
USENIX Association

Proceedings of MobiSys 2003:
The First International Conference on

Mobile Systems, Applications, and Services

San Francisco, CA, USA
May 5-8, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 231

Energy Aware Lossless Data Compression

Kenneth Barr and Krste Asanović

MIT Laboratory for Computer Science
200 Technology Square, Cambridge, MA 02139

E-mail: {kbarr,krste}@lcs.mit.edu

Abstract

Wireless transmission of a bit can require over 1000 times more energy than a single 32-bit computation. It would
therefore seem desirable to perform significant computation to reduce the number of bits transmitted. If the energy
required to compress data is less than the energy required to send it, there is a net energy savings and consequently,
a longer battery life for portable computers. This paper reports on the energy of lossless data compressors as mea-
sured on a StrongARM SA-110 system. We show that with several typical compression tools, there is a net energy
increase when compression is applied before transmission. Reasons for this increase are explained, and hardware-
aware programming optimizations are demonstrated. When applied to Unix compress, these optimizations improve
energy efficiency by 51%. We also explore the fact that, for many usage models, compression and decompression
need not be performed by the same algorithm. By choosing the lowest-energy compressor and decompressor on the
test platform, rather than using default levels of compression, overall energy to send compressible web data can be
reduced 31%. Energy to send harder-to-compress English text can be reduced 57%. Compared with a system using a
single optimized application for both compression and decompression, the asymmetric scheme saves 11% or 12% of
the total energy depending on the dataset.

1 Introduction

Wireless communication is an essential component of
mobile computing, but the energy required for transmis-
sion of a single bit has been measured to be over 1000
times greater than a single 32-bit computation. Thus, if
1000 computation operations can compress data by even
one bit, energy should be saved. However, accessing
memory can be over 200 times more costly than compu-
tation on our test platform, and it is memory access that
dominates most lossless data compression algorithms. In
fact, even moderate compression (e.g. gzip -6) can
require so many memory accesses that one observes an
increase in the overall energy required to send certain
data.

While some types of data (e.g., audio and video) may
accept some degradation in quality, other data must be
transmitted faithfully with no loss of information. Fi-
delity can not be sacrificed to reduce energy as is done
in related work on lossy compression. Fortunately, an
understanding of a program’s behavior and the energy
required by major hardware components can be used to
reduce energy. The ability to efficiently perform efficient
lossless compression also provides second-order benefits
such as reduction in packet loss and less contention for

the fixed wireless bandwidth. Concretely, if n bits have
been compressed to m bits (n > m); c is the cost of
compression and decompression; and w is the cost per
bit of transmission and reception; compression is energy
efficient if c

n m < w. This paper examines the elements
of this inequality and their relationships.

We measure the energy requirements of several loss-
less data compression schemes using the “Skiff” plat-
form developed by Compaq Cambridge Research Labs.
The Skiff is a StrongARM-based system designed with
energy measurement in mind. Energy usage for CPU,
memory, network card, and peripherals can be measured
individually. The platform is similar to the popular Com-
paq iPAQ handheld computer, so the results are relevant
to handheld hardware and developers of embedded soft-
ware. Several families of compression algorithms are an-
alyzed and characterized, and it is shown that carelessly
applying compression prior to transmission may cause an
overall energy increase. Behaviors and resource-usage
patterns are highlighted which allow for energy-efficient
lossless compression of data by applications or network
drivers. We focus on situations in which the mixture of
high energy network operations and low energy proces-
sor operations can be adjusted so that overall energy is
lower. This is possible even if the number of total opera-

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association232

tions, or time to complete them, increases. Finally, a new
energy-aware data compression strategy composed of an
asymmetric compressor and decompressor is presented
and measured.

Section 2 describes the experimental setup including
equipment, workloads, and the choice of compression
applications. Section 3 begins with the measurement
of an encouraging communication-computation gap, but
shows that modern compression tools do not exploit
the the low relative energy of computation versus com-
munication. Factors which limit energy reduction are
presented. Section 4 applies an understanding of these
factors to reduce overall energy of transmission though
hardware-conscious optimizations and asymmetric com-
pression choices. Section 5 discusses related work, and
Section 6 concludes.

2 Experimental setup

While simulators may be tuned to provide reason-
ably accurate estimations of a particular system’s energy,
observing real hardware ensures that complex interac-
tions of components are not overlooked or oversimpli-
fied. This section gives a brief description of our hard-
ware and software platform, the measurement methodol-
ogy, and benchmarks.

2.1 Equipment

The Compaq Personal Server, codenamed “Skiff,” is
essentially an initial, “spread-out” version of the Com-
paq iPAQ built for research purposes [13]. Powered by a
233 MHz StrongARM SA-110 [29, 17], the Skiff is com-
putationally similar to the popular Compaq iPAQ hand-
held (an SA-1110 [18] based device). For wireless net-
working, we add a five volt Enterasys 802.11b wireless
network card (part number CSIBD-AA). The Skiff has
32 MB of DRAM, support for the Universal Serial Bus,
a RS232 Serial Port, Ethernet, two Cardbus sockets, and
a variety of general purpose I/O. The Skiff PCB boasts
separate power planes for its CPU, memory and mem-
ory controller, and other peripherals allowing each to be
measured in isolation (Figure 1). With a Cardbus exten-
der card, one can isolate the power used by a wireless
network card as well. A programmable multimeter and
sense resistor provide a convenient way to examine en-
ergy in a active system with error less than 5% [47].

The Skiff runs ARM/Linux 2.4.2-rmk1-np1-hh2 with
PCMCIA Card Services 3.1.24. The Skiff has only 4 MB
of non-volatile flash memory to contain a file system, so
the root filesystem is mounted via NFS using the wired
ethernet port. For benchmarks which require file system
access, the executable and input dataset is brought into
RAM before timing begins. This is verified by observing

StrongARM
SA−110 CPU

Flash

DRAM
Mem. Controller

ethernet card
Wireless

Periperals:
wired ethernet,
Cardbus, RS232
Clocks, GPIO, et al.

R
cpu

R
peri

R
net

R
mem

12V DC

Regulator (3.3V)

Regulator (5V)

Regulator (2V)

GND

V21V

Figure 1. Simplified Skiff power schematic

the cessation of traffic on the network once the program
completes loading. I/O is conducted in memory using
a modified SPEC harness [42] to avoid the large cost of
accessing the network filesystem.

2.2 Benchmarks

Figure 2 shows the performance of several lossless
data compression applications using metrics of compres-
sion ratio, execution time, and static memory alloca-
tion. The datasets are the first megabyte (English books
and a bibliography) from the Calgary Corpus [5] and
one megabyte of easily compressible web data (mostly
HTML, Javascript, and CSS) obtained from the home-
pages of the Internet’s most popular websites [32, 25].
Graphics were omitted as they are usually in compressed
form already and can be recognized by application-layer
software via their file extensions. Most popular reposi-
tories ([4, 10, 11]) for comparison of data compression
do not examine the memory footprint required for com-
pression or decompression. Though static memory usage
may not always reflect the size of the application’s work-
ing set, it is an essential consideration in mobile com-
puting where memory is a more precious resource. A
detailed look at the memory used by each application,
and its effect on time, compression ratio, and energy will
be presented in Section 3.3.

Figure 2 confirms that we have chosen an array of ap-

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 233

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Compression Ratio

R
at

io
 (

co
m

p
re

ss
ed

 s
iz

e
/ o

ri
g

in
al

 s
iz

e)

bzip
2

co
m

pre
ss

lzo

ppm
d

zli
b

Application

Text
Web

compress decompress
0

5

10

15

T
im

e
(s

ec
o

n
d

s)
Operation

Time (Text)

bzip2
compress
lzo
ppmd
zlib

compress decompress
0

5

10

15

T
im

e
(s

ec
o

n
d

s)

Operation

Time (Web)

compress decompress
0

5

10

15

20

25

L
o

g
2 (

B
yt

es
)

Operation

Static Memory Allocation (Both)

Figure 2. Benchmark comparison by traditional metrics

plications that span a range of compression ratios and
execution times. Each application represents a differ-
ent family of compression algorithms as noted in Table
1. Consideration was also given to popularity and doc-
umentation, as well as quality, parameterizability, and
portability of the source code. The table includes the
default parameters used with each program. To avoid
unduly handicapping any algorithm, it is important to
work with well-implemented code. Mature applications
such as compress, bzip2, and zlib reflect a series of opti-
mizations that have been applied since their introduction.
While PPMd is an experimental program, it is effectively
an optimization of the Prediction by Partial Match (PPM)
compressors that came before it. LZO represents an ap-
proach for achieving great speed with LZ77. Each of the
five applications is summarized below assuming some
familiarity with each algorithm. A more complete treat-
ment with citations may be found in [36].

zlib combines LZ77 and Huffman coding to form an
algorithm known as “deflate.” The LZ77 sliding win-
dow size and hash table memory size may be set by the
user. LZ77 tries to replace a string of symbols with a
pointer to the longest prefix match previously encoun-
tered. A larger window improves the ability to find such
a match. More memory allows for less collisions in the
zlib hash table. Users may also set an “effort” parame-
ter which dictates how hard the compressor should try to
extend matches it finds in its history buffer. zlib is the
library form of the popular gzip utility (the library form
was chosen as it provides more options for trading off
memory and performance). Unless specified, it is con-
figured with parameters similar to gzip.

LZO is a compression library meant for “real-time”
compression. Like zlib, it uses LZ77 with a hash table
to perform searches. LZO is unique in that its hash table
can be sized to fit in 16KB of memory so it can remain
in cache. Its small footprint, coding style (it is written
completely with macros to avoid function call overhead),
and ability to read and write data “in-place” without ad-
ditional copies make LZO extremely fast. In the interest
of speed, its hash table can only store pointers to 4096

matches, and no effort is made to find the longest match.
Match length and offset are encoded more simply than in
zlib.

compress is a popular Unix utility. It implements the
LZW algorithm with codewords beginning at nine bits.
Though a bit is wasted for each single 8-bit character,
once longer strings have been seen, they may be replaced
with short codes. When all nine-bit codes have been
used, the codebook size is doubled and the use of ten-
bit codes begins. This doubling continues until codes are
sixteen bits long. The dictionary becomes static once it
is entirely full. Whenever compress detects decreasing
compression ratio, the dictionary is cleared and the pro-
cess beings anew. Dictionary entries are stored in a hash
table. Hashing allows an average constant-time access
to any entry, but has the disadvantage of poor spatial lo-
cality when combining multiple entries to form a string.
Despite the random dispersal of codes to the table, com-
mon strings may benefit from temporal locality. To re-
duce collisions, the table should be sparsely filled which
results in wasted memory. During decompression, each
table entry may be inserted without collision.

PPMd is a recent implementation of the PPM algo-
rithm. Windows users may unknowingly be using PPMd
as it is the text compression engine in the popular Win-
RAR program. PPM takes advantage of the fact that the
occurrence of a certain symbol can be highly dependent
on its context (the string of symbols which preceded it).
The PPM scheme maintains such context information to
estimate the probability of the next input symbol to ap-
pear. An arithmetic coder uses this stream of probabil-
ities to efficiently code the source. As the model be-
comes more accurate, the occurrence of a highly likely
symbol requires fewer bits to encode. Clearly, longer
contexts will improve the probability estimation, but it
requires time to amass large contexts (this is similar to
the startup effect in LZ78). To account for this, “es-
cape symbols” exist to progressively step down to shorter
context lengths. This introduces a trade-off in which en-
coding a long series of escape symbols can require more
space than is saved by the use of large contexts. Stor-

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association234

Application (Version) Source Algorithm Notes (defaults)

bzip2 (0.1pl2) [37] BWT RLE→BWT→MTF→RLE→HUFF (900k block size)
compress (4.0) [21] LZW modified Unix Compress based on Spec95 (16 bit codes (maximum))
LZO (1.07) [33] LZ77 Favors speed over compression (lzo1x 12. 4K entry hash table uses 16KB)
PPMd (variant I) [40] PPM used in “rar” compressor (Order 4, 10MB memory, restart model)
zlib (1.1.4) [9] LZ77 library form of gzip (Chaining level 6 / 32K Window / 32K Hash Table)

Table 1. Compression applications and their algorithms

ing and searching through each context accounts for the
large memory requirements of PPM schemes. The length
of the maximum context can be varied by PPMd, but
defaults to four. When the context tree fills up, PPMd
can clear and start from scratch, freeze the model and
continue statically, or prune sections of the tree until the
model fits into memory.

bzip2 is based on the Burrows Wheeler Transform
(BWT) [8]. The BWT converts a block S of length n
into a pair consisting of a permutation of S (call it L)
and an integer in the interval [0..n 1]. More impor-
tant than the details of the transformation is its effect.
The transform collects groups of identical input symbols
such that the probability of finding a symbol s in a re-
gion of L is very high if another instance of s is nearby.
Such anL can be processed with a “move-to-front” coder
which will yield a series consisting of a small alphabet:
runs of zeros punctuated with low numbers which in turn
can be processed with a Huffman or Arithmetic coder.
For processing efficiency, long runs can be filtered with a
run length encoder. As block size is increased, compres-
sion ratio improves. Diminishing returns (with English
text) do not occur until block size reaches several tens of
megabytes. Unlike the other algorithms, one could con-
sider BWT to take advantage of symbols which appear in
the “future”, not just those that have passed. bzip2 reads
in blocks of data, run-length-encoding them to improve
sort speed. It then applies the BWT and uses a variant of
move-to-front coding to produce a compressible stream.
Though the alphabet may be large, codes are only created
for symbols in use. This stream is run-length encoded to
remove any long runs of zeros. Finally Huffman encod-
ing is applied. To speed sorting, bzip2 applies a modi-
fied quicksort which has memory requirements over five
times the size of the block.

2.3 Performance and implementation concerns

A compression algorithm may be implemented with
many different, yet reasonable, data structures (including
binary tree, splay tree, trie, hash table, and list) and yield
vastly different performance results [3]. The quality and
applicability of the implementation is as important as the
underlying algorithm. This section has presented imple-
mentations from each algorithmic family. By choosing

a top representative in each family, the implementation
playing field is leveled, making it easier to gain insight
into the underlying algorithm and its influence on energy.
Nevertheless, it is likely that each application can be op-
timized further (Section 4.1 shows the benefit of opti-
mization) or use a more uniform style of I/O. Thus, eval-
uation must focus on inherent patterns rather than mak-
ing a direct quantitative comparison.

3 Observed Energy of Communication,
Computation, and Compression

In this section, we observe that over 1000 32 bit ADD
instructions can be executed by the Skiff with the same
amount of energy it requires to send a single bit via wire-
less ethernet. This fact motivates the investigation of pre-
transmission compression of data to reduce overall en-
ergy. Initial experiments reveal that reducing the number
of bits to send does not always reduce the total energy of
the task. This section elaborates on both of these points
which necessitate the in-depth experiments of Section
3.3.

3.1 Raw Communication-to-Computation
Energy Ratio

To quantify the gap between wireless communication
and computation, we have measured wireless idle, send,
and receive energies on the Skiff platform. To eliminate
competition for wireless bandwidth from other devices
in the lab, we established a dedicated channel and ran the
network in ad-hoc mode consisting of only two wireless
nodes. We streamed UDP packets from one node to the
other; UDP was used to eliminate the effects of waiting
for an ACK. This also insures that receive tests measure
only receive energy and send tests measure only send en-
ergy. This setup is intended to find the minimum network
energy by removing arbitration delay and the energy of
TCP overhead to avoid biasing our results.

With the measured energy of the transmission and the
size of data file, the energy required to send or receive a
bit can be derived. The results of these network bench-
marks appear in Figure 3 and are consistent with other
studies [20]. The card is set to its maximum speed of

—

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 235

11 Mb/s and two tests are conducted. In the first, the
Skiff communicates with a wireless card mere inches
away and achieves 5.70 Mb/sec. In the second, the sec-
ond node is placed as far from the Skiff as possible with-
out losing packets. Only 2.85 Mb/sec is achieved. These
two cases bound the performance of our 11 Mb/sec wire-
less card; typical performance should be somewhere be-
tween them.

Figure 3. Measured communication energy of
Enterasys wireless NIC

Next, a microbenchmark is used to determine the min-
imum energy for an ADD instruction. We use Linux boot
code to bootstrap the processor; select a cache configu-
ration; and launch assembly code unencumbered by an
operating system. One thousand ADD instructions are
followed by an unconditional branch which repeats them.
This code was chosen and written in assembly language
to minimize effects of the branch. Once the program has
been loaded into instruction cache, the energy used by
the processor for a single add is 0.86 nJ.

From these initial network and ADD measure-
ments, we can conclude that sending a single bit is
roughly equivalent to performing 485–1267 ADD op-
erations depending on the quality of the network link
(4.17×10

7 J
0.86×10 9 J ≈ 485 or 1.09×10

6 J
0.86×10 9 J ≈ 1267). This gap of

2–3 orders of magnitude suggests that much additional
effort can be spent trying to reduce a file’s size before it
is sent or received. But the issue is not so simple.

3.2 Application-Level Communication-to-
Computation Energy Ratio

On the Skiff platform, memory, peripherals, and the
network card remain powered on even when they are
not active, consuming a fixed energy overhead. They
may even switch when not in use in response to changes
on shared buses. The energy used by these compo-
nents during the ADD loop is significant and is shown

in Table 2. Once a task-switching operating system is
loaded and other applications vie for processing time,
the communication-to-computation energy ratio will de-
crease further. Finally, the applications examined in this
paper are more than a mere series of ADDs; the variety
of instructions (especially Loads and Stores) in compres-
sion applications shrinks the ratio further.

Network card 0.43 nJ
CPU 0.86 nJ
Mem 1.10 nJ
Periph 4.20 nJ

Total 6.59 nJ

Table 2. Total Energy of an ADD

The first row of Figures 4 and 5 show the energy re-
quired to compress our text and web dataset and transmit
it via wireless ethernet. To avoid punishing the bench-
marks for the Skiff’s high power, idle energy has been
removed from the peripheral component so that it repre-
sents only the amount of additional energy (due to bus
toggling and arbitration effects) over and above the en-
ergy that would have been consumed by the peripherals
remaining idle for the duration of the application. Idle
energy is not removed from the memory and CPU por-
tions as they are required to be active for the duration of
the application. The network is assumed to consume no
power until it is turned on to send or receive data. The
popular compression applications discussed in Section
2.2 are used with their default parameters, and the right-
most bar shows the energy of merely copying the uncom-
pressed data over the network. Along with energy due to
default operation (labeled “bzip2-900,” “compress-16,”
“lzo-16,” “ppmd-10240,” and “zlib-6”), the figures in-
clude energy for several invocations of each application
with varying parameters. bzip2 is run with both the de-
fault 900 KB block sizes as well as its smallest 100 KB
block. compress is also run at both ends of its spectrum
(12 bit and 16 bit maximum codeword size). LZO runs
in just 16 KB of working memory. PPMd uses 10 MB,
1 MB, and 32 KB memory with the cutoff mechanism for
freeing space (as it is faster than the default “restart” in
low-memory configurations). zlib is run in a configura-
tion similar to gzip. The numeric suffix (9, 6, or 1) refers
to effort level and is analogous to gzip’s commandline
option. These various invocations will be studied in sec-
tion 3.3.3.

While most compressors do well with the web data, in
several cases the energy to compress the file approaches
or outweighs the energy to transmit it. This problem is
even worse for the harder-to-compress text data. The sec-
ond row of Figures 4 and 5 shows the reverse operation:
receiving data via wireless ethernet and decompressing
it. The decompression operation is usually less costly

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association236

0

2

4

6

8

10

12
Compress + Send (2.85Mb/sec)

Jo
ul

es

 b
zip

2−
90

0

 b
zip

2−
10

0

 c
om

pre
ss

−16

 co
m

pre
ss

−12

 lz

o−16

 p
pm

d−10
24

0

 p
pm

d−10
24

 p
pm

d−32

 zl

ib
−9

 zl

ib
−6

zli

b−1

 n

one

Application

Peripherals
Network
Memory
CPU

0

2

4

6

8

10

12
Compress + Send Energy (5.70Mb/sec)

Jo
ul

es

 b
zip

2−
90

0

 b
zip

2−
10

0

 c
om

pre
ss

−16

 co
m

pre
ss

−12

 lz

o−16

 p
pm

d−10
24

0

 p
pm

d−10
24

 p
pm

d−32

 zl

ib
−9

 zl

ib
−6

zli

b−1

 n

one

Application

Peripherals
Network
Memory
CPU

0

2

4

6

8

10

12
Receive + Decompress (2.85Mb/sec)

Jo
ul

es

 b
zip

2−
90

0

 b
zip

2−
10

0

 c
om

pre
ss

−16

 co
m

pre
ss

−12

 lz

o−16

 p
pm

d−10
24

0

 p
pm

d−10
24

 p
pm

d−32

 zl

ib
−9

 zl

ib
−6

zli

b−1

 n

one

Application

Peripherals
Network
Memory
CPU

0

2

4

6

8

10

12
Receive + Decompress (5.70Mb/sec)

Jo
ul

es

 b
zip

2−
90

0

 b
zip

2−
10

0

 c
om

pre
ss

−16

 co
m

pre
ss

−12

 lz

o−16

 p
pm

d−10
24

0

 p
pm

d−10
24

 p
pm

d−32

 zl

ib
−9

 zl

ib
−6

zli

b−1

 n

one

Application

Peripherals
Network
Memory
CPU

Figure 4. Energy required to transmit 1MB compressible text data

0

2

4

6

8

10

12
Compress + Send (2.85Mb/sec)

Jo
ul

es

 b
zip

2−900

 b
zip

2−100

compre
ss−16

 compre
ss−12

 lz

o−16

 ppmd−10240

 p
pmd−1024

 p
pmd−32

 zl

ib−9

 zl

ib−6

zli

b−1

 n

one

Application

Peripherals
Network
Memory
CPU

0

2

4

6

8

10

12
Compress + Send Energy (5.70Mb/sec)

Jo
ul

es

 b
zip

2−900

 b
zip

2−100

compre
ss−16

 compre
ss−12

 lz

o−16

 ppmd−10240

 p
pmd−1024

 p
pmd−32

 zl

ib−9

 zl

ib−6

zli

b−1

 n

one

Application

Peripherals
Network
Memory
CPU

0

2

4

6

8

10

12
Receive + Decompress (2.85Mb/sec)

Jo
ul

es

 b
zip

2−
90

0

 b
zip

2−
10

0

co
m

pre
ss

−16

 co
m

pre
ss

−12

 lz

o−16

 p
pm

d−10
24

0

 p
pm

d−10
24

 p
pm

d−32

 zl

ib
−9

 zl

ib
−6

zli

b−1

 n

one

Application

Peripherals
Network
Memory
CPU

0

2

4

6

8

10

12
Receive + Decompress (5.70Mb/sec)

Jo
ul

es

 b
zip

2−
90

0

 b
zip

2−
10

0

co
m

pre
ss

−16

 co
m

pre
ss

−12

 lz

o−16

 p
pm

d−10
24

0

 p
pm

d−10
24

 p
pm

d−32

 zl

ib
−9

 zl

ib
−6

zli

b−1

 n

one

Application

Peripherals
Network
Memory
CPU

Figure 5. Energy required to transmit 1MB compressible web data

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 237

than compression in terms of energy, a fact which will be
helpful in choosing a low-energy, asymmetric, lossless
compression scheme. As an aside, we have seen that as
transmission speed increases, the value of reducing wire-
less energy through data compression is less. Thus, even
when compressing and sending data appears to require
the same energy as sending uncompressed data, it is ben-
eficial to apply compression for the greater good: more
shared bandwidth will be available to all devices allow-
ing them to send data faster and with less energy. Section
3.3 will discuss how such high net energy is possible de-
spite the motivating observations.

3.3 Energy analysis of popular compressors

We will look deeper into the applications to discover
why they cannot exploit the communication - computa-
tion energy gap. To perform this analysis, we rely on em-
pirical observations on the Skiff platform as well as the
execution-driven simulator known as SimpleScalar [7].
Though SimpleScalar is inherently an out-of-order, su-
perscalar simulator, it has been modified to read statically
linked ARM binaries and model the five-stage, in-order
pipeline of the SA-110x [2]. As SimpleScalar is beta
software we will handle the statistics it reports with cau-
tion, using them to explain the traits of the compression
applications rather than to describe their precise execu-
tion on a Skiff. Namely, high instruction counts and high
cost of memory access lead to poor energy efficiency.

3.3.1 Instruction count

We begin by looking at the number of instructions each
requires to remove and restore a bit (Table 3). The range
of instruction counts is one empirical indication of the
applications’ varying complexity. The excellent perfor-
mance of LZO is due in part to its implementation as
a single function, thus there is no function call over-
head. In addition, LZO avoids superfluous copying due
to buffering (in contrast with compress and zlib). As we
will see, the number of memory accesses plays a large
role in determining the speed and energy of an applica-
tion. Each program contains roughly the same percent-
age of loads and stores, but the great difference in dy-
namic number of instructions means that programs such
as bzip2 and PPMd (each executing over 1 billion in-
structions) execute more total instructions and therefore
have the most memory traffic.

3.3.2 Memory hierarchy

One noticeable similarity of the bars in Figures 4 and 5 is
that the memory requires more energy than the processor.
To pinpoint the reason for this, microbenchmarks were
run on the Skiff memory system.

The SA-110 data cache is 16 KB. It has 32-way as-
sociativity and 16 sets. Each block is 32 bytes. Data is
evicted at half-block granularity and moves to a 16 entry-
by-16 byte write buffer. The write buffer also collects
stores that miss in the cache (the cache is writeback/non-
write-allocate). The store buffer can merge stores to the
same entry.

The hit benchmark accesses the same location in
memory in an infinite loop. The miss benchmark consec-
utively accesses the entire cache with a 32 byte stride fol-
lowed by the same access pattern offset by 16 KB. Write-
backs are measured with a similar pattern, but each load
is followed by a store to the same location that dirties the
block forcing a writeback the next time that location is
read. Store hit energy is subtracted from the writeback
energy. The output of the compiler is examined to in-
sure the correct number of load or store instructions is
generated. Address generation instructions are ignored
for miss benchmarks as their energy is minimal com-
pared to that of a memory access. When measuring store
misses in this fashion (with a 32 byte stride), the worse-
case behavior of the SA-110’s store buffer is exposed as
no writes can be combined. In the best case, misses to
the the same buffered region can have energy similar to
a store hit, but in practice, the majority of store misses
for the compression applications are unable to take ad-
vantage of batching writes in the store buffer.

Table 4 shows that hitting in the cache requires more
energy than an ADD (Table 2), and a cache miss requires
up to 145 times the energy of an ADD. Store misses are
less expensive as the SA-110 has a store buffer to batch
accesses to memory. To minimize energy, then, we must
seek to minimize cache-misses which require prolonged
access to higher voltage components.

3.3.3 Minimizing memory access energy

One way to minimize misses is to reduce the memory re-
quirements of the application. Figure 6 shows the effect
of varying memory size on compression/decompression
time and compression ratio. Looking back at Figures 4
and 5, we see the energy implications of choosing the
right amount of memory. Most importantly, we see that
merely choosing the fastest or best-compressing appli-
cation does not result in lowest overall energy. Table 5
notes the throughput of each application; we see that with
the Skiff’s processor, several applications have difficulty
meeting the line rate of the network which may preclude
their use in latency-critical applications.

In the case of compress and bzip2, a larger memory
footprint stores more information about the data and can
be used to improve compression ratio. However, storing
more information means less of the data fits in the cache
leading to more misses, longer runtime and hence more

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association238

bzip2 compress LZO PPMd zlib

Compress: instructions per bit removed (Text Data) 116 10 7 76 74
Decompress: instructions per bit restored (Text Data) 31 6 2 10 5

Compress: instructions per bit removed (Web Data) 284 9 2 60 23
Decompress: instructions per bit restored (Web Data) 20 5 1 79 3

Table 3. Instructions per bit

0.2 0.3 0.4 0.5 0.6 0.7

0

2

4

6

8

10

12

Ratio (compressed size / original size)

C
o

m
p

re
ss

io
n

 T
im

e
(s

ec
o

n
d

s)

Observed data compression performance

bzip2
compress
lzo
PPMd
zlib

bzip2

PPMd

compress
LZO

zlib

0.2 0.3 0.4 0.5 0.6 0.7

0

2

4

6

8

10

12

Ratio (compressed size / original size)

D
ec

o
m

p
re

ss
io

n
 T

im
e

(s
ec

o
n

d
s)

Observed data decompression performance

bzip2
compress
lzo
PPMd
zlib

zlib

bzip2

PPMd

compress

LZO

Figure 6. Memory, time, and ratio (Text data). Memory footprint is indicated by area of circle; footprints shown
range from 3KB - 8MB

Cycles Energy (nJ)

Load Hit 1 2.72
Load Miss 80 124.89
Writeback 107 180.53

Store Hit 1 2.41
Store Miss 33 78.34

ADD 1 0.86

Table 4. Measured memory energy vs. ADD energy

energy. This tradeoff need not apply in the case where
more memory allows a more efficient data structure or
algorithm. For example, bzip2 uses a large amount of
memory, but for good reason. While we were able to
implement its sort with the quicksort routine from the
standard C library to save significant memory, the com-
pression takes over 2.5 times as long due to large con-
stants in the runtime of the more traditional quicksort in
the standard library. This slowdown occurs even when
16 KB block sizes [38] are used to further reduce mem-
ory requirements. Once PPMd has enough memory to
do useful work, more context information can be stored
and less complicated escape handling is necessary.

The widely scattered performance of zlib, even with
similar footprints, suggest that one must be careful in

choosing parameters for this library to achieve the de-
sired goal (speed or compression ratio). Increasing win-
dow size effects compression; for a given window, a
larger hash table improves speed. Thus, the net ef-
fect of more memory is variable. The choice is espe-
cially important if memory is constrained as certain win-
dow/memory combinations are inefficient for a particular
speed or ratio.

The decompression side of the figure underscores the
valuable asymmetry of some of the applications. Often
decompressing data is a simpler operation than compres-
sion which requires less memory (as in bzip2 and zlib).
The simple task requires a relatively constant amount of
time as there is less work to do: no sorting for bzip2
and no searching though a history buffer for zlib, LZO,
and compress because all the information to decompress
a file is explicit. The contrast between compression and
decompression for zlib is especially large. PPM imple-
mentations must go through the same procedure to de-
compress a file, undoing the arithmetic coding and build-
ing a model to keep its probability counts in sync with
the compressor’s. The arithmetic coder/decoder used in
PPMd requires more time to decode than encode, so de-
compression requires more time.

Each of the applications examined allocates fixed-size

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 239

bzip2 compress LZO PPMd zlib

Compress read throughput (Text data) 0.91 3.70 24.22 1.57 0.82
Decompress write throughput (Text data) 2.59 11.65 109.44 1.42 41.15

Compress read throughput (Web data) 0.58 4.15 50.05 2.00 3.29
Decompress write throughput (Web data) 3.25 27.43 150.70 1.75 61.29

Table 5. Application throughputs (Mb/sec)

structures regardless of the input data length. Thus, in
several cases more memory is set aside than is actually
required. However, a large memory footprint may not
be detrimental to an application if its current working set
fits in the cache. The simulator was used to gather cache
statistics. PPM and BWT are known to be quite mem-
ory intensive. Indeed, PPMd and bzip2 access the data
cache 1–2 orders of magnitude more often than the other
benchmarks. zlib accesses data cache almost as much as
PPMd and bzip2 during compression, but drops from 150
million accesses to 8.2 million during decompression.
Though LZ77 is local by nature, the large window and
data structures hurt its cache performance for zlib during
the compression phase. LZO also uses LZ77, but is de-
signed to require just 16KB of memory and goes to main
memory over five times less often than the next fastest
application. The followup to the SA-110 (the SA-1110
used in Compaq’s iPAQ handheld computer) has only an
8KB data cache which would exaggerate any penalties
observed here. Though large, low-power caches are be-
coming possible (the X-Scale has two 32KB caches), as
long as the energy of going to main memory remains so
much higher, we must be concerned with cache misses.

3.4 Summary

On the Skiff, compression and decompression energy
are roughly proportional to execution time. We have seen
that the Skiff requires lots of energy to work with ag-
gressively compressed data due to the amount of high-
latency/high-power memory references. However using
the fastest-running compressor or decompressor is not
necessarily the best choice to minimize total transmis-
sion energy. For example, during decompression both
zlib and compress run slower than LZO, but they re-
ceive fewer bits due to better compression so total en-
ergy is less than LZO. These applications successfully
walk the tightrope of computation versus communication
cost. Despite the greater energy needed to decompress
the data, the decrease in receive energy makes the net
operation a win. More importantly, we have shown that
reducing energy is not as simple as choosing the fastest
or best-compressing program.

We can generalize the results obtained on the Skiff in
the following fashion. Memory energy is some multiple

of CPU energy. Network energy (send and receive) is a
far greater multiple of CPU energy. It is difficult to pre-
dict how quickly energy of components will change over
time. Even predicting whether a certain component’s en-
ergy usage will grow or shrink can be difficult. Many
researchers envision ad-hoc networks made of nearby
nodes. Such a topology, in which only short-distance
wireless communication is necessary, could reduce the
energy of the network interface relative to the CPU and
memory. On the other hand, for a given mobile CPU de-
sign, planned manufacturing improvements may lower
its relative power and energy. Processors once used only
in desktop computers are being recast as mobile proces-
sors. Though their power may be much larger than that
of the Skiff’s StrongARM, higher clock speeds may re-
duce energy. If one subscribes to the belief that CPU en-
ergy will steadily decrease while memory and network
energy remain constant, then bzip2 and PPMd become
viable compressors. If both memory and CPU energy de-
crease, then current low-energy compression tools (com-
press and LZO) can even be surpassed by their compu-
tation and memory intensive peers. However, if only
network energy decreases while the CPU and memory
systems remain static, energy-conscious systems may
forego compression altogether as it now requires more
energy than transmitting raw data. Thus, it is important
for software developers to be aware of such hardware
effects if they wish to keep compression energy as low
as possible. Awareness of the type of data to be trans-
mitted is important as well. For example, transmitting
our world-wide-web data required less energy in general
than the text data. Trying to compress pre-compressed
data (not shown) requires significantly more energy and
is usually futile.

4 Results

We have seen energy can be saved by compress-
ing files before transmitting them over the network, but
one must be mindful of the energy required to do so.
Compression and decompression energy may be mini-
mized through wise use of memory (including efficient
data structures and/or sacrificing compression ratio for
cacheability). One must be aware of evolving hardware’s
effect on overall energy. Finally, knowledge of com-

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association240

pression and decompression energy for a given system
permits the use of asymmetric compression in which the
lowest energy application for compression is paired with
the lowest energy application for decompression.

4.1 Understanding cache behavior

Figure 7 shows the compression energy of several
successive optimizations of the compress program. The
baseline implementation is itself an optimization of the
original compress code. The number preceding the dash
refers to the maximum length of codewords. The graph
illustrates the need to be aware of the cache behavior of
an application in order to minimize energy. The data
structure of compress consists of two arrays: a hash ta-
ble to store symbols and prefixes, and a code table to
associate codes with hash table indexes. The tables are
initially stored back-to-back in memory. When a new
symbol is read from the input, a single index is used to
retrieve corresponding entries from each array. The “16-
merge” version combines the two tables to form an array
of structs. Thus, the entry from the code table is brought
into the cache when the hash entry is read. The reduction
in energy is negligible: though one type of miss has been
eliminated, the program is actually dominated by a sec-
ond type of miss: the probing of the hash table for free
entries. The Skiff data cache is small (16KB) compared
to the size of the hash table (≈270KB), thus the random
indexing into the hash table results in a large number
of misses. A more useful energy and performance opti-
mization is to make the hash table more sparse. This ad-
mits fewer collisions which results in fewer probes and
thus a smaller number of cache misses. As long as the
extra memory is available to enable this optimization,
about 0.53 Joules are saved compared with applying no
compression at all. This is shown by the “16-sparse” bar
in the figure. The baseline and “16-merge” implemen-
tations require more energy than sending uncompressed
data. A 12-bit version of compress is shown as well.
Even when peripheral overhead energy is disregarded,
it outperforms or ties the 16-bit schemes as its reduced
memory energy due to fewer misses makes up for poorer
compression.

Another way to reduce cache misses is to fit both ta-
bles completely in the cache. Compare the following two
structures:

struct entry{ struct entry{
int fcode; signed fcode:20;
unsigned short code; unsigned code:12;

}table[SIZE]; }table[SIZE];

Each entry stores the same information, but the ar-
ray on the left wastes four bytes per entry. Two bytes
are used only to align the short code, and overly-wide

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Compress + Send Energy

Jo
u

le
s

16
−b

as
eli

ne

16
−m

er
ge

16
−s

par
se

11
−m

er
ge

11
−c

om
pac

t

12
−m

er
ge

none

Application

Peripherals
Network
Memory
CPU

Figure 7. Optimizing compress (Text data)

types result in twelve wasted bits in fcode and four bits
wasted in code. Using bitfields, the layout on the right
contains the same information yet fits in half the space.
If the entry were not four bytes, it would need to con-
tain more members for alignment. Code with such struc-
tures would become more complex as C does not support
arrays of bitfields, but unless the additional code intro-
duces significant instruction cache misses, the change is
low-impact. A bitwise AND and a shift are all that is
needed to determine the offset into the compact struc-
ture. By allowing the whole table to fit in the cache, the
program with the compacted array has just 56,985 data
cache misses compared with 734,195 in the un-packed
structure; a 0.0026% miss rate versus 0.0288%. The
energy benefit for compress with the compact layout is
negligible because there is so little CPU and memory en-
ergy to eliminate by this technique. The “11-merge” and
“11-compact” bars illustrate the similarity. Nevertheless,
11-compact runs 1.5 times faster due to the reduction in
cache misses, and such a strategy could be applied to
any program which needs to reduce cache misses for per-
formance and/or energy. Eleven bit codes are necessary
even with the compact layout in order to reduce the size
of the data structure. Despite a dictionary with half the
size, the number of bytes to transmit increases by just
18% compared to “12-merge.” Energy, however, is lower
with the smaller dictionary due to less energy spent in
memory and increased speeds which reduce peripheral
overhead.

4.2 Exploiting the sleep mode

It has been noted that when a platform has a low-
power idle state, it may be sensible to sacrifice energy

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 241

in the short-term in order to complete an application
quickly and enter the low-power idle state [26]. Figure
8 shows the effect of this analysis for compression and
sending of text. Receive/decompression exhibits simi-
lar, but less-pronounced variation for different idle pow-
ers. It is interesting to note that, assuming a low-power
idle mode can be entered once compression is complete,
one’s choice of compression strategies will vary. With its
1 Watt of idle power, the Skiff would benefit most from
zlib compression. A device which used negligible power
when idle would choose the LZO compressor. While
LZO does not compress data the most, it allows the sys-
tem to drop into low-power mode as quickly as possible,
using less energy when long idle times exist. For web
data (not shown due to space constraints) the compres-
sion choice is LZO when idle power is low. When idle
power is one Watt, bzip2 energy is over 25% more energy
efficient than the next best compressor.

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14

16

18

20
Total Energy Consumed in 15 Seconds

E
n

er
g

y
(J

o
u

le
s)

Idle Power (Watts)

bzip2
compress
lzo
ppmd
zlib
none

Figure 8. Compression + Send energy consumption
with varying sleep power (Text data)

4.3 Asymmetric compression

Consider a wireless client similar to the Skiff ex-
changing English text with a server. All requests by the
client should be made with its minimal-energy compres-
sor, and all responses by the server should be compressed
in such a way that they require minimal decompression
energy at the client. Recalling Figures 4 and 5, and rec-
ognizing that the Skiff has no low-power sleep mode, we
choose “compress-12” (the twelve-bit codeword LZW
compressor) for our text compressor as it provides the
lowest total compression energy over all communication
speeds.

To reduce decompression energy, the client can re-

quest data from the server in a format which facilitates
low-energy decompression. If latency is not critical and
the client has a low-power sleep mode, it can even wait
while the server converts data from one compressed for-
mat to another. On the Skiff, zlib is the lowest energy
decompressor for both text and web data. It exhibits the
property that regardless of the effort and memory param-
eters used to compress data, the resulting file is quite easy
to decompress. The decompression energy difference be-
tween compress, LZO, and zlib is minor at 5.70 Mb/sec,
but more noticeable at slower speeds.

Figure 9 shows several other combinations of com-
pressor and decompressor at 5.70 Mb/sec. “zlib-9 + zlib-
9” represents the symmetric pair with the least decom-
pression energy, but its high compression energy makes
it unlikely to be used as a compressor for devices which
must limit energy usage. “compress-12 + compress-12”
represents the symmetric pair with the least compres-
sion energy. If symmetric compression and decompres-
sion is desired, then this “old-fashioned” Unix compress
program can be quite valuable. Choosing “zlib-1” at
both ends makes sense as well – especially for programs
linked with the zlib library. Compared with the minimum
symmetric compressor-decompressor, asymmetric com-
pression on the Skiff saves only 11% of energy. How-
ever, modern applications such as ssh and mod gzip use
“zlib-6” at both ends of the connection. Compared to
this common scheme, the optimal asymmetric pair yields
a 57% energy savings – mostly while performing com-
pression.

It is more difficult to realize a savings over symmet-
ric zlib-6 for web data as all compressors do a good job
compressing it and “zlib-6” is already quite fast. Nev-
ertheless, by pairing “lzo” and “zlib-9,” we save 12% of
energy over symmetric “lzo” and 31% over symmetric
“zlib-6.”

5 Related work

This section discusses data compression for low-
bandwidth devices and optimizing algorithms for low
energy. Though much work has gone into these fields
individually, it is difficult to find any which combines
them to examine lossless data compression from an en-
ergy standpoint. Computation-to-communication energy
ratio has been been examined before [12], but this work
adds physical energy measurements and applies the re-
sults to lossless data compression.

5.1 Lossless Data compression for
low-bandwidth devices

Like any optimization, compression can be applied at
many points in the hardware-software spectrum. When

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association242

0

1

2

3

4

5

6

7

8

9

10

Energy to Send and Receive
 a compressable 1MB file

Jo
u

le
s

 z

lib
−9

 +
 z

lib
−9

 z

lib
−6

 +
 z

lib
−6

 z

lib
−1

 +
 z

lib
−1

co
m

pr
es

s−
12

 +
 c

om
pr

es
s−

12

 l

zo
 +

 lz
o

 l
zo

 +
 z

lib
−9

 c

om
pr

es
s1

2
+

zl
ib

−9

 n
on

e
+

no
ne

Combination: Compressor + Decompressor

Text
Web

Figure 9. Choosing an optimal compressor-
decompressor pair

applied in hardware, the benefits and costs propagate to
all aspects of the system. Compression in software may
have a more dramatic effect, but for better or worse, its
effects will be less global.

The introduction of low-power, portable, low-
bandwidth devices has brought about new (or rediscov-
ered) uses for data compression. Van Jacobson intro-
duced TCP/IP Header Compression in RFC1144 to im-
prove interactive performance over low-speed (wired) se-
rial links [19], but it is equally applicable to wireless. By
taking advantage of uniform header structure and self-
similarity over the course of a particular networked con-
versation, 40 byte headers can be compressed to 3–5
bytes. Three byte headers are the common case. An
all-purpose header compression scheme (not confined
to TCP/IP or any particular protocol) appears in [24].
TCP/IP payloads can be compressed as well with IP-
Comp [39], but this can be wasted effort if data has al-
ready been compressed at the application layer.

The Low-Bandwidth File System (LBFS) exploits
similarities between the data stored on a client and server,
to exchange only data blocks which differ [31]. Files
are divided into blocks with content-based fingerprint
hashes. Blocks can match any file in the file system
or the client cache; if client and server have match-
ing block hashes, the data itself need not be transmit-
ted. Compression is applied before the data is transmit-
ted. Rsync [44] is a protocol for efficient file transfer
which preceded LBFS. Rather than content-based finger-
prints, Rsync uses its rolling hash function to account for

changes in block size. Block hashes are compared for a
pair of files to quickly identify similarities between client
and server. Rsync block sharing is limited to files of the
same name.

A protocol-independent scheme for text compression,
NCTCSys, is presented in [30]. NCTCSys involves a
common dictionary shared between client and server.
The scheme chooses the best compression method it has
available (or none at all) for a dataset based on parame-
ters such as file size, line speed, and available bandwidth.

Along with remote proxy servers which may cache or
reformat data for mobile clients, splitting the proxy be-
tween client and server has been proposed to implement
certain types of network traffic reduction for HTTP trans-
actions [14, 23]. Because the delay required for manip-
ulating data can be small in comparison with the latency
of the wireless link, bandwidth can be saved with little
effect on user experience. Alternatively, compression
can be built into servers and clients as in the mod gzip
module available for the Apache webserver and HTTP
1.1 compliant browsers [16]. Delta encoding, the trans-
mission of only parts of documents which differ between
client and server, can also be used to compress network
traffic [15, 27, 28, 35].

5.2 Optimizing algorithms for low energy

Advanced RISC Machines (ARM) provides an appli-
cation note which explains how to write C code in a man-
ner best-suited for its processors and ISA [1]. Sugges-
tions include rewriting code to avoid software emulation
and working with 32 bit quantities whenever possible to
avoid a sign-extension penalty incurred when manipu-
lating shorter quantities. To reduce energy consump-
tion and improve performance, the OptAlg tool repre-
sents polynomials in a manner most efficient for a given
architecture [34]. As an example, cosine may be ex-
pressed using two MAC instructions and an MUL to ap-
ply a “Horner transform” on a Taylor Series rather than
making three calls to a cosine library function.

Besides architectural constraints, high level languages
such as C may introduce false dependencies which can
be removed by disciplined programmers. For instance,
the use of a global variable implies loads and stores
which can often be eliminated through the use of register-
allocated local variables. Both types of optimizations are
used as guidelines by PHiPAC [6], an automated gener-
ator of optimized libraries. In addition to these general
coding rules, architectural parameters are provided to a
code generator by search scripts which work to find the
best-performing routine for a given platform.

Yang et al. measured the power and energy impact of
various compiler optimizations, and reached the conclu-
sion that energy can be saved if the compiler can reduce

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 243

execution time and memory references [48]. S̆imunić
found that floating point emulation requires much energy
due to the sheer number of extra instructions required
[46]. It was also discovered that instruction flow opti-
mizations (such as loop merging, unrolling, and software
pipelining) and ISA specific optimizations (e.g., the use
of a multiply-accumulate instruction) were not applied
by the ARM compiler and had to be introduced manually.
Writing such energy-efficient source code saves more en-
ergy than traditional compiler speed optimizations [45].

The CMU Odyssey project studied “application-
aware adaptation” to deal with the varying, often lim-
ited resources available to mobile clients. Odyssey trades
data quality for resource consumption as directed by the
operating system. By placing the operating system in
charge, Odyssey balances the needs of all running ap-
plications and makes the choice best suited for the sys-
tem. Application-specific adaptation continues to im-
prove. When working with a variation of the Discrete
Cosine Transform and computing first with DC and low-
frequency components, an image may be rendered at
90% quality using just 25% of its energy budget [41].
Similar results are shown for FIR filters and beamform-
ing using a most-significant-first transform. Parameters
used by JPEG lossy image compression can be varied to
reduce bandwidth requirements and energy consumption
for particular image quality requirements [43]. Research
to date has focused on situations where energy-fidelity
tradeoffs are available. Lossless compression does not
present this luxury because the original bits must be com-
municated in their entirety and re-assembled in order at
the receiver.

6 Conclusion and Future Work

The value of this research is not merely to show that
one can optimize a given algorithm to achieve a cer-
tain reduction in energy, but to show that the choice of
how and whether to compress is not obvious. It is de-
pendent on hardware factors such as relative energy of
CPU, memory, and network, as well as software factors
including compression ratio and memory access patterns.
These factors can change, so techniques for lossless com-
pression prior to transmission/reception of data must be
re-evaluated with each new generation of hardware and
software. On our StrongARM computing platform, mea-
suring these factors allows an energy savings of up to
57% compared with a popular default compressor and
decompressor. Compression and decompression often
have different energy requirements. When one’s usage
supports the use of asymmetric compression and decom-
pression, up to 12% of energy can be saved compared
with a system using a single optimized application for
both compression and decompression.

When looking at an entire system of wireless devices,
it may be reasonable to allow some to individually use
more energy in order to minimize the total energy used
by the collection. Designing a low-overhead method for
devices to cooperate in this manner would be a worth-
while endeavor. To facilitate such dynamic energy ad-
justment, we are working on EProf: a portable, realtime,
energy profiler which plugs into the PC-Card socket of
a portable device [22]. EProf could be used to create
feedback-driven compression software which dynami-
cally tunes its parameters or choice of algorithms based
on the measured energy of a system.

7 Acknowledgements

Thanks to John Ankcorn, Christopher Batten, Jamey
Hicks, Ronny Krashinsky, and the anonymous review-
ers for their comments and assistance. This work is
supported by MIT Project Oxygen, DARPA PAC/C
award F30602-00-2-0562, NSF CAREER award CCR-
0093354, and an equipment grant from Intel.

References

[1] Advanced RISC Machines Ltd (ARM). Writing Efficient
C for ARM, Jan. 1998. Application Note 34.

[2] T. M. Austin and D. C. Burger. SimpleScalar version 4.0
release. Tutorial in conjunction with 34th Annual Inter-
national Symposium on Microarchitecture, Dec. 2001.

[3] T. Bell and D. Kulp. Longest match string searching for
Ziv-Lempel compression. Technical Report 06/89, De-
partment of Computer Science, University of Canterbury,
New Zealand, 1989.

[4] T. Bell, M. Powell, J. Horlor, and R. Arnold. The Can-
terbury Corpus. http://www.corpus.canterbury.ac.nz/.

[5] T. Bell, I. H. Witten, and J. G. Cleary. Modeling for text
compression. ACM Computing Surveys, 21(4):557–591,
1989.

[6] J. Bilmes, K. Asanović, C.-W. Chin, and J. Demmel. Op-
timizing matrix multiply using PHiPAC: a portable, high-
performance, ANSI C coding methodology. In 11th ACM
International Conference on Supercomputing, July 1997.

[7] D. C. Burger and T. M. Austin. The SimpleScalar tool
set, version 2.0. Technical Report CS-TR-97-1342, Uni-
versity of Wisconsin, Madison, June 1997.

[8] M. Burrows and D. J. Wheeler. A block-sorting lossless
data compression algorithm. Technical Report 124, Dig-
ital Systems Research Center, May 1994.

[9] J. Gailly and M. Adler. zlib. http://www.gzip.org/zlib.
[10] J. Gailly, Maintainer. comp.compression Internet

newsgroup: Frequently Asked Questions, Sept. 1999.
[11] J. Gilchrist. Archive comparison test.

http://compression.ca.
[12] P. J. Havinga. Energy efficiency of error correction on

wireless systems. In IEEE Wireless Communications and
Networking Conference, Sept. 1999.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association244

[13] J. Hicks et al. Compaq personal server
project, 1999. http://crl.research.compaq.com
/projects/personalserver/default.htm.

[14] B. C. Housel and D. B. Lindquist. Webexpress: a system
for optimizing web browsing in a wireless environment.
In Proceedings of the Second Annual International Con-
ference on Mobile Computing and Networking, 1996.

[15] J. J. Hunt, K.-P. Vo, and W. F. Tichy. An empirical study
of delta algorithms. In Software configuration manage-
ment: ICSE 96 SCM-6 Workshop. Springer, 1996.

[16] Hyperspace Communications, Inc.
Mod gzip. http://www.ehyperspace.com /htm-
lonly/products/mod gzip.html.

[17] Intel Corporation. SA-110 Microprocessor Technical Ref-
erence Manual, December 2000.

[18] Intel Corporation. Intel StrongARM SA-1110 Micropro-
cessor Developer’s Manual, October 2001.

[19] V. Jacobson. RFC 1144: Compressing TCP/IP headers
for low-speed serial links, Feb. 1990.

[20] K. Jamieson. Implementation of a power-saving proto-
col for ad hoc wireless networks. Master’s thesis, Mas-
sachusetts Institute of Technology, Feb. 2002.

[21] P. Jannesen et. al. (n)compress. available, among other
places, in Redhat 7.2 distribution of Linux.

[22] K. Koskelin, K. Barr, and K. Asanović. Eprof: An en-
ergy profiler for the iPaq. In 2nd Annual Student Oxygen
Workshop. MIT Project Oxygen, 2002.

[23] R. Krashinsky. Efficient web browsing for mobile clients
using HTTP compression. Technical Report MIT-LCS-
TR-882, MIT Lab for Computer Science, Jan. 2003.

[24] J. Lilley, J. Yang, H. Balakrishnan, and S. Seshan. A uni-
fied header compression framework for low-bandwidth
links. In 6th ACM MOBICOM, Aug. 2000.

[25] Lycos. Lycos 50, Sept. 2002. Top 50 searches on Lycos
for the week ending September 21, 2002.

[26] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony,
and R. Rajkumar. Critical power slope: Understanding
the runtime effects of frequency scaling. In International
Conference on Supercomputing, June 2002.

[27] J. C. Mogul. Trace-based analysis of duplicate suppres-
sion in HTTP. Technical Report 99.2, Compaq Computer
Corporation, Nov. 1999.

[28] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishna-
murthy. Potential benefits of delta encoding and data
compression for HTTP. Technical Report 97/4a, Com-
paq Computer Corporation, Dec. 1997.

[29] J. Montanaro et al. A 160-mhz, 32-b, 0.5-w CMOS RISC
microprocessor. IEEE Journal of Solid-State Circuits,
31(11), Nov. 1996.

[30] N. Motgi and A. Mukherjee. Network conscious text
compression systems (NCTCSys). In Proceedings of
International Conference on Information and Theory:
Coding and Computing, 2001.

[31] A. Muthitacharoen, B. Chen, and D. Mazières. A low-
bandwidth network file system. In Proceedings of the
18th ACM Symposium on Operating Systems Princi-
ples (SOSP ’01), pages 174–187, Chateau Lake Louise,
Banff, Canada, October 2001.

[32] Nielsen NetRatings Audience Measurement Service. Top
25 U.S Properties; Week of Sept 15th., Sept. 2002.

[33] M. F. Oberhumer. LZO.
http://www.oberhumer.com/opensource/lzo/.

[34] A. Peymandoust, T. S̆imunić, and G. D. Micheli. Low
power embedded software optimization using symbolic
algebra. In Design, Automation and Test in Europe, 2002.

[35] J. Santos and D. Wetherall. Increasing effective link
bandwidth by suppressing replicated data. In USENIX
Annual Technical Conference, June 1998.

[36] K. Sayood. Introduction to data compression. Morgan
Kaufman Publishers, second edition, 2002.

[37] J. Seward. bzip2. http://www.spec.org
/osg/cpu2000/CINT2000/256.bzip2/docs/256.bzip2.html.

[38] J. Seward. e2comp bzip2 library.
http://cvs.bofh.asn.au/e2compr/index.html.

[39] A. Shacham, B. Monsour, R. Pereira, and M. Thomas.
RFC 3173: IP payload compression protocol, Sept. 2001.

[40] D. Shkarin. PPMd.
ftp://ftp.elf.stuba.sk/pub/pc/pack/ppmdi1.rar.

[41] A. Sinha, A. Wang, and A. Chandrakasan. Algorithmic
transforms for efficient energy scalable computation. In
IEEE International Symposium on Low Power Electron-
ics and Design, August 2000.

[42] Standard Performance Evaluation Corporation.
CPU2000, 2000.

[43] C. N. Taylor and S. Dey. Adaptive image compression
for wireless multimedia communication. In IEEE Inter-
national Conference on Communication, June 2001.

[44] A. Tridgell. Efficient Algorithms for Sorting and Syn-
chronization. PhD thesis, Australian National University,
Apr. 2000.

[45] T. S̆imunić, L. Benini, and G. D. Micheli. Energy-
efficient design of battery-powered embedded systems.
In IEEE International Symposium on Low Power Elec-
tronics and Design, 1999.

[46] T. S̆imunić, L. Benini, G. D. Micheli, and M. Hans.
Source code optimization and profiling of energy con-
sumption in embedded systems. In International Sympo-
sium on System Synthesis, 2000.

[47] M. A. Viredaz and D. A. Wallach. Power evaluation of
Itsy version 2.4. Technical Report TN-59, Compaq Com-
puter Corporation, February 2001.

[48] H. Yang, G. R. Gao, A. Marquez, G. Cai, and Z. Hu.
Power and energy impact of loop transformations. In
Workshop on Compilers and Operating Systems for
Low Power 2001, Parallel Architecture and Compilation
Techniques, Sept. 2001.

