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Abstract 

In recent years, large distributed sensor networks have 
emerged as a new fast-growing application domain for 
wireless computing. In this paper, we present a 
distributed application-layer service for data 
placement and asynchronous multicast whose purpose 
is power conservation. Since the dominant traffic in a 
sensor network is that of data retrieval, (i) caching 
mutable data at locations that minimize the sum of 
request and update traffic, and (ii) asynchronously 
multicasting updates from sensors to observers can 
significantly reduce the total number of packet 
transmissions in the network. Our simulation results 
show that our service subsequently reduces network 
energy consumption while maintaining the desired data 
consistency semantics. 

 
1. Introduction 
Sensor networks are ad hoc wireless networks made of 
large numbers of small, cheap devices with limited 
sensing, computation, actuation, and wireless 
communication capabilities. Such a network, for 
example, can be dropped from the sky on a disaster 
area to form collaborative teams of programmable 
nodes that help with rescue operations. Sensor 
networks are made possible by advances in processor, 
memory and radio communication technology, which 
enable low-cost mass-production of sensor-equipped 
wireless computing nodes.  

The sensor network paradigm is motivated by 
applications such as guiding rescue efforts in disaster 
areas, monitoring poorly accessible or dangerous 
environments, collecting military intelligence, tracking 
wild-life, or protecting equipment and personnel in 
unfriendly terrains. In such environments, it is usually 
impractical to build fixed infrastructures of powerful 
and expensive nodes. Instead, the sensor networks 
philosophy advocates the use of myriads of 
inexpensive nodes strewn arbitrarily in the 
environment and left largely unattended.  

The primary function of sensor networks is the 
collection and delivery of sensory data. Power is 
identified as one of the most expensive resources. Due 
to the difficulty of battery recharging of thousands of 
devices in the remote or hostile environment, 

maximizing battery lifetime by conserving power is a 
matter of great importance. 

In this paper, we develop a distributed framework 
that improves power conservation by application-layer 
sensor data caching and asynchronous update 
multicast. The goal of the framework is to reduce the 
total power expended on the primary network function; 
namely, data collection and delivery. 

The importance of optimizing communication cost 
is also supported by measured data from recent 
prototypes of sensor network devices, which show that 
the main power sink in the network is, indeed, wireless 
communication. For example, the Berkeley motes [15] 
consume 1 µJ for transmitting and 0.5 µJ for receiving 
a single bit, while the CPU can execute 208 cycles 
(roughly 100 instructions) with 0.8 µJ. Assuming full 
load, CPU power consumption is about 10mW, 
compared to 50mW for the radio. The high power cost 
of communication makes it a prime candidate for 
optimization.  

The remainder of this paper is organized as 
follows. Section 2 presents the service model and the 
formulation of the power minimization problem. 
Section 3 presents the details of the data placement 
middleware and its API. Section 4 presents an 
evaluation using experimental as well as simulation 
results. Section 5 reviews the related work. The paper 
concludes with section 6. 
 
2. Service Model 
Consider a dense ad hoc wireless sensor network with 
multiple observers, spread over a large monitored area. 
At any given time, the observers’ attention is directed 
to a relatively limited number of key locales in the 
network, where important events or activities are 
taking place. We call them focus locales. For example, 
in a disaster area scenario, rescue team members may 
be interested in monitoring survivors. The locations of 
found survivors therefore represent the focus locales of 
this application. The total number of sensor nodes is 
assumed to be much larger than the number of focus 
locales at any given time.  

Sensor nodes at each focus locale elect a local 
representative for communication with the rest of the 
world. Distributed leader election algorithms may be 
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borrowed for this purpose from previous literature and 
are not the goal of this paper. Our service adopts a 
publish-subscribe model, as shown in Figure 1. In this 
model, each representative publishes sensory data 
about its focus locale to observers who subscribe to a 
corresponding multicast group to receive such data. 
The size of the published update stream originating at a 
given locale is time-varying, depending on the 
volatility of the environment and the type of sensors 
involved. An environment, which changes frequently, 
will generate more update traffic than a quiescent 
environment. Similarly, sound sensors (microphones) 
will generate more traffic than temperature sensors. 

Contrary to previous multicast frameworks for 
sensor networks, update traffic is multicast from focus 
locales to receivers in an asynchronous manner. Data 
caches are created at the nodes of the multicast tree. A 
lazy algorithm is used for propagating data updates 
among neighboring caches along the tree in the 
direction of the receivers. These receivers may be 
wireless hand-held devices or laptops, for example, in 
the possession of rescue team members operating in a 
disaster area. We assume that receivers do not move, or 
move slowly compared to communication delays in the 
network. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

In general, data updates can be either accumulative 
or non-accumulative. An example of accumulative 
updates is recorded sound. To receive a continuous 
recording, all (or most) sound samples should be 
communicated. An example of non-accumulative 
updates is thermal measurements. If the application is 
interested in the current temperature only, past 
temperature updates need not be reported. Most real-
time sensor outputs, with the general exception of 
multimedia data, are non-accumulative in that current 
measurements subsume stale measurements. Hence, 
our scheme is restricted to non-accumulative updates. 
This decision is also motivated by the fact that current 
sensor network technology is too slow to handle 
multimedia traffic in a cost-efficient way.  

While in this paper we do not consider streaming 
multimedia, an argument in favor of addressing such 
traffic in sensor networks is that more powerful devices 
may become available in the foreseeable future at an 
affordable price. We argue, however, that advances in 
sensor network technology are most likely occur in two 
directions: developing more powerful devices of the 
same form factor, and developing smaller devices of 
the same processing and communication capacity. 
Research reported in this paper is more relevant to the 
latter direction. 

In our model, observers who join the asynchronous 
multicast tree specify a period at which the requested 
data should be reported. Flurries of changes in the 
environment need not be individually reported if they 
occur at time-scales smaller than this period. Different 
observers may specify different period requirements 
for the same measurement. For example, an observer 
who is close to the measured activity may request a 
higher reporting rate than a distant observer.  

Our middleware achieves four main functions; (i) 
it determines the number of data caches for each focus 
locale, (ii) it chooses the best location for each cache 
such that communication energy is minimized, (iii) it 
maintains each cache consistent with its data source at 
the corresponding focus locale, and (iv) it feeds data to 
observers from the most suitable cache instead of the 
original sources.  

A key difference between this problem and the 
problem of caching in an Internet context is that in the 
latter case, the topology of the network restricts the 
choice of cache locations. In contrast, we assume a 
sensor network that is dense enough such that a data 
cache can be placed at any arbitrary physical location 
in the monitored region, offering new degrees of 
freedom to the data placement algorithm. Another key 
difference is that the number of Internet proxy caches 
is typically much smaller than the number of different 
web sites. Hence, such caches are centralized powerful 
machines, which gather and retain content from a large 
number of distributed sources. In contrast, in this 
paper, we consider a middleware caching service, 
which runs on every sensor node. Since the number of 
sensor nodes is larger than the number of focus locales, 
the storage requirements of this service on any single 
node are very small. 

We assume that sensor nodes know their location. 
Algorithms for estimating geographic or logical 
coordinates have been explored at length in the sensor 
network research [5][6]. These efforts address the 
problem of location awareness using algorithms that do 
not require high cost devices such as GPS on every 
node. Classical ad hoc wireless routing protocols like 
AODV [8], and DSDV [9] may be used along each 
unicast edge of our data dissemination tree. These 
protocols, however, are not location-aware which may 

Physical 
Devices 

Network Layer: Routing and Location Services 

Middleware Layer: Data Placement, Consistency 
Management, Asynchronous Multicast 

 

API: Subscribe (x,y) 
 

Fig. 1: Middleware Architecture 
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affect performance. Several more recent adaptations 
such as Location-aware routing (LAR) [7] and 
geographical forwarding [4] make use of the location 
information. These routing algorithms would be a 
natural choice for the network layer underneath our 
service. We now formulate our data placement problem 
mathematically.  

 
2.1. Problem formulation 
Consider a sensor network that is monitoring a set of 
focus locales at which events of interest occur. Given a 
locale (X,Y) in a sensor network, let BS= {BS1, 
BS2,….., BSM} be a set of M observers that request data 
from that locale with rates Rreq={R1, R2,…., RM}. Let 
sensor updates at (X,Y) occur at an average rate Rupdate. 
A tree of copies is created for the sensor as shown in 
Figure 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We define the cost of message transfer between 

two nodes in the tree as the power expended on a 
packet’s transfer on the shortest route multiplied by the 
packet rate. Consider the case of placing a single data 
copy to minimize cost as defined above. Let the data 
copy be placed at a distance ni hops from the ith 
observer and at a distance nsens hops from the sensor 
node serving the data. In a densely populated network, 
the hop counts will be large. The cost of sending a 

single packet is proportional to the hop count. Hence, 
the net cost  of serving all observers is: 

T = nsens . Rupdate
 + ∑1≤i≤M ni . Ri                   (1) 

To place the copy at the optimal location, T has to be 
minimized. Figure 3 shows the situation with three 
observers. We can reduce this problem to the following 
geometric optimization. Given N points, where point i 
is at location (Xi,Yi), find a point (x,y) such that  D =  
∑1≤i≤N (di . wi)  is minimum, where, di is the distance of 
the ith point from (x,y), and wi is the weight of the edge 
from the ith point to (x,y). This is illustrated in Figure 4. 
A heuristic solution to this problem is to place (x,y) at 
the center of gravity of the N input points in question, 
i.e.: 
 x = ∑1≤i≤N xiwi /∑1≤i≤N  wi             (2) 
 y = ∑1≤i≤N yiwi /∑1≤i≤N  wi             (3) 

Hence, in a minimum-cost tree with multiple 
copies (i.e., multiple internal vertices), each copy (x,y) 
should be at the center of gravity of those vertices to 
which it is connected. The objective of our algorithm is 
to find such a tree. 

In the following, we compare our formulation to 
other popular variants of content placement problems 
described in prior literature. If the number of copies in 
the tree is known in advance, a popular variation of the 
problem is expressed as a Minimum K-median 
problem, stated as follows. Given n points (possible 
copy locations), select K of them to host data copies, 
and feed each observer from a copy such that total 
communication cost D is minimized, where: 

D = ∑1≤j≤K ∑1≤i≤N cij . yij                       (4) 
cij is the cost of the edge from i to j and yij is 1 if the jth 
copy serves the ith observer, and 0 otherwise. Many 
Internet-based content placement algorithms adopt this 
model. In this case, the possible locations of the caches 
are fixed. Hence, cij is fixed for the given network 
topology. The problem is NP-hard, but heuristic 
solutions are possible, e.g., [10] and [11]. If the cache 
locations are specified, a minimum spanning tree can 
be constructed to disseminate information from senders 
to receivers at the lowest cost. 
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Our model differs in that copy locations are not 
known a priori. In a dense sensor network, the number 
of nodes n approaches infinity. Copies can essentially 
be placed anywhere in the Euclidean plane without 
restrictions. In this case, the problem is that of 
constructing a minimum-cost weighted Steiner tree, 
which connects the sensor node to the observers. 

The Steiner tree formulation differs from the K-
median and spanning tree problems in that it allows 
one to create new nodes in the tree as opposed to 
having to choose from a pre-specified set of possible 
node locations. This difference separates our paper 
from similar work in web caching and content 
distribution literature. 

Note that Rupdate  in our algorithm is not a fixed 
sampling rate, but rather refers to the average rate of 
change of the environment. Hence, it may vary 
dynamically with environmental conditions. For 
example, it may decrease when the environment is 
quiet. An advantage of such dynamic adaptation is that 
no energy is wasted when no updates occur. A 
disadvantage is that an application is unable to tell 
when it has missed an update (e.g., due to message 
loss), since it does not expect updates to arrive at 
particular time intervals. This problem can be solved in 
several ways.  

First, we may let Rupdate  be a fixed sampling rate. 
The formulation of our algorithm remains the same. In 
this case, if a sample does not arrive in time, the 
application can tell. Alternatively, the origin sensor 
may number the updates. If a gap occurs in the 
received update numbers, the application is aware that 
a previous update was lost. The occasional loss may be 
acceptable since we assume that only the latest update 
is relevant at any given time. A potential problem with 
the latter approach is that in the absence of subsequent 
environmental changes, an important update may be 
lost, unbeknown to the application, indefinitely. One 
solution is to enforce an upper bound, B, on the update 
period. Hence, when the environment is quiet a 
message is expected at least once every B seconds.  
Otherwise, the application is aware of a problem. In the 
rest of the paper, we shall not address the issue update 
loss any further. 
  
3. Data Placement 
Upon perturbation, distributed physical systems such as 
weights interconnected by strings settle into an 
equilibrium position, which represents a minimum 
energy state. Our data placement algorithm is inspired 
by such systems. Assuming environmental conditions 
don’t change, each step of the algorithm reduces a 
measure of total energy until a minimum energy tree is 
found. More specifically, we use a distributed greedy 
heuristic that iteratively places each node at the center 

of gravity of its neighbors. Note that, while in a 
physical system, energy has a direct meaning, in our 
system energy is an abstract mathematical quantity. We 
call the depth of the copy in the distribution tree rooted 
at the origin sensor, the copy level. The original data at 
the sensor is referred to as the level-0 copy. A heuristic 
is used to add or remove copies in the tree. The 
algorithm is described in more detail next. 
 
3.1 The Algorithm 
Each node on the multicast tree rooted at the sensor 
maintains a location pointer to its parent as well as a 
location pointer to each of its children. One can think 
of these pointers as an application-layer routing table. 
For each child, the node maintains the maximum 
propagation rate, which is the maximum of all 
requested update rates of all observers served by that 
child. A node never forwards updates to a child at a 
rate higher than the child’s maximum propagation rate. 
This way, flurries of environmental updates that exceed 
some receivers’ requested rates are not propagated 
unnecessarily to those receivers.  
 
3.1.1 Joining the Multicast Tree 
An observer, k, joins a multicast tree by sending a 
join() message to the location of the origin sensor, i.e., 
to the level-0 copy. The message indicates the location 
of the observer and its desired update rate Rk. The 
origin sensor forwards the message along the multicast 
tree in the direction of the new observer as follows. 
Each level-i copy (starting with the origin sensor), 
upon receipt of the join message, determines if the new 
observer is closer to any of its children than to itself. If 
so, it forwards the join message to the corresponding 
child, i.e., to a level-(i+1) copy. If the maximum 
propagation rate for that child is lower than Rk it is 
changed to Rk. This recursive forwarding terminates 
when a node is found with no children that are closer to 
the observer. We call this copy the nearest neighbor. 
The nearest neighbor adds the observer to the set of its 
children. The maximum propagation rate for the 
observer is initialized to its requested update rate. 
Figure 5 illustrates the message exchange in the join 
process. 
 
3.1.2 Copy Creation and Migration 
For the purposes of creation of new cache copies, 
nodes are differentiated into fixed and migratory. The 
origin sensor and observers are fixed nodes. Other 
nodes are migratory nodes that can move to better 
locations of fork off new copies. 

When a newly joined observer is connected to its 
nearest neighbor N, node N computes the center of 
gravity of itself and all its neighbors. It then computes 
the savings, if any, resulting from creating a new copy 
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at that center of gravity. If the savings from creating 
the copy exceed a threshold, the option of creating this 
copy is deemed viable. Before we proceed further, let 
us look more closely at how the copy may be created.  
 
 New Link 

Sensor 

Join Request 

Nearest Neighbor 

New Node 

 
Fig. 5: Joining the Multicast Tree  

 
If N (the nearest neighbor) is the origin sensor, the 

new copy can only be created downstream from it. The 
copy would be fed from N and in turn feed N’s children 
as shown in Figure 6-a. Otherwise, if N is not the origin 
sensor, the new copy can in principle be created either 
downstream or upstream from N. An upstream copy 
would be fed from N’s parent and would feed both N 
and N’s children as shown in Figure 6-b. A 
downstream copy would be created as described above 
(Figure 6-a). Observe that, if N is not a fixed copy, a 
third option is also possible. Namely, it is possible to 
simply move N to a new position. This is called copy 
migration. In copy migration, when a newly joined 
observer is connected to a migratory nearest neighbor 
N, the node computes the center of gravity of all its 
neighbors (including the new observer), and evaluates 
the savings that would arise if it moves to the 
computed position. If the difference is larger than a 
fixed threshold the option of migration is deemed 
viable. This is illustrated in Figure 6-c.  

A viable option with the maximum savings among 
three data placement options described above is 
executed. It is easy to show that no new copies are 
created unless there are three nodes in the system, and 
that at most one copy is created for every newly joined 
member. Hence, the algorithm creates at most m-2 
copies where m is the total number of observers.  
 
3.1.3 Leaving the Multicast Tree 
An observer, k, leaves the multicast tree by sending a 
leave() message to its parent N. The parent stops 
forwarding messages to the departed observer. If k had 
the highest maximum forwarding rate among N’s 
children, N resets its own maximum forwarding rate to 
that of the next-highest rate child. If N is a migratory 
node, it computes the center of gravity of all remaining 

neighbors, computes the savings that result from 
moving to that center, and moves there if the savings 
exceed a threshold. If there is only one child left for the 
migratory node, the node is deleted and its parent takes 
over its child. 

 
 

Prospective Copy 

Nearest Neighbor (Origin Sensor) 

New Node 

 
(a) Nearest neighbor creates downstream copy  

 
 
 
 

Prospective Copy 

Nearest Neighbor 
New Node 

 
(b) Nearest neighbor creates upstream copy  

 
 
 

 

Prospective Move 

Nearest Neighbor 

New Node 
 

 
(c) Nearest neighbor moves  

 
Fig. 6: Copy Creation and Migration Rules 



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association178

3.2   Sampling Rupdate 
To perform center of gravity computations, nodes must 
know not only the requested observer rates, but also the 
environmental sensor update rate, Rupdate. There are two 
simple approaches towards the measurement of that 
rate. One approach is to measure the number of updates 
over the last n seconds. A disadvantage of this 
approach is that it has a fixed time horizon after which 
it forgets the past. It may be more advantages to adapt 
the horizon to the current rate of updates itself, such 
that system agility is increased when activity is high. 
An approach for calculating Rupdate, which has the 
aforementioned adaptive property, is to take the inverse 
of the average of the last k inter-arrival times. More 
complicated methods like predictive modeling could 
have been used but this would be limited by the 
computation and storage resource constraints of the 
nodes. For our simulation purposes we have used a 
simple model where Rupdate is calculated as the inverse 
of the average of the last five inter-arrival times. The 
number five is selected as the sample size to reflect that 
we expect any five consecutive updates to be strongly 
correlated, though a larger or smaller number could be 
chosen according to how volatile we expect the 
environment to be.  

 
4. Evaluation 
Our current service implementation utilized Berkeley 
motes [15] as the underlying distributed platform. 
These are tiny computing devices, which run a 
microthreaded operating system called TinyOS [16]. 
Each node has up to three sensors. It runs on an 8-bit 4 
MHz micro-controller and has 128KB of program 
memory and 4KB of data memory. However, the 
number of motes available to us at present is 
insufficient for large-scale experiments. Hence, in the 
first set of experiments, we use the motes only to 
derive communication and power consumption 
characteristics that are then fed to a simulator. 
Accordingly, we also implemented our data placement 
middleware in the ns-2 simulator [20]. Our goal in 
simulating the data placement algorithm is to test 
whether it actually conserves power as expected given 
the power and communication characteristics of the 
motes. Our simulation model is a network of (200≤ N ≤ 
500) nodes in a 200m x 200m grid each having a radio 
range of 20m. The packet sizes are kept as 30 bytes, as 
used by the Berkeley motes running TinyOS. The 
number of base-stations is roughly 5% the number of 
nodes in the network. Since we have to model a 
location-aware network, we assume that each node 
knows it own location. We implemented a wrapper, 
which works on top of the simulated routing protocol 
in ns-2, and translates the destination location of 
packets into actual destination node addresses. A focus 

locale in the network is generated at random for 
simulation purposes, and the base-stations send 
periodic queries to the hot spot. The request rates are 
generated at random with a specific average throughout 
the experiment. The energy consumption is measured 
in terms of Joules per node per flow. Each value is 
taken as the average over three simulations. 

At peak load the Berkeley motes consume about 
60mW of power [15]. Of this 60mW about 10mW is 
consumed by the microcontroller unit. However, the 
MCU is not loaded about 50% of the time, and it has an 
idle mode in which it consumes only 40% of the 
normal power. Another very important fact to note is 
that more than 90% of the CPU utilization is due to bit, 
byte and packet level processing. Thus reduction in the 
number of packets in the network leads to lower CPU 
utilization and hence even greater power savings. 
However for simulation purposes, we have no accurate 
way to model CPU utilization in ns-2, so we measure 
only the radio power consumption, and the energy 
spent in communication. Since we discount savings in 
CPU power consumption, the actual power savings of 
the algorithm may be higher than shown in this section. 
The importance of optimizing communication cost is 
also supported by measured data from recent 
prototypes of sensor network devices, which show that 
the main power sink in the network is, indeed, wireless 
communication. Energy consumption for 
communication in our simulation follows the Berkeley 
motes [15] which consume 1 µJ for transmitting and 
0.5 µJ for receiving a single bit. We also use the two-
ray ground model (1/r4) as the radio propagation model 
and an omni-directional antenna having unity gain in 
the simulation.  

Geographic forwarding (GF) [29] is found as a 
routing protocol appropriate for the sensor networks. It 
is therefore used in the simulation. GF makes a greedy 
decision to forward a packet to a neighbor if it has the 
shortest geographic distance to the destination among 
all neighbors and it is closer to the destination than the 
forwarding node. To illustrate the appropriateness of 
GF, we compare its performance to that of AODV whn 
they are used in conjunction with data placement. 
AODV is a reactive routing algorithm developed for ad 
hoc wireless networks. It computes and caches routes 
on-demand. As shown in Fig. 7, the power 
consumption measured for GF is lower than that for 
AODV. The primary reason is that AODV does not 
leverage geographical information, thereby consuming 
more energy on route discovery. Hence for our 
simulations, we use GF as a routing algorithm. 
 
4.1 Simulation Results 
We compare the performance of the data placement 
middleware against four baselines; (i) a simple unicast-
based query-response model, (ii) update multicast 
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(synchronous push model) (iii) directed diffusion, and 
(iv) update flooding.  
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The first experiment (Figure 8) compares the 
energy consumption of the four aforementioned 
baselines for different node densities. For this 
experiment, the request rate is set, on average, to about 
two times the average update rate of the environment. 
Hence, regular (as opposed to asynchronous) multicast 
should be an optimal policy. We vary the number of 
nodes in the network over a grid of 200m x 200m. As 
we can see from Figure 8, flooding performs very 
badly. Traces reveal that power is wasted on both 
excessive communication and collisions caused by the 
update messages flooding through the network. The 
query-response scenario performs much better than 
flooding, but not as good as data placement. Directed 
diffusion performs almost as good as data placement. 
As expected, regular multicast performs best. The 
slight difference between regular multicast and data 
placement is due to the somewhat higher overhead of 
our scheme. As we show shortly, this overhead is offset 
by considerable savings when the average update rate 
increases beyond the request rate.  

Unlike regular multicast, a main feature of the data 
placement algorithm is that it is adaptive and sensitive 
to changes in average sensor update rates. When the 
sensor update rates are high, more replicas are 
refreshed at a rate determined by the request rates and 
when the update rate is low, the copies are refreshed 
only when an update actually occurs. Next we compare 
the performance of the four baselines to that of our 
adaptive heuristic as the average update rate is 
changed. These communication models are compared 
over a network of 400 nodes in a 200m x 200m grid 
each having a radio range of 25m. The sensor update 
rate is normalized against the average request rate. The 

sensor update period is varied between 1.5 s and 30 s. 
The average request rate is one per six seconds. 
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In Figure 9, we show the average energy 

consumption in the steady state after all observers have 
joined the tree. 
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As can be seen from the figure, when the Sensor 

Update Rate is high (i.e., 1/ Sensor Update Rate <1), 
the data placement algorithm performs better than the 
simple query response model, the directed diffusion, 
and update unicast because it does not send 
unnecessary updates. When the network is more 
quiescent, it achieves results, which are quite close to 
the simple multicast strategy. The difference between 
the two is the power overhead of adaptation. Thus, our 
data placement middleware adapts to the volatility of 
the environment resulting in a performance that is 
better than update multicast when the update rate is 
low, but does not suffer a performance degradation in 
when the sensor update rate is high. 

Fig 7:  Average dissipated energy of data 
placement over AODV and GF 

Fig 9:  Steady-state dissipated energy plotted 
against sensor update rate. 

Fig 8:  Average dissipated energy 
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The next experiment is carried out in order to 

measure energy consumed when a new observer joins 
the tree. In the data placement, the new observer sends 
a join message to the origin sensor and the nearest node 
is found to connect the observer. Figure 10 shows the 
average energy consumption per join during the 
transient phase of tree construction. It is evaluated 
under the same environmental conditions as in the 
preceding experiment. The transient phase in the case 
of directed diffusion includes both initial flooding and 
multi-path sending before a single path is chosen by the 
gradient. The data placement heuristic consumes less 
energy than the update multicast and the energy 
dissipation does not depend upon the number of nodes 
in the network.  

In our data placement algorithm, when a new data 
copy is placed, neighbors of the new copy are no 
longer in the center of gravity of their own neighboring 
nodes. Hence, as a rule, when the number or locations 
of neighbors of some data copy change, the copy 
recalculates its position to the new center of gravity. If 
the difference between the cost at the new position and 
the cost at the old one is larger than a given threshold, 
the old copy migrates to the new position. This 
migration, in turn, may cause other surrounding nodes 
to migrate. The effect percolates through the tree 
branch until no more nodes need to be moved. Figure 
11 shows a transient and steady state energy 
consumption graph against various threshold values in 
the data placement heuristic. A smaller threshold 
results in more aggressive tree optimization. It entails 
more overhead for tree construction, but results in 
lower power consumption at steady state. Conversely, 
an extremely large threshold makes the tree essentially 
more static. Transient overhead is reduced, but steady 
state power consumption increases due to a less 
optimized tree. Observe that the difference between 
power consumption at the two extremes is not that 
pronounced. This is because network density is not 
infinite. Hence, a newly computed copy location is 

likely to fall in a void between sensor nodes. As an 
approximation, the copy is mapped to the closest node 
from that void. Even if the threshold is zero, it is often 
the case that the new (optimized) position of a copy is 
close enough to its current position so that the copy is 
mapped to the same node as before. No move is 
therefore taken making the performance more similar 
to that of a static tree. 
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Next, we test system performance when the 

average update rate is a non-stationary process, which 
changes drastically over short periods of time. We use 
the average update traffic pattern shown in Figure 12. 
The sensor switches between high and low average 
update rates with a period T. This average rate is used 
to determine actual update inter-arrival times, drawn 
from a Poisson distribution. This load model is used to 
simulate quiescent periods in the environment 
interlaced with volatile periods. At high update times, 
the update rate is made to be a Poisson distribution 
with mean of 0.5 times the maximum request rate, and 
at low update times it is made to be a Poisson 
distribution with mean of 3 times the request rate. 

 

 

 
 
                                                   T 
 

 
 
 
 

 
 
 

High update rate, 
Poisson process 
with mean = 
0.5*Rmax 

Low update rate, 
Poisson process 
with mean = 
3*Rmax  

Fig 12:  Update pattern 

Fig 10:  Energy consumption in transient phase 

Fig 11: Energy consumption in adjusting data 
placement 
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Figure 13 shows the performance of the data 
placement algorithm for different values of T. The 
network size was fixed at 300 nodes over a 200m x 
200m grid. When T is sufficiently larger than Rmax (Rmax 
is the maximum request rate), data placement performs 
better than both query-response and update multicast, 
because it adapts to suit both the high and low update 
rates. As the average update rate is calculated as the 
inverse of the average of the last five inter-arrival 
times, when T becomes less than 5Rmax, this sampling 
becomes increasingly inaccurate. Since the average 
update rate keeps changing rapidly, there are more 
failures and hence, the communication savings 
decrease as might be expected. 
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Another important concern to address is how the 

energy savings translate into an increase in the lifetime 
of the network. Figure 14 shows the fraction of nodes 
that are alive versus network run-time. We simulate a 
network of 400 nodes, keeping other parameters the 
same as earlier. Observers and the origin sensor are set 
to have infinite energy. A point to be noted here is that 
not all the nodes consume energy equally as some 
nodes are more active than others. When a certain 
number of nodes die, the network becomes partitioned, 
and parts of the network may become unreachable. At 
this point we consider the network unusable. Figure 14 
shows the time it takes the network to get partitioned 
under various communication schemes. (The end of the 
plot indicates when the network gets partitioned.) It is 
shown that the system lifetime with the data placement 
heuristic is longer than with other baselines. As shown 
in Figure 9 and Figure 10, the data placement heuristic 
results in fair energy savings in both the steady state 
and the transient state. Hence, it increases system 
lifetime. 
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4.2 Effect of Sampling of Rupdate 
As mentioned in section 3.3, there are several ways for 
accurately measuring Rupdate. We argue that inaccuracy 
in measuring/predicting Rupdate has very little impact on 
the overall performance of Data Placement. Figure 15 
evaluates the sensitivity of power savings to the choice 
of the averaging interval for the sensor reported rate, 
Rupdate. Averaging intervals 5 and 10 are compared. The 
simulated traffic is the same as in Figure 12 and the 
experimental setup is the same as the experiment of 
Figure 13. The figure shows that power savings are 
insensitive to the averaging interval. 
 

0

1

2

3

4

5

6

7

8

T=50/Rmax T=10/Rmax T=5/Rmax T=2/Rmax

A
ve

ra
g

e 
E

n
er

g
y 

D
is

si
p

at
ed

 in
  C

o
m

m
u

n
ic

at
io

n
(J

o
u

le
s/

n
o

d
e/

fl
o

w
)

Sample Size = 5

Sample Size = 10

 
 
 
 
Thus, our simulation results show that our data 

placement middleware gives us considerable energy 
savings irrespective of the amount of load or the 
dynamic nature of the network. A point to note is that 
the energy savings are not uniform over the whole 
network. They depend on the location of the base-
stations and the locations from where data is requested, 
just as the communication without data placement 

Fig 15: Average Dissipated Energy using 
different sample sizes for Rupdate 

Fig 13: Average dissipated energy for the three 
models for different values of T 

Fig 14: Lifetime of nodes in a sensor network 
using data placement 
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would have expended energy non-uniformly. In 
general, we expect the results to improve with network 
size. This is because our main savings come from the 
use of adaptively constructed multicast trees. Since the 
size of a well-balanced tree is logarithmic in the 
number of recipients, power savings compared to 
unicast should increase exponentially with tree size.   

 
4.3   Prototypical Testbed Implementation 

To conclude our results, we constructed an 
experimental prototypical mini-testbed from a 5 by 5 
grid of motes with one light sensor at a corner, and 
three base-stations (Figure 16). We ensured that a node 
can hear its immediately adjacent and diagonal 
neighbors. The three base-stations request light data 
from the sensor node, as shown in Figure 16. The base-
station at the bottom right corner is connected to the 
serial port of a PC, where an application package reads 
the packets being received at the base-station.  
 
 
 
 
 
 
 
 
 
 
 
 
  

The underlying routing protocol used is 
geographic forwarding, in which a node forwards a 
packet to the neighbor that is closest to its destination. 
The interface to the routing protocol accepts TinyOS 
commands from the data placement middleware to 
send messages to a given node. In addition, it signals 
an event when the message transmission is complete. 
The data placement layer handles this event. 

The base-station (0) communicates with the PC 
using the serial port. Thus this base-station has both a 
RS232 communication channel as well as RF 
communication. In order to distinguish between the 
two channels, a special address (0x7e) is assigned to 
the serial port interface. Thus a device receiving a 
packet for this destination forwards the packet to the 
local UART instead of the radio.  

The light sensor acquires 10-bit values for light 
intensities. The sensor data is acquired by polling the 
light sensor. We define a resolution range of 5 bits, i.e., 
an update occurs only if any of the 5 most significant 
bits change. We calculate the value of Rupdate by 
sampling the last 5 inter-update times.  

Our implementation of data placement has about 
250 lines of code (C statements), and the complete 

package including TinyOS and geographic forwarding 
takes about 14.5KB of program memory. Thus 
memory-wise, the middleware is not heavyweight in 
terms of memory.  
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As has been discussed earlier, communication is 
the main sink for energy. The motes have an idle mode 
in which the mote draws 5µA compared to 5mA in the 
peak model. To estimate actual energy consumption on 
the motes, we measure the amount of communication 
in terms of the number of packets in the network. 
Figure 17 shows the number of packets in the network 
over a period of 200 seconds in a single trial run using 
data placement and without data placement. Here the 
sensor gets updated approximately once every 12 
seconds. The base-stations request data once every 5 
seconds. For the cases on one and two base-stations, all 
possible combinations of the three base-stations are 
considered, and the mean is taken. 

Though the savings in the number of packets are 
an order of magnitude, this does not translate into 
proportional energy savings, since some power is 
expended on listening (even when nothing is being 
received). Even so, we have shown that we can get 
significant reduction in the number of packets in the 
network.  
 
6. Related Work 
Wireless sensor networks are a relatively new area of 
research. Traditional networking paradigms are not 
directly applicable to this scenario. However, there has 
been a lot of work lately on developing new paradigms 
and services for sensor networks, taking into account 
the unique features of these networks. New protocols 
are being developed for routing, MAC, data 
dissemination and location services. Several hardware 
platforms as well as specialized operating systems have 
also been developed. Since there are a number of 
parallel efforts, several different paradigms and 
protocols are bound to come up. Our data placement 

Base-
station 

Base-
station 

Sensor 

Fig 16: Sensor Network Testbed 

Fig 17: Number of packets using the two 
approaches 
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algorithm makes minimal assumptions about the 
underlying layers and the other supporting services. 

One of the essential properties of a sensor network 
is that all the nodes are location aware. Since the nodes 
cannot afford to have heavyweight GPS, they have to 
use some location service, that estimates the location of 
the individual nodes using some GPS equipped nodes 
as beacons. Nagpal [5] and Bulusu, Heidemann et al. 
[6][12] proposed location estimation using beacons 
which does not require GPS at every node.  

In a network with thousands of nodes, it would be 
wasteful to assign unique id’s to each node. Also, 
queries would be addressed by location, and that would 
necessitate a location directory service, if unique id’s 
were used. This would consume more resources. 
Papers by Heidemann, Silva et al. [3] and Imielinski, 
Goel [13] proposed addressing by geographical 
location and attributes. Our data placement algorithm 
shall work both for fixed addresses and addressing by 
location. For the case in which fixed addresses are 
used, a location directory service is used to lookup 
mapping from node-id’s to locations.  

To conserve energy from communication, Xu, 
Heidemann, and Estrin [4] have proposed a 
geographical adaptive fidelity (GAF) algorithm in 
which equivalence classes of nodes are formed from a 
routing perspective. Their method of energy 
conservation is to put nodes to sleep whenever 
possible. Our data placement algorithm can co-exist 
with GAF, by putting the constraint that nodes that are 
holding copies of the data cannot go to sleep until they 
handoff their data to another node.  

The formation of a tree of copies along which the 
update is propagated is similar to the formation of a 
multicast tree, where all the nodes are members of the 
multicast group. In that sense, our work is related to 
multicast protocols. However, our approach differs 
from traditional multicast routing in several respects. 
First, updates are propagated asynchronously in a lazy 
manner in accordance with consistency constraints. 
Second, the depth of our tree is determined by the 
update and the request rates, and it adapts itself to 
minimize the communication. Finally, our work is an 
overlay multicast algorithm that works on top of the 
network layer, rather than traditional multicast routing 
[23][24] that takes place at the network layer. In wired 
networks, End-to-end multicast and Scribe based on 
Pastry, are included into overlay multicast designs. 

Data placement is also similar to some of the ideas 
used in the placement of web server replicas [1]. In 
these schemes, replicas of web server content are 
placed online based on predicted demand.  Data 
placement furthers this idea by using the property of 
location-awareness of the sensor nodes. Another 
approach used in [21] is to let the documents 
themselves decide their replication strategy. However, 

in our case we make use of the homogeneity of the 
data, and the fact that the sensors do not differentiate 
between types of data, to provide for a unified 
replication strategy. Another approach has been 
geographical push-caching [22] in which the server 
decides when and where to cache the files. This 
technique would not work for a sensor network 
because a sensor node cannot keep track of all the 
base-stations it is serving. In our approach, the sensor 
node only needs to keep track of a small number of 
level-1 copies. 

ShopParent algorithm [30] is the latest work of 
publish/subscribe tree construction in the wireless 
adhoc network. This greedy algorithm builds the tree in 
a distributed fashion and uses a spanning tree to find a 
better outcome. Its model uses every node in the 
network for tree construction, which makes searching 
for the nearest node easier. However, the model is not 
available in the sensor network with a large number of 
nodes. The ShopParent is also different from ours in 
that it does not use a Steiner tree for multicast and does 
not use location information. 

In recent years, research on Content Distribution 
Networks has focused on replication and placement of 
content to improve performance over a large scale 
distributed systems. Most of the work focuses on 
internet-type topologies and scale [26][25]. Chord [26] 
uses a variant of consistent hashing to map a key to a 
node. Its scalability lies in the fact that the amount of 
state that needs to be maintained by each node scales 
logarithmically with the number of Chord Nodes. In 
[27], the concept of Content Addressable Networks 
(CAN) is used for providing hashing like functionality 
to retrieve data from replicas in the network. CAN 
routing uses a co-ordinate routing table, and the 
network is visualized as a d-dimensional space. It 
extends functionalities of DNS by providing a flexible 
naming scheme. However replication in CAN is more 
hotspot driven. Another system, OceanStore [25], 
provides an infrastructure designed to span the globe 
and provide access to persistent information. The 
primary difference between these systems and data 
placement and replication in a sensor network is that 
the data placement algorithm presented in this paper 
leverages the location information available to the 
nodes to reduce power consumption. In contrast, work 
on CDN falls into two categories. It either (i) ignores 
physical topology altogether, focusing on peer-to-peer 
protocols defined in a logical overlay space, or (ii) 
optimizes the weight of the tree assuming a 
heterogeneous network of known topology with point-
to-point links of different bandwidth. This optimization 
is not applicable to wireless sensor networks, where the 
physical network topology is unknown, yet it is the 
physical (i.e., geographic not overlay) tree that needs to 
be optimized for power consumption. Geographic 
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information and energy consumption have been not 
considered in aforementioned papers. 

Finally, the problem addressed in this paper is 
somewhat reminiscent of data placement in distributed 
shared memory systems [20]. As in shared memory 
systems, data in sensor networks can be thought of as a 
set of objects manipulated by read() and write() 
operations. The write() operations are performed by 
sensors. The read() operations are performed by users. 
In shared memory systems, it is desired to maximize 
the average performance of memory accesses given 
some desired data consistency semantics. In sensor 
networks, the problem is to minimize average power 
consumption per data access subject to data 
consistency constraints. Both problems reduce to 
finding algorithms for appropriate dynamic placement 
of data objects in the network such that communication 
is minimized. Sensor networks, however, due to their 
fine granularity, large scale, and direct interaction with 
the physical environment, exhibit significantly 
different data access patterns, consistency constraints, 
and communication cost models than do distributed 
shared-memory systems. Hence a new set of 
algorithms is called for to achieve power minimization.  

 
7.  Conclusion  
In this paper, we have presented data placement as a 
means of reducing energy consumption and, hence, 
increasing the lifetime of a sensor network. We present 
an algorithm, which places copies of the requested data 
and updates them so as to minimize the communication 
overhead and power consumption of data transfer.  

Our algorithm is completely distributed and 
requires very little local processing. The amount of 
bookkeeping involved is small, which fits in nicely 
with the constraint of limited memory resources. Also 
it makes minimal assumptions about the underlying 
MAC and routing layers, although pro-active routing 
algorithms like DSDV are not a good choice for these 
types of networks. 

In conclusion, data placement is a new approach 
for energy conservation in wireless sensor networks. 
To our knowledge, very little previous work has been 
done to apply data placement to a location-aware 
network.  

Further work such as accommodating quickly 
moving observers and accounting for node failures 
needs to be done to introduce guarantees into the data 
placement model. In the big picture, data placement 
may act as a service that aids in providing power 
saving and QoS guarantees to applications running on 
these sensor networks. This is analogous to how web-
caching and content distribution help in providing 
better performance and guarantees over the Internet. 
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