of the simulated routing protocol
in ns-2, and translates the destination location of
packets into actual destination node addresses. A focus

locale in the network is generated at random for
simulation purposes, and the base-stations send
periodic queries to the hot spot. The request rates are
generated at random with a specific average throughout
the experiment. The energy consumption is measured
in terms of Joules per node per flow. Each value is
taken as the average over three simulations.

At peak load the Berkeley motes consume about
60mW of power [15]. Of this 60mW about 10mW is
consumed by the microcontroller unit. However, the
MCU is not loaded about 50% of the time, and it has an
idle mode in which it consumes only 40% of the
normal power. Another very important fact to note is
that more than 90% of the CPU utilization is due to bit,
byte and packet level processing. Thus reduction in the
number of packets in the network leads to lower CPU
utilization and hence even greater power savings.
However for simulation purposes, we have no accurate
way to model CPU utilization in ns-2, so we measure
only the radio power consumption, and the energy
spent in communication. Since we discount savings in
CPU power consumption, the actual power savings of
the algorithm may be higher than shown in this section.
The importance of optimizing communication cost is
also supported by measured data from recent
prototypes of sensor network devices, which show that
the main power sink in the network is, indeed, wireless
communication. Energy consumption for
communication in our simulation follows the Berkeley
motes [15] which consume 1 µJ for transmitting and
0.5 µJ for receiving a single bit. We also use the two-
ray ground model (1/r4) as the radio propagation model
and an omni-directional antenna having unity gain in
the simulation.

Geographic forwarding (GF) [29] is found as a
routing protocol appropriate for the sensor networks. It
is therefore used in the simulation. GF makes a greedy
decision to forward a packet to a neighbor if it has the
shortest geographic distance to the destination among
all neighbors and it is closer to the destination than the
forwarding node. To illustrate the appropriateness of
GF, we compare its performance to that of AODV whn
they are used in conjunction with data placement.
AODV is a reactive routing algorithm developed for ad
hoc wireless networks. It computes and caches routes
on-demand. As shown in Fig. 7, the power
consumption measured for GF is lower than that for
AODV. The primary reason is that AODV does not
leverage geographical information, thereby consuming
more energy on route discovery. Hence for our
simulations, we use GF as a routing algorithm.

4.1 Simulation Results
We compare the performance of the data placement
middleware against four baselines; (i) a simple unicast-
based query-response model, (ii) update multicast

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 179

(synchronous push model) (iii) directed diffusion, and
(iv) update flooding.

0

0.05

0.1

0.15

0.2

0.25

0.25 0.5 0.75 1 2 3 4 5

DP/AODV

DP/GF

1/Average sensor update rate (normalized)

A
ve

ra
ge

 d
is

si
pa

te
d

en
er

gy
 (

Jo
ul

es
/fl

ow
/n

od
e) t = 20 request cycles

The first experiment (Figure 8) compares the
energy consumption of the four aforementioned
baselines for different node densities. For this
experiment, the request rate is set, on average, to about
two times the average update rate of the environment.
Hence, regular (as opposed to asynchronous) multicast
should be an optimal policy. We vary the number of
nodes in the network over a grid of 200m x 200m. As
we can see from Figure 8, flooding performs very
badly. Traces reveal that power is wasted on both
excessive communication and collisions caused by the
update messages flooding through the network. The
query-response scenario performs much better than
flooding, but not as good as data placement. Directed
diffusion performs almost as good as data placement.
As expected, regular multicast performs best. The
slight difference between regular multicast and data
placement is due to the somewhat higher overhead of
our scheme. As we show shortly, this overhead is offset
by considerable savings when the average update rate
increases beyond the request rate.

Unlike regular multicast, a main feature of the data
placement algorithm is that it is adaptive and sensitive
to changes in average sensor update rates. When the
sensor update rates are high, more replicas are
refreshed at a rate determined by the request rates and
when the update rate is low, the copies are refreshed
only when an update actually occurs. Next we compare
the performance of the four baselines to that of our
adaptive heuristic as the average update rate is
changed. These communication models are compared
over a network of 400 nodes in a 200m x 200m grid
each having a radio range of 25m. The sensor update
rate is normalized against the average request rate. The

sensor update period is varied between 1.5 s and 30 s.
The average request rate is one per six seconds.

0

5

10

15

20

25

200 300 400 500

Update Multicast
Data Placement
Directed Diffusion
Query Response
Update Flooding

Number of nodes

A
ve

ra
ge

 d
is

si
pa

te
d

en
er

gy
 (

Jo
ul

es
/n

od
e)

In Figure 9, we show the average energy

consumption in the steady state after all observers have
joined the tree.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.25 0.5 0.75 1 2 3 4 5

Update Unicast
Directed Diffusion
Update Multicast
Query Response
Data Placement

A
ve

ra
ge

 d
is

si
pa

te
d

en
er

gy
(J

ou
le

s/
no

de
/f

lo
w

)

1/Average sensor update rate

As can be seen from the figure, when the Sensor

Update Rate is high (i.e., 1/ Sensor Update Rate <1),
the data placement algorithm performs better than the
simple query response model, the directed diffusion,
and update unicast because it does not send
unnecessary updates. When the network is more
quiescent, it achieves results, which are quite close to
the simple multicast strategy. The difference between
the two is the power overhead of adaptation. Thus, our
data placement middleware adapts to the volatility of
the environment resulting in a performance that is
better than update multicast when the update rate is
low, but does not suffer a performance degradation in
when the sensor update rate is high.

Fig 7: Average dissipated energy of data
placement over AODV and GF

Fig 9: Steady-state dissipated energy plotted
against sensor update rate.

Fig 8: Average dissipated energy

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association180

0

0.2

0.4

0.6

0.8

1

1.2

200 300 400 500

Query Response
Data Placement
Update Multicast
Directed Diffusion

Number of nodes

A
ve

ra
ge

 d
is

si
pa

te
d

en
er

gy
 (

Jo
ul

es
/n

od
e/

fl
ow

)

The next experiment is carried out in order to

measure energy consumed when a new observer joins
the tree. In the data placement, the new observer sends
a join message to the origin sensor and the nearest node
is found to connect the observer. Figure 10 shows the
average energy consumption per join during the
transient phase of tree construction. It is evaluated
under the same environmental conditions as in the
preceding experiment. The transient phase in the case
of directed diffusion includes both initial flooding and
multi-path sending before a single path is chosen by the
gradient. The data placement heuristic consumes less
energy than the update multicast and the energy
dissipation does not depend upon the number of nodes
in the network.

In our data placement algorithm, when a new data
copy is placed, neighbors of the new copy are no
longer in the center of gravity of their own neighboring
nodes. Hence, as a rule, when the number or locations
of neighbors of some data copy change, the copy
recalculates its position to the new center of gravity. If
the difference between the cost at the new position and
the cost at the old one is larger than a given threshold,
the old copy migrates to the new position. This
migration, in turn, may cause other surrounding nodes
to migrate. The effect percolates through the tree
branch until no more nodes need to be moved. Figure
11 shows a transient and steady state energy
consumption graph against various threshold values in
the data placement heuristic. A smaller threshold
results in more aggressive tree optimization. It entails
more overhead for tree construction, but results in
lower power consumption at steady state. Conversely,
an extremely large threshold makes the tree essentially
more static. Transient overhead is reduced, but steady
state power consumption increases due to a less
optimized tree. Observe that the difference between
power consumption at the two extremes is not that
pronounced. This is because network density is not
infinite. Hence, a newly computed copy location is

likely to fall in a void between sensor nodes. As an
approximation, the copy is mapped to the closest node
from that void. Even if the threshold is zero, it is often
the case that the new (optimized) position of a copy is
close enough to its current position so that the copy is
mapped to the same node as before. No move is
therefore taken making the performance more similar
to that of a static tree.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 2 4 6 8 inf

Transient energy at P=1
Steady-state energy at P=1
Transient energy at P=0.5
Steady-state energy at P=0.5

Threshold (rate*distance)

D
is

si
pa

te
d

en
er

gy
 (

Jo
ul

es
)

Cycles at steady state = 4, P=R req /R update

Next, we test system performance when the

average update rate is a non-stationary process, which
changes drastically over short periods of time. We use
the average update traffic pattern shown in Figure 12.
The sensor switches between high and low average
update rates with a period T. This average rate is used
to determine actual update inter-arrival times, drawn
from a Poisson distribution. This load model is used to
simulate quiescent periods in the environment
interlaced with volatile periods. At high update times,
the update rate is made to be a Poisson distribution
with mean of 0.5 times the maximum request rate, and
at low update times it is made to be a Poisson
distribution with mean of 3 times the request rate.

 T

High update rate,
Poisson process
with mean =
0.5*Rmax

Low update rate,
Poisson process
with mean =
3*Rmax

Fig 12: Update pattern

Fig 10: Energy consumption in transient phase

Fig 11: Energy consumption in adjusting data
placement

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 181

Figure 13 shows the performance of the data
placement algorithm for different values of T. The
network size was fixed at 300 nodes over a 200m x
200m grid. When T is sufficiently larger than Rmax (Rmax
is the maximum request rate), data placement performs
better than both query-response and update multicast,
because it adapts to suit both the high and low update
rates. As the average update rate is calculated as the
inverse of the average of the last five inter-arrival
times, when T becomes less than 5Rmax, this sampling
becomes increasingly inaccurate. Since the average
update rate keeps changing rapidly, there are more
failures and hence, the communication savings
decrease as might be expected.

0

1

2

3

4

5

6

7

8

9

T=50/Rmax T=10/Rmax T=5/Rmax T=2/Rmax

A
ve

ra
g

e
en

er
g

y
d

is
si

p
at

ed
 i

n
 c

o
m

m
u

n
ic

at
io

n
 (

Jo
u

le
s/

n
o

d
e/

fl
o

w

Data placement
Update Unicast
Update Multicast

Another important concern to address is how the

energy savings translate into an increase in the lifetime
of the network. Figure 14 shows the fraction of nodes
that are alive versus network run-time. We simulate a
network of 400 nodes, keeping other parameters the
same as earlier. Observers and the origin sensor are set
to have infinite energy. A point to be noted here is that
not all the nodes consume energy equally as some
nodes are more active than others. When a certain
number of nodes die, the network becomes partitioned,
and parts of the network may become unreachable. At
this point we consider the network unusable. Figure 14
shows the time it takes the network to get partitioned
under various communication schemes. (The end of the
plot indicates when the network gets partitioned.) It is
shown that the system lifetime with the data placement
heuristic is longer than with other baselines. As shown
in Figure 9 and Figure 10, the data placement heuristic
results in fair energy savings in both the steady state
and the transient state. Hence, it increases system
lifetime.

350

360

370

380

390

400

410

0 250 500 750 1000 1250 1500 1750 2000

Tim e (sec)

T
h

e
nu

m
be

r
of

 n
od

es
 a

liv
e

Directed Dffusion

Update
unicast

Update
multicast

 Data
Placement

4.2 Effect of Sampling of Rupdate
As mentioned in section 3.3, there are several ways for
accurately measuring Rupdate. We argue that inaccuracy
in measuring/predicting Rupdate has very little impact on
the overall performance of Data Placement. Figure 15
evaluates the sensitivity of power savings to the choice
of the averaging interval for the sensor reported rate,
Rupdate. Averaging intervals 5 and 10 are compared. The
simulated traffic is the same as in Figure 12 and the
experimental setup is the same as the experiment of
Figure 13. The figure shows that power savings are
insensitive to the averaging interval.

0

1

2

3

4

5

6

7

8

T=50/Rmax T=10/Rmax T=5/Rmax T=2/Rmax

A
ve

ra
g

e
E

n
er

g
y

D
is

si
p

at
ed

 in
 C

o
m

m
u

n
ic

at
io

n
(J

o
u

le
s/

n
o

d
e/

fl
o

w
)

Sample Size = 5

Sample Size = 10

Thus, our simulation results show that our data

placement middleware gives us considerable energy
savings irrespective of the amount of load or the
dynamic nature of the network. A point to note is that
the energy savings are not uniform over the whole
network. They depend on the location of the base-
stations and the locations from where data is requested,
just as the communication without data placement

Fig 15: Average Dissipated Energy using
different sample sizes for Rupdate

Fig 13: Average dissipated energy for the three
models for different values of T

Fig 14: Lifetime of nodes in a sensor network
using data placement

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association182

would have expended energy non-uniformly. In
general, we expect the results to improve with network
size. This is because our main savings come from the
use of adaptively constructed multicast trees. Since the
size of a well-balanced tree is logarithmic in the
number of recipients, power savings compared to
unicast should increase exponentially with tree size.

4.3 Prototypical Testbed Implementation

To conclude our results, we constructed an
experimental prototypical mini-testbed from a 5 by 5
grid of motes with one light sensor at a corner, and
three base-stations (Figure 16). We ensured that a node
can hear its immediately adjacent and diagonal
neighbors. The three base-stations request light data
from the sensor node, as shown in Figure 16. The base-
station at the bottom right corner is connected to the
serial port of a PC, where an application package reads
the packets being received at the base-station.

The underlying routing protocol used is
geographic forwarding, in which a node forwards a
packet to the neighbor that is closest to its destination.
The interface to the routing protocol accepts TinyOS
commands from the data placement middleware to
send messages to a given node. In addition, it signals
an event when the message transmission is complete.
The data placement layer handles this event.

The base-station (0) communicates with the PC
using the serial port. Thus this base-station has both a
RS232 communication channel as well as RF
communication. In order to distinguish between the
two channels, a special address (0x7e) is assigned to
the serial port interface. Thus a device receiving a
packet for this destination forwards the packet to the
local UART instead of the radio.

The light sensor acquires 10-bit values for light
intensities. The sensor data is acquired by polling the
light sensor. We define a resolution range of 5 bits, i.e.,
an update occurs only if any of the 5 most significant
bits change. We calculate the value of Rupdate by
sampling the last 5 inter-update times.

Our implementation of data placement has about
250 lines of code (C statements), and the complete

package including TinyOS and geographic forwarding
takes about 14.5KB of program memory. Thus
memory-wise, the middleware is not heavyweight in
terms of memory.

0

100

200

300

400

500

600

700

800

900

1 2 3

Number of base-stations

N
u

m
b

er
 o

f
p

ac
ke

ts

Query-response scenario

With Data Placement

As has been discussed earlier, communication is
the main sink for energy. The motes have an idle mode
in which the mote draws 5µA compared to 5mA in the
peak model. To estimate actual energy consumption on
the motes, we measure the amount of communication
in terms of the number of packets in the network.
Figure 17 shows the number of packets in the network
over a period of 200 seconds in a single trial run using
data placement and without data placement. Here the
sensor gets updated approximately once every 12
seconds. The base-stations request data once every 5
seconds. For the cases on one and two base-stations, all
possible combinations of the three base-stations are
considered, and the mean is taken.

Though the savings in the number of packets are
an order of magnitude, this does not translate into
proportional energy savings, since some power is
expended on listening (even when nothing is being
received). Even so, we have shown that we can get
significant reduction in the number of packets in the
network.

6. Related Work
Wireless sensor networks are a relatively new area of
research. Traditional networking paradigms are not
directly applicable to this scenario. However, there has
been a lot of work lately on developing new paradigms
and services for sensor networks, taking into account
the unique features of these networks. New protocols
are being developed for routing, MAC, data
dissemination and location services. Several hardware
platforms as well as specialized operating systems have
also been developed. Since there are a number of
parallel efforts, several different paradigms and
protocols are bound to come up. Our data placement

Base-
station

Base-
station

Sensor

Fig 16: Sensor Network Testbed

Fig 17: Number of packets using the two
approaches

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 183

algorithm makes minimal assumptions about the
underlying layers and the other supporting services.

One of the essential properties of a sensor network
is that all the nodes are location aware. Since the nodes
cannot afford to have heavyweight GPS, they have to
use some location service, that estimates the location of
the individual nodes using some GPS equipped nodes
as beacons. Nagpal [5] and Bulusu, Heidemann et al.
[6][12] proposed location estimation using beacons
which does not require GPS at every node.

In a network with thousands of nodes, it would be
wasteful to assign unique id’s to each node. Also,
queries would be addressed by location, and that would
necessitate a location directory service, if unique id’s
were used. This would consume more resources.
Papers by Heidemann, Silva et al. [3] and Imielinski,
Goel [13] proposed addressing by geographical
location and attributes. Our data placement algorithm
shall work both for fixed addresses and addressing by
location. For the case in which fixed addresses are
used, a location directory service is used to lookup
mapping from node-id’s to locations.

To conserve energy from communication, Xu,
Heidemann, and Estrin [4] have proposed a
geographical adaptive fidelity (GAF) algorithm in
which equivalence classes of nodes are formed from a
routing perspective. Their method of energy
conservation is to put nodes to sleep whenever
possible. Our data placement algorithm can co-exist
with GAF, by putting the constraint that nodes that are
holding copies of the data cannot go to sleep until they
handoff their data to another node.

The formation of a tree of copies along which the
update is propagated is similar to the formation of a
multicast tree, where all the nodes are members of the
multicast group. In that sense, our work is related to
multicast protocols. However, our approach differs
from traditional multicast routing in several respects.
First, updates are propagated asynchronously in a lazy
manner in accordance with consistency constraints.
Second, the depth of our tree is determined by the
update and the request rates, and it adapts itself to
minimize the communication. Finally, our work is an
overlay multicast algorithm that works on top of the
network layer, rather than traditional multicast routing
[23][24] that takes place at the network layer. In wired
networks, End-to-end multicast and Scribe based on
Pastry, are included into overlay multicast designs.

Data placement is also similar to some of the ideas
used in the placement of web server replicas [1]. In
these schemes, replicas of web server content are
placed online based on predicted demand. Data
placement furthers this idea by using the property of
location-awareness of the sensor nodes. Another
approach used in [21] is to let the documents
themselves decide their replication strategy. However,

in our case we make use of the homogeneity of the
data, and the fact that the sensors do not differentiate
between types of data, to provide for a unified
replication strategy. Another approach has been
geographical push-caching [22] in which the server
decides when and where to cache the files. This
technique would not work for a sensor network
because a sensor node cannot keep track of all the
base-stations it is serving. In our approach, the sensor
node only needs to keep track of a small number of
level-1 copies.

ShopParent algorithm [30] is the latest work of
publish/subscribe tree construction in the wireless
adhoc network. This greedy algorithm builds the tree in
a distributed fashion and uses a spanning tree to find a
better outcome. Its model uses every node in the
network for tree construction, which makes searching
for the nearest node easier. However, the model is not
available in the sensor network with a large number of
nodes. The ShopParent is also different from ours in
that it does not use a Steiner tree for multicast and does
not use location information.

In recent years, research on Content Distribution
Networks has focused on replication and placement of
content to improve performance over a large scale
distributed systems. Most of the work focuses on
internet-type topologies and scale [26][25]. Chord [26]
uses a variant of consistent hashing to map a key to a
node. Its scalability lies in the fact that the amount of
state that needs to be maintained by each node scales
logarithmically with the number of Chord Nodes. In
[27], the concept of Content Addressable Networks
(CAN) is used for providing hashing like functionality
to retrieve data from replicas in the network. CAN
routing uses a co-ordinate routing table, and the
network is visualized as a d-dimensional space. It
extends functionalities of DNS by providing a flexible
naming scheme. However replication in CAN is more
hotspot driven. Another system, OceanStore [25],
provides an infrastructure designed to span the globe
and provide access to persistent information. The
primary difference between these systems and data
placement and replication in a sensor network is that
the data placement algorithm presented in this paper
leverages the location information available to the
nodes to reduce power consumption. In contrast, work
on CDN falls into two categories. It either (i) ignores
physical topology altogether, focusing on peer-to-peer
protocols defined in a logical overlay space, or (ii)
optimizes the weight of the tree assuming a
heterogeneous network of known topology with point-
to-point links of different bandwidth. This optimization
is not applicable to wireless sensor networks, where the
physical network topology is unknown, yet it is the
physical (i.e., geographic not overlay) tree that needs to
be optimized for power consumption. Geographic

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association184

information and energy consumption have been not
considered in aforementioned papers.

Finally, the problem addressed in this paper is
somewhat reminiscent of data placement in distributed
shared memory systems [20]. As in shared memory
systems, data in sensor networks can be thought of as a
set of objects manipulated by read() and write()
operations. The write() operations are performed by
sensors. The read() operations are performed by users.
In shared memory systems, it is desired to maximize
the average performance of memory accesses given
some desired data consistency semantics. In sensor
networks, the problem is to minimize average power
consumption per data access subject to data
consistency constraints. Both problems reduce to
finding algorithms for appropriate dynamic placement
of data objects in the network such that communication
is minimized. Sensor networks, however, due to their
fine granularity, large scale, and direct interaction with
the physical environment, exhibit significantly
different data access patterns, consistency constraints,
and communication cost models than do distributed
shared-memory systems. Hence a new set of
algorithms is called for to achieve power minimization.

7. Conclusion
In this paper, we have presented data placement as a
means of reducing energy consumption and, hence,
increasing the lifetime of a sensor network. We present
an algorithm, which places copies of the requested data
and updates them so as to minimize the communication
overhead and power consumption of data transfer.

Our algorithm is completely distributed and
requires very little local processing. The amount of
bookkeeping involved is small, which fits in nicely
with the constraint of limited memory resources. Also
it makes minimal assumptions about the underlying
MAC and routing layers, although pro-active routing
algorithms like DSDV are not a good choice for these
types of networks.

In conclusion, data placement is a new approach
for energy conservation in wireless sensor networks.
To our knowledge, very little previous work has been
done to apply data placement to a location-aware
network.

Further work such as accommodating quickly
moving observers and accounting for node failures
needs to be done to introduce guarantees into the data
placement model. In the big picture, data placement
may act as a service that aids in providing power
saving and QoS guarantees to applications running on
these sensor networks. This is analogous to how web-
caching and content distribution help in providing
better performance and guarantees over the Internet.

Acknowledgements
This work was supported in part by DARPA grant
F33615-01-C-1905, MURI grant N00014-01-1-0576,
and NSF grant CCR-0208769.

References
1. Lili Qiu, Venkata Padmanaban, Geoffrey M Voelker,

On the Placement of Web Server Replicas, Proc.
IEEE INFOCOMM 2001.

2. Chalermek Intanagonwiwat, Ramesh Govindan and
Deborah Estrin, Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor
Networks, In Proceedings of the Sixth Annual
International Conference on Mobile Computing and
Networks (MobiCom 2000), August 2000, Boston,
Massachusetts.

3. John Heidemann, Fabio Silva, Chalermek
Intanagonwiwat, Ramesh Govindan, Deborah Estrin,
and Deepak Ganesan. Building Efficient Wireless
Sensor Networks with Low-Level Naming. In
Proceedings of the Symposium on Operating
Systems Principles (SOSP 2001), Lake Louise,
Banff, Canada, ACM. October 2001.

4. Ya Xu, John Heidemann, and Deborah Estrin,
Geography-informed Energy Conservation for Ad
Hoc Routing, Proceedings of the Seventh Annual
ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom 2001),
Rome, Italy, July 16-21, 2001.

5. N. Bulusu, J. Heidemann and D. Estrin, GPS-less
Low Cost Outdoor Localization For Very Small
Devices, IEEE Personal Communications, Special
Issue on "Smart Spaces and Environments", Vol. 7,
No. 5, pp. 28-34, October 2000.

6. Radhika Nagpal, Organizing a Global Coordinate
System from Local Information on an Amorphous
Computer, MIT AI Memo 1666, August 1999

7. Young-Bae Ko and Nitin H. Vaidya, "Location-
Aided Routing(LAR) in Mobile Ad Hoc Networks,"
In Proceedings of the Fourth Annual ACM/IEEE
International Conference on Mobile Computing and
Networking (MobiCom 1998), ACM, Dallas, TX,
October 1998.

8. C. E. Perkins and E. M. Royer, "Ad-hoc On Demand
Distance Vector Routing." 2nd IEEE Workshop on
Mobile Computing Systems and Applications
(WMCSA'99), New Orleans, Louisiana, February
1999.

9. Charles E. Perkins and Pravin Bhagwat, Highly
dynamic Destination-Sequenced Distance-Vector
routing (DSDV) for mobile computers, in
SIGCOMM Symposium on Communications
Architectures and Protocols, (London, UK), pp. 212-
225, Sept. 1994.

10. M. Charikar, S. Guha, E. Tardos and D.B. Shmoys,
A constant factor approximation algorithm for the k-
median problem. Proceedings of the 31st Annual
ACM symposium on Theory of Computing.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 185

11. M. Charikar and S.Guha, Improved Combinatorial
Algorithms for the Facility Location and K-median
Problems. In Proc. Of the 40th Annual IEEE
Conference on Foundations of Computer Science,
1999.

12. N. Bulusu, J. Heidemann and D. Estrin, Adaptive
Beacon Placement, Proceedings of the 21st
International Conference on Distributed Computing
Systems (ICDCS-21), Phoenix, Arizona, April 2001.

13. Tomasz Imielinski and Samir Goel, "DataSpace -
querying and monitoring deeply networked
collections in physical space," IEEE Personal
Communications Magazine, Special Issue on
Networking the Physical World, October 2000.

14. Philippe Bonnet, J. E. Gehrke, and Praveen Seshadri.
"Querying the Physical World," IEEE Personal
Communications, Vol. 7, No. 5, October 2000, pages
10-15. Special Issue on Smart Spaces and
Environments.

15. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler,
and K. Pister, " System architecture directions for
network sensors," ASPLOS 2000.

16. Development platform for self-organizing wireless
sensor networks, Proc. SPIE, Unattended Ground
Sensor Technologies and Applications, Vol. 3713, p.
257-268.

17. A Compendium of NP optimization problems
http://www.nada.kth.se/viggo/problrmlist/compendiu
m.html

18. Self-organizing distributed sensor networks, Proc.
SPIE, Unattended Ground Sensor Technologies and
Applications Vol. 3713, p. 229-237.

19. The ns-2 simulator. http://www.isi.edu/nsnam.
20. Distributed Operating systems. Andrew S.

Tanenbaum Prentice Hall.
21. Guillaume Pierre, Maarten van Steen, andAndrew S.

Tanenbaum, Self-replicating Web documents,
Technical Report IR-486, Vrije Universiteit,
Amsterdam, February 2001,

22. The Case for Geographical Push Caching.
Proceedings of the Fifth Annual Workshop on Hot
Operating Systems, Orcas Island, WA, May 1995

23. E. M. Royer and C. E. Perkins, Multicast operation
of the ad-hoc on-demand distance vector routing
protocol, in Proc. of ACM/IEEE Intl. Conference on
Mobile Computing and Networking (MOBICOM),
Aug. 1999

24. A Survey of Multicast Technologies (2000), Vincent
Roca, Luís Costa, Rolland Vida, Anca Dracinschi,
Serge Fdida September 2000.

25. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gumadi, S. Rhea, H.
Weatherspoon, W. Weimer, C.Wells, B. Zhao.
Oceanstore: An Architecture for Global-scale
Persistent Storage. In the Proceedings of ASPLOS
2000, Cambridge, Mmassachusetts, Nov. 2000.

26. I. Stoica, R. Morris, D. Karger, f. Kaashoek, H.
Balakrishnan. Chord: A Scalable Peer-to-Peer
lookup Service for Internet Applications. In

Proceedings of ACM Sigcomm 2001, San Diego, CA,
Aug. 2001.

27. S. Ratnasamy, P. Francis, M. Handley, R. Karp, S.
Shenker. A Scalable Content-Addressable Network.
In Proceedings of ACM Sigcomm 2001, San Diego,
CA, Aug. 2001.

28. A. Woo, and D. Culler. A Transmission Control
Scheme for Media Access in Sensor Networks,
Proceedings of the Seventh Annual ACM/IEEE
International Conference on Mobile Computing and
Networking (MobiCom 2001), Rome, Italy, July 16-
21, 2001.

29. B. Karp and H. Kung, Greedy Perimeter Stateless
Routing, in Proc. of the Sixth Annual ACM/IEEE
Intl. Conference on Mobile Computing and
Networking (MOBICOM), Boston, 2000.

30. Yongqiang Huang, Hector Garcia-Molina. Publish/
Subscribe Tree Construction in Wireless Ad-Hoc
Networks, 4th International Conference on Mobile
Data Management, January, Melbourne, Australia,
2003.

