
Proceedings of LISA '99: 13th Systems Administration Conference
Seattle, Washington, USA, November 7–12, 1999

R E D A L E R T : A S C A L A B L E S Y S T E M F O R
AP P L I C AT I O N M O N I T O R I N G

Eric Sorenson and Strata Rose Chalup

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

RedAlert: A Scalable System for
Application Monitoring

Eric Sorenson – Explosive Networking
Strata Rose Chalup – VirtualNet

ABSTRACT

RedAlert is a complete application monitoring system which consists of a stateful server
daemon and extensible Perl client API. Almost any IP-protocol service is a candidate for
RedAlert monitoring: the clients determine what error condition they have discovered, convert
that information into a standard message format, and transmit the Alert to the server.

RedAlert therefore will easily plug in to existing script-based monitoring environments,
providing greatly increased functionality for a minimal investment in configuration time. This
functionality includes volume tracking, interval sampling, threshold-based notifications, and
reporting mechanisms which include pager, electronic mail, and SNMP traps.

We have chosen to focus on email monitoring, specifically postmaster bounce mail, for the
scope of this paper. Bounce mail is both ubiquitous and complicated, making it ideal for
RedAlert monitoring.

View from 25,000 Feet

RedAlert is an extensible, easy-to-use client/
server framework written in object-oriented Perl. It
comes with a couple of sample client programs and
classes, a generalized API to create new kinds of
clients, and a full-featured server which supports sev-
eral types of threshold monitoring and notification
channels.

The goals in its design were:
• easy integration into existing monitoring
• extendability on the client side
• the ability to catch failure modes which slip by

traditional network monitoring systems unde-
tected

True to its client/server nature, RedAlert is com-
posed of two parts: the monitoring daemon and a set
of clients which report to it. This enables a RedAlert
installation to aggregate information about specific
types of occurrences and trigger events based on
administrator-configured thresholds.

Some of the highlights of the implementation:
1. Flexible connection model. RedAlert uses

Perl’s Data::Dumper [1] and TCP connections
to pass objects across the network. The connec-
tion model doesn’t care about an Alert’s con-
tent, just its ‘‘well-formedness,’’ which pro-
motes extensibility.

2. Object oriented. RedAlert was built from the
ground up using OO methodologies. If you
have home-grown Perl scripts for automation,
you’ll find it easy to extend RedAlert’s moni-
toring capabilities to your site. For example,
given a Perl program which connects to a web
server and checks for a known-good Content-
length: header, it’s ten additional lines of code

to send a RedAlert warnings if any of the stages
of the connection process fail.

3. SNMP notifications. RedAlert has several
methods of triggering SNMP traps. Browsing
support is coming, but is not implemented at
the time of this writing. RedAlert has been allo-
cated a registered branch of the 3Com Enter-
prise MIB. You are in no way obligated to
download the 3Com MIB or use 3Com equip-
ment. The important part is that notifications
are tagged with unique registered ObjectID’s so
you won’t have any conflicts with your existing
SNMP setup.

Origins of RedAlert

Our system originally came about as a response
to a site-specific need. The authors were coworkers at
the site of a client who was building an Internet
Access Service using some Netscape products, includ-
ing Netscape Messaging Server. A few months into
the beta test phase, we realized we were being over-
whelmed by the amount of bounce mail the NMS’
would generate. Load tests brought this problem into
sharp relief: after 13,000 ‘‘user over quota’’ bounces
from a test gone haywire brought down the operations
mail server, we decided it had gone far enough.

We sensed the need for an intelligent front end to
the postmaster mailbox. This front end would keep
track of the types and quantities of bounces it received
and determine whether they represented a ‘‘blip,’’ a
trend indicating a more serious problem, or an error
which required immediate sysadmin attention. One
‘‘user not found’’ error probably isn’t serious; thirty of
them to the same user in the span of a few minutes, on
the other hand, might indicate a mailbomb in progress.
The client/server model lent itself to a polymorphic

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 21

RedAlert: A Scalable System for Application Monitoring Sorenson and Chalup

network of application monitoring programs, with the
client scripts communicating their results to a server
which could make decisions on what a given error
means.

The Status Mail Deluge

Many service daemons are equipped to report
errors or unusual conditions via email. In the halcyon
days where every user was also her or his own sysad-
min, this was a friendly and useful way to report
errors. The information would appear in your mailbox,
perhaps even biff(1)’d across your screen.

With a typical crop of cron jobs, license moni-
tors, network service daemons, and user email, even a
small cluster of several to a dozen machines can gen-
erate a healthy quantity of email over the course of
several days or a weekend. A mid-size engineering
firm of two to three thousand employees may have
several hundred servers and generate as much email in
a day as our small cluster would in a month.

User service clusters, such as those deployed by
Internet Service Providers, typically run a number of
email-noisy security tools in addition to the normal
utilities. Their volume, however, is dwarfed by that of
postmaster mail. Running electronic mail services on
an ISP scale can literally result in megabytes of post-
master mail per day.

From ‘‘Needs Practice’’ to ‘‘Best Practices’’

In many small shops there is something of a lais-
sez faire attitude towards email status notifications:
‘‘If something goes wrong enough, the users will tell
us.’’1 At the other end of the spectrum are the shops
which have everything sorted, scripted, and routed. In
ascending order of utility, here are the methods cur-
rently employed by most sites:

1. Check each server individually ‘‘when you get
around to it.’’ This is usually shorthand for ‘‘we
will check postmaster/root mail when some-
thing breaks.’’

2. Define aliases on each host to funnel mail to a
central collection point, i.e., alias root@thishost
to root@mailhub. Read by hand in between
fire-fighting.

3. Implement the centralized funneling, and add
some form of regular expression filtering to
sort mail into different files/folders. Procmail is
a typical method, followed closely by the filter-
ing options native to ‘‘whatever mailer the lead
sysadmin prefers.’’
At some sites, the processing is delayed rather
than real-time, and the filtering is invoked regu-
larly on the common inbox to perform the sort-
ing. Read between fire-fighting, or have a

1This meshes particularly badly with what Elizabeth
Zwicky calls ‘‘systems administration via psychic powers’’
but can be a useful predictor of an individual shop’s normal
uptime/downtime ratio.

junior team member keep an eye on the folders
every day or two.

4. Implement item 3, and add scripting. The
scripting seems to take one of two forms, and it
is unusual (though praiseworthy) to see both
employed at the same site.

• Add an extra step or two to the filtering,
sending particular messages to a team
member ’s inbox or to the email input of
a trouble-ticket system such as Remedy,
RT, req or Scopus.

• Add one or more cron jobs that rotate the
types of folders (e.g., host-not-respond-
ing, user-not-found, etc) daily and watch
the size of the folders between rotation.
If a particular file gets larger than a site-
specific ‘‘typical’’ size, notify via email
to a pager gateway or trouble ticket sys-
tem.

In practice, this means that site policy will usually be
extreme in one direction or the other. Some sites will
save everything, but practice ‘‘file and forget’’ or ‘‘dig
through the attic in case of trouble.’’ Other sites will
turn off postmaster copies of bounces, set logging
options down to ‘‘critical only’’ for servers, and flood
some unlucky soul’s pager or regular email box with
everything that comes through.

Putting the ‘‘State’’ back in ‘‘State of the Art’’

The critical piece which all of the above lack is
an ‘‘intelligent’’ collection node. To qualify, a node
should receive the incoming messages and be able to
make connections between them based on content:
their origin, destination, meaning, overall number, fre-
quency during an interval, and so on. A solution rely-
ing on scattered individual files and filter-triggered
scripts doesn’t count.

All these sets of stateless, event-driven scripts
are still the equivalent of counting elephants in a field
with a fiberglass pole. You walk with the pole held out
beside you, and every now and then it deflects on
something, bends back, and smacks you in the face.
You then page your postmaster with an ‘‘elephant
spotted in Field Seven’’ message. It’s up to the post-
master to keep track of how many pages came in that
day, and which fields are rife with elephants.

Enter RedAlert’s stateful server daemon: keeping
tabs on troublesome elephants day and night. The
client API allows for extensibility and greater sophisti-
cation in types of clients monitored, and is (in our
humble opinions) a very useful contribution. Funda-
mentally, though, the server daemon serves as the key-
stone to the arch of intelligent status mail processing,
transforming it from a pile of semi-organized building
blocks into a definite structure.

For the rest of this paper, we’ll walk through
building a RedAlert client and server configuration to
monitor a typical application, namely, bounce mes-
sages generated by the Sendmail daemon.

22 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Sorenson and Chalup RedAlert: A Scalable System for Application Monitoring

RedAlert Systems Architecture

Since RedAlert can be deployed in a centralized
or distributed fashion, you must decide how you wish
to aggregate the alerts. This requires identification of
your goals for the monitoring of your mail system.

Obviously if your site is a high-volume site you
will have different goals than if you are running a
small site. Individual local hosts or particular remote
destinations may be of specific importance to you, and
you may wish to have someone paged if ‘‘host not
found’’ bounces begin popping up for that site. On the
other hand, you may simply wish to have statistics
recorded on the ‘‘miss’’ rate of user addressed email.

Severe MTA Errors

Error Threshold Notification

451 %s: cannot fork 0 Trap, Page, Log
452 Error writing control file %s N per interval Trap, Page, Log
452 Out of disk space for temp file N per interval Trap, Page, Log
451 %s: lost child N per interval Trap, Log

Table 1: Severe MTA errors.

If you have deployed load-balanced banks of
mail servers, you will probably wish to have a sepa-
rate RedAlert server instance aggregating traffic for
each bank. The prioritization of alerts for the banks
may depend largely on upon whether your load-bal-
ancing solution can ‘‘busy out’’ an unresponsive
server or if it must be done by hand.

Decide where to aggregate

You can either aggregate the information your-
self by redirecting postmaster mail to your mailhub, or
you can make the service machines do the work and
use an SNMP collection tool for historical data and
trend analysis. We recommend the latter in most cases,
as it localizes and distributes the overhead of running
the RedAlert service.

The approach you choose will be determined by
your desired handling of the actual postmaster mail. If
you are operating under a ‘‘notice, then delete’’ policy,
it is of course more efficient to throw away the mail
right on the originating server. Errors of a type which
should be saved can presumably be redirected to a
central server by the same filtering approach which
you are using to invoke the RedAlert client.

Option 1) Centralize all mail to a mailhub, run it
on the inflows, snmp monitor mailhub.

Option 2) Run it locally on the servers, (option-
ally routing a copy of the message to a central collec-
tion point for archiving), snmp monitor each server
(which you’re probably doing anyway).

Option 3) Run a distributed setup, with a config
master for each class of service machine, aggregating
via option 1 or option 2, or an option 3 recursive of
‘‘mailhub for class.’’

Decide What To Throw Away

Types of postmaster mail which a large site
might wish to track but throw away include ‘‘host-
name not found’’ and ‘‘user not found’’ originating at
remote sites. It can be beneficial to know the numbers
and frequency of these sorts of errors, but there is
rarely information in them useful to maintaining your
mail servers.

For example, an unusually large spike in ‘‘host-
name not found’’ is worthy of an alert, as it could sig-
nal the demise of a DNS server on which that mail
machine depends, the useful information is really in
the fact that the spike occurred, not the content of the
individual messages.

Typical Postmaster Alerts

Many of these are in the class of ‘‘Gee, if anyone
actually read postmaster mail at our site, we would
have seen this when it came through.’’ This is exactly
why we came up with the idea of RedAlert – because
so few sites actually examine postmaster mail in a
timely fashion.

We will use sendmail as an example, given its
widespread acceptance across many types of installa-
tions. In our notification examples, it is arguable that
any condition severe enough to generate an SNMP
trap might also be a condition where you would want
to page someone. However we will assume that the
SNMP monitoring system has its own rules for pag-
ing, and that some trap-only notifications might result
in pages. There are some things that are sufficiently
bad that we would want to page anyway and risk dou-
ble-paging some poor sod at 3am.

Please note that our examples do not constitute a
comprehensive list of any and all errors, nor are the
examples ranked in any particular order, most espe-
cially including likelihood or severity.

Severe MTA Error

Most types of 451 errors should cause system
staff to be paged. Of course, some of them may indi-
cate an OS-level problem of a severity that would pre-
clude the operation of RedAlert as well. A prime
example is ‘‘451 %s: cannot fork’’, which we’ll use to
build up our RedAlert configurations. See Table 1.

Performance Related Conditions

These are things which are useful to log or trap
and later correlate against system and network load

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 23

RedAlert: A Scalable System for Application Monitoring Sorenson and Chalup

data. This will let you see some cause and effect link-
ages more clearly than random poking. Many of these
errors will never be seen at small or well-scaled sites.
Tracking the remote host involved in timeouts will
allow you to set your mailer timeouts to handle certain
destinations which can be notoriously slow. A very
high-volume site may wish to use mailertables to seg-
regate this traffic to dedicated mail routers with unrea-
sonably high timeout values. See Table 2.

Performance Related Conditions

Error Threshold Notification

451 open timeout on %s N per interval Trap, Log
451 reply: read error from %s N per interval Trap, Log
451 timeout waiting for input
during message collect

N per interval Trap, Log

452 Insufficient disk space;
try again later

N per interval Trap, Log

Table 2: Performance related conditions.

Potentially Security Related

Error Threshold Notification

452 Too many recipients 0 Trap, Log
500 Bad usage 0 Trap, Log
051 WARNING: writable directory %s 0 Trap, Log
451 %s: died on signal %d 0 Trap, Log
550 Access denied
550 Address %s is unsafe

for mailing to programs
0 Trap, Log

550 User %s@%s doesn’t have a valid shell
for mailing to files

0 Trap, Log

500 Parameter required 0 Trap, Log
500 smtp: unknown code %d 0 Trap, Log
501 Syntax error in parameters

scanning "%s"
0 Trap, Log

501 %s parameter unrecognized 0 Trap, Log
501 %s requires domain address 0 Trap, Log
501 Unknown BODY type %s 0 Trap, Log

0 Trap, Log502 Sorry, we do not allow this operation
503 Nested MAIL command: MAIL %s 0 Trap, Log
503 Polite people say HELO first 0 Trap, Log

Table 3: Potential security errors.

Potentially Security Related Errors
Some mailer errors are most often seen in

response to root-kit style cracking attempts. These in
particular often involve strange terminations in the
mail.local phase. Generating a trap for these errors
gives NOC staff the ability to investigate in real-time.

Others of this category of error can be generated
in response to spammers attempting to use the MTA
for spam dumping. Logging ‘‘452 Too many recipi-
ents’’ and correlating against RADIUS authentication

logs may enable ISP abuse desk staff to identify spam-
mers. Some of the spam dumping programs out there
are also poorly written and generate bad SMTP.

Some of the threshold values in our table might
be better off with ‘‘N per interval’’ or even ‘‘Y rate of
increase’’ instead of using single-Alert triggers. and
which should just be ‘‘after some small number.’’ This
will depend largely on just how huge your site is and
how peculiar your mail clients may be. Sites running
cc:mail or Exchange gateways for users who love for-
warding and love attachments may see these kinds
kinds of errors on a fairly routine basis, for example.

Deploy Clients
Create clients for the various individual scripts or

add cases in your existing filtering script for routing
postmaster (root, daemon, cron, etc) mail. Substitute
or add a RedAlert client script with the appropriate
arguments and push the configuration files and modi-
fied filtering scripts out to the clients.

24 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Sorenson and Chalup RedAlert: A Scalable System for Application Monitoring

While the client information could all be
included in one master file, we recommend splitting it
into service-specific and/or class-specific config files.
Thus a mistake in editing your squid_proxy.conf file
would not affect your smtp-in.conf, etc. This approach
arguably makes deployment easier, as a large site
could build up a library of different client modules to
reuse and recombine for new situations.

The Configuration Files

Now that we know what we’re looking for, it’s
time to start figuring out how to find it. ‘‘Finding it’’
in RedAlert’s case means setting up your client and
server configuration files in a consistent, complete,
and logical manner.

[global]
port = 7200
debug = 1
servername = alerthost.ops.domain.com
lastresort = redalert-admin@ops.domain.com

Types of email bounces
[sendmail_cannot-fork]
template = "Sendmail couldn’t fork doing _AAA! Message-ID: _BBB"

Listing 1a: sendmail_client.conf.

RedAlert uses simple, text-based configuration
files for both clients and the server. As mentioned
above, it’s generally better to keep a client’s configu-
ration pared down to only those Categories of alert
which that client will be expected to handle; you win
both in ease of use and execution speed – less to parse
means less memory and time used in parsing.

Our configuration files look similar to a Win-
dows .INI file. They contain section names in square
brackets that identify the Category we’re handling,
and then list ‘‘name = value’’ pairs for relevant vari-
ables for that section. Using AppConfig, a Perl mod-
ule by Andy Wardley [3], allows us a great deal of
flexibility with config file parsing, so the niggling
typos which plague primitive parsers aren’t a problem.

The configuration file is divided into three main
sections.

1. Global. The global section contains overall
config information such as port number, sys-
tem-wide defaults, etc.

2. Panic. The ‘‘panic’’ section contains configura-
tion information for RedAlert to report errors
on itself. Problems parsing an incoming client
messages, failure to contact the server’s
RedAlert port, or even debugging strings can be
sent out with a Panic, typically an email mes-
sage sent to a host of last resort.

3. Category-specific. The rest of the file’s sections
contain the site-configurable settings for types
of events, notification procedures, etc. These
sections on the client side only contain a

template for the Alert to send; on the server,
they set up monitoring threshold and notifica-
tion parameters.

Please note: It’s very important to keep your Cate-
gories consistent between the clients’ configuration
files and the server’s. An incoming Alert’s Category
determines which threshold will be incremented and
processed. RedAlert tries to do something reasonable
with unfamiliar Categories, but ‘‘reasonable’’ means
sending a Panic message saying it didn’t know what to
do with the Alert. Receiving a large number of Panic
messages due to a misconfigured client will dilute the
legitimate Panics . . . in a truly degenerate situation,
you might even be forced to run a meta-RedAlert
server to filter incoming Panic messages!

We’ll build up sample client and server configu-
rations for monitoring our sendmail alerts as we dis-
cuss each component in turn.

Crafting a RedAlert Client

The first (and trickiest) part of making a
RedAlert client is figuring out exactly what it is you’re
looking for. In the case of our sample client for pars-
ing Sendmail bounces (hereafter called send-
mail_client.pl), we poked through the sendmail binary
with strings(1) and came up with appropriate regular
expressions to match the various kinds of bounces the
program can generate.

We then created a simple sendmail_client.conf,
with templates for each of the different Categories of
bounce we might receive. In the interest of brevity,
this client example will only focus on one specific
error from the tables above: ‘‘Cannot fork’’. This is a
pretty serious error condition, indicating that sendmail
had used up its allotment of child process id’s, or
(worse) that the machine’s process table was full.
We’ll want to extract the ‘‘%s’’ substitution from the
message and use it to fill in our Template; since we’re
dealing with sendmail here, the Message-Id of the
bounce will come in handy too. So, our send-
mail_client.conf looks like the code in Listing 1a.

The methodology you use to create and config-
ure your own clients will depend upon the kinds of
error strings your application produces – in the case of
a Squid web-proxy monitor, as another example, the
error conditions are indicated by known-bad responses

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 25

RedAlert: A Scalable System for Application Monitoring Sorenson and Chalup

from the server (a 404 or 500 error to a page which
ought to be there or a CGI which should be working),
or by a failure in the various stages of establishing the
TCP connection to the proxy’s port. This level of
monitoring is what makes RedAlert special – no mat-
ter how expensive the network monitoring solution in
use at sites we’ve seen, it always seems to miss certain
failure modes that always end up biting you in an
uncomfortable place.2 With RedAlert, however, you
can catch errors specific to your services, plus adapt
your monitoring routines to the new and interesting
failures that seem to creep in with a new code revision
or configuration change.

1 use RedAlert::Client::Sendmail;
2 $alert = new RedAlert::Client::Sendmail;

Listing 1b: Code segments from sendmail_client.pl.

3 $alert->Configure("/opt/src/redalert/nms_client.conf");

Listing 1c: Code segments from sendmail_client.pl.

4 use Mail::Header;
5 my $mail = new Mail::Internet([<>]);
6 my $headers = $mail->head();
7 my $body = $mail->body();
8 $alert->Parse($headers, $body);

Listing 1d: Code segments from sendmail_client.pl.

To promote reusability, we created a new sub-
class of RedAlert::Client called Sendmail. This trans-
lates into a file under the RedAlert library directory:
RedAlert/Client/Sendmail.pm. To avoid losing sight of
the more typical cases where you’re integrating
RedAlert client functions into already-existing pro-
grams or writing a simpler frontend that won’t involve
package creation, we’ll focus more on the send-
mail_client.pl interface and the Client API, delving
into the new subclass’ methods only when necessary.
Consider the following code segments from send-
mail_client.pl shown in Listing 1b.

The first two lines pre-load our module, then
instantiate a new RedAlert::Client::Sendmail object.
The ‘‘new’’ constructor method inherits attributes
from both its parent classes, the base RedAlert class
and the Client subclass; see Listing 1c.

This line calls the Configure method to parse our
config file, loading up the categories and templates
into which this bounce might fall. Configure is actu-
ally a RedAlert::Client method which we have inher-
ited; see Listing 1d.

This is our only chunk of real client-specific
code. Since we’re destined to be passed an email, we
can use Mail::Internet’s builtin facility to create a new
Mail object by reading from stdin, the odd-shaped

2Like the back of a Volkswagon. Never mind.

[<>] construct in like 10. We use some handy methods
in the Mail module to create references to
Mail::Header and Mail::Body objects from the incom-
ing email in lines 6 and 7, and pass these as arguments
to the Parse method of our Alert object.

Here we’ll have to descend into Sendmail.pm for
a bit, to follow the Parse method as it fills in our Tem-
plate with appropriate substitutions for the placehold-
ers defined there. See Listing 2a for some code frag-
ments from Sendmail.pm.

Line 2 might seem puzzling at first, but it starts
to make sense with the knowledge that calling a
method with the arrow operator, as in ‘‘$alert->
Parse’’, passes the object’s reference as the parameter
to the method. So when we ‘‘shift’’ above, we’re
assigning the the first element of the implied @_ to
$self. This gives us a local copy of the object to
manipulate. The next two elements of @_ are refer-
ences to the Mail::Headers and Mail::Body objects
passed to us by the sendmail_client.pl; see Listing 2b.

Here’s the meat of the bounce processing. We
loop through each line in the body of the message,
scanning for error codes and their attendant strings
indicating specificity. The conditional shown in line 5
will match our 451 errors, using the (\w+) pattern to
match the string from sendmail indicating what it was
trying to do when the fork failed. Once we know what
Category this bounce belongs to, we send it to Set-
Type (line 7), which updates the Alert object’s state
and pre-loads the appropriate Template. Since the
message-id of sendmail bounces helpfully include the
hostname and timestamp, it’s all we need to uniquely
identify this Alert. We extract it from the Mail::Header
object in line 8, and then pass both of these variables
into the Substitution method, which iterates through
its list of parameters and assigns them to the _AAA ..
_ZZZ patterns in this category’s Template, in order.
Remember, our template for ‘‘sendmail_cannot-fork’’
Alerts looks like Listing 2c.

There’s one conditional for each possible Cate-
gory which we know about, and a final catch-all line

26 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Sorenson and Chalup RedAlert: A Scalable System for Application Monitoring

in case we’re at the end of our rope and still don’t
have a match: see Listing 2d.

Back in sendmail_client.pl, we have only to send
our completed alert off and we’re through.

9 $alert->Send;

1 sub Parse {
2 my $self = shift;
3 my ($headerref, $bodyref) = @_;

Listing 2a: Code fragments from Sendmail.pm.

4 foreach $line (@$bodyref) {
5 if ($line =˜ /451: (\w+): cannot fork/) {
6 chop $line;
7 $self->SetType("sendmail_cannot-fork");
8 my $messageid = $headerref->get("Message-ID");
8 $self->Substitution("$1", "$messageid");
9 return $self;

10 }
11 elsif { [...]
12 }

Listing 2b: Code fragments from Sendmail.pm.

template = "Cannot fork on operation _AAA! Message-ID: _BBB"

Listing 2c: Template for sendmail_cannot-fork.

12 $self->Panic("Got an unparsable message: @$bodyref");
13 return $self;
14 }

Listing 2d: Final catch-all line.

Send creates an eval()-able chunk of perl from
the useful parts of our object, namely the Category
and Specificity, and fires it off to the server . . . and
that’s it! To recap, a minimal RedAlert client, which
sends an alert containing the date every time it’s
invoked, might look like this code from mini-
mal_client.pl:

1 use RedAlert::Client;
2 $alert = new Client;
3 $alert->Configure(

"/path/to/my/client.conf");
4 $alert->SetType("irritating");
5 $alert->Substitution(‘date‘);
6 $alert->Send;

This assumes that client.conf looks something
like this:

1 [irritating]
2 template = "minimal_client".

" was invoked at _AAA"

The RedAlert Server, Close Up and Personal

The RedAlert server is the guts of the system.
It’s the destination for all your different clients’ Alerts,

and as such needs to know how to track the various
categories of alert and when and how to send a notifi-
cation if a threshold is knocked over. The server
(redalert.pl) normally runs as a daemon, but can be put
into non-forking mode to facilitate debugging.
Server Configuration File

The RedAlert server config looks syntactically
similar to the client configuration file, but contains a
lot more information. The section headers are the
names of all categories, system-wide, for which we
might receive an Alert, plus sections for global vari-
ables and Panic configs). Unlike the client configura-
tion file, we aren’t interested in Templates to fill out
for the various Categories; rather, we need to deter-
mine what to do when an alert of a particular Category
is received. As such, while a client’s config may con-
tain only Categories which that particular client will
be handling, the server config should contain a section
for every category of Alert, system-wide. Again,
unconfigured categories indicate that one of your
clients is sending mismarked Alerts and will result in a
Panic notification. This ‘‘last resort’’ notification
means we don’t drop anything on the floor, making it
easy to track down those elusive ‘‘telnet’’ problems.

All server config files should have a [global] sec-
tion, to define the port and interface/hostname to bind,
an Accounting Interval to summarize and mail statis-
tics reports, and a [panic] section for self-reporting
and as an address of last resort for unconfigured cate-
gories problems delivering Notifications. Listing 3
shows the start of a typical config (redalert.conf).

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 27

RedAlert: A Scalable System for Application Monitoring Sorenson and Chalup

[global]
debug = 1
acct_interval = 86400s
port = 7200
servername =

alerthost.ops.domain.com

1 use RedAlert::Server; # Server methods
2 use RedAlert::Threshold; # All the Threshold methods
3
4 use Event qw(loop unloop); # import loop(), unloop() into namespace
5 require Event::tcpserv; # JPRIT’s server shortcuts
6 require Event::timer; # Watcher type for countdowns
7 require Event::signal; # Classy signal handlers
8
9 $server = new Server; # instantiate myself

10
11 $configfile = "/opt/src/redalert/rasv.conf";
12
13 # Sanity checking on the values, add a reference to the AppConfig object
14 $server->Configure("$configfile");
15
16 # Create state for each category we’ll be monitoring, add a reference
17 # to the Threshold object which contains them.
18 $server->InitThresholds;
19
20 # Daemonize forks us, global_debug from the configfile via AppConfig
21 if ($server->Daemonize || $server->Config("global_debug") == 1) {
22 my $reread_config = new Event::signal(’e_signal’, ’HUP’,
23 ’e_cb’, \&ReParse, # the callback
24 ’e_desc’, ’reread_config’); # description
25 # Server method to update ourselves
26 $server->AddWatcher(’reread_config’, $reread_config);
27 loop() || $server->Panic("Couldn’t start the server’s main loop!");
28 }

Listing 3: Typical beginning of server, redalert.pl.

threshold_interval = 60
alert_host =

mailhost.ops.domain.com

[panic]
alert_type = email
alert_dest =

redalert-admin@ops.domain.com

[sendmail_cannot-fork]
threshold_trigger = 1
threshold_interval = 0
alert_dest =

duty-pager@ops.domain.com

[sendmail_complicated-threshold]
alert_type = email
alert_dest =

redalert@ops.domain.com
threshold_interval = 5m
threshold_trigger = 20

threshold_delta_max = 5
threshold_delta_min = 3
threshold_average = 4
send_only = 3
send_after = 2

We’ll explain what each of the category-specific
configuration lines means in a bit; suffice it to say for
now that each ‘‘451: Cannot Fork’’ Alert will result in
an email page to ‘‘duty-pager@ops.domain.com’’
immediately upon receipt.

Event Loop
redalert.pl uses Joshua Pritikin’s excellent Event

[4] package to neatly solve some of the thornier prob-
lems in running long-term servers in Perl. Event pro-
vides ‘‘a central facility to watch for various types of
events and invoke a callback when these events
occur ’’ [from the Event .pod]. A watchable ‘‘event’’
can be a timer-based interval hitting zero, activity on a
file or network socket, a signal sent to the process, a
variable incrementing or changing its value, to name a
few. A callback is simply a subroutine which acts on
the information received by its watcher.

The important thing about Event is that its
watchers are processed asynchronously, queued for
execution and then run sequentially based on their

28 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Sorenson and Chalup RedAlert: A Scalable System for Application Monitoring

priority; this defers the problem of race conditions and
is a lot more portable than using threads (which Perl
can’t do very well anyway).

RedAlert Startup and Watchers

To setup the Event loop, we first import the mod-
ules we’ll need, then register our starting Watchers
(the events we’ll be acting upon), and finally start the
loop itself. The start of the code for the server is show,
in part, in Listing 3 (with commentary inline).

While there are subroutines below for handling
different Watchers’ callbacks, this section is really the
heart of the server program. There’s a lot going on
here, but it demonstrates a clean object-oriented API.
The containment of two other types of objects
(RedAlert::Threshold and AppConfig::State) within
the RedAlert::Server object lets us encapsulate their
internal structure, in accordance with the OO principle
of ‘‘information hiding.’’ Our Server methods provide
a higher-order wrapper to the objects’ data, so their
structure can change internally (say, to store the
Thresholds in a database instead of in memory), but as
long as the API remains consistent, the program itself
won’t notice the difference.

Thresholds

Let’s concentrate for the moment on the vari-
ables beginning with ‘‘threshold_’’ in the sample con-
fig file above. Note that at no time do you specify in
the the config what kind of threshold you want; you
simply define whatever threshold variables you’re
interested in watching, and RedAlert does all the
work. Let’s walk through each of the threshold types
in turn, starting with the simplest kind. All threshold
variables in the configuration file start with ‘‘thresh-
old_’’; we’ll give a visual representation of each type
and then a sample config which would create that kind
of threshold.

Summary: The simplest kind of threshold is no
threshold at all – if you define an interval but no trig-
ger, RedAlert will simply keep statistics on that Cate-
gory, sending you a summary of the number of Alerts
received over the interval. Summary counters are
cleared at the end of the interval. See Figure 1.

In a config file, this is as simple as setting the
threshold_trigger to zero, i.e., ‘‘don’t ever trigger a
Notification.’’ If your fall-through threshold_interval
in the [global] section is appropriate, zeroing out the
trigger is the only thing you need to define. The fol-
lowing lines would create a Summary threshold:

[category_type]
threshold_trigger = 0

Trigger: The inverse of the Summary threshold
is Trigger, which sends a notification upon each Alert
the server receives. This is useful for really desper-
ately bad kinds of problems, which you don’t want to
track for statistical purposes, you just want to know
about it right away. See Figure 2.

Time

In
co

m
in

g
A

le
rt

s

Th
re

sh
ol

d_
in

te
rv

al

1 2 3 4

S
um

m
ar

y
th

re
sh

ol
d

Figure 1: Summary threshold.

Time

I
n
c
o
m
i
n
g

A
l
e
r
t
s

T
h
r
e
s
h
o
l
d
_
i
n
t
e
r
v
a
l

1 2 3 4

Figure 2: Trigger threshold.

Time

In
co

m
in

g
A

le
rt

s

T
h

re
sh

o
ld

_
in

te
rv

a
l

1 2 3 4

Threshold_trigger

In
te

rv
al

 th
re

sh
ol

d

Figure 3: Interval threshold.

To set up this type of threshold, simply set
threshold_trigger to be 1.

[category_type]
threshold_trigger = 1

Interval: An Interval threshold tracks the fre-
quency of incoming alerts and sends a notification if
the server receives more than x notifications in y time.
A possible use for Interval thresholds is monitoring
response times from applications where it’s OK for
them to sometimes bog down a little bit, but when you
receive, say, ten Alerts in ten minutes saying the
response time was over five seconds, you’d want to
know about it. We’ll use these parameters for the
graph in Figure 3.

As the graph implies, we’d define both thresh-
old_trigger and threshold_interval for this kind of
Alert to be ten, like so:

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 29

RedAlert: A Scalable System for Application Monitoring Sorenson and Chalup

[category_type]
threshold_trigger = 10
threshold_interval = 10

Maximum Delta: The greek letter delta signifies
change, and with this type of threshold we’re monitor-
ing the maximum change in time between receiving
two Alerts of the same Category. This is useful for
uptime or heartbeat monitoring; you’d run your client
as a cron job, say every five minutes, and it would
send an ‘‘all clear’’ message once it finished process-
ing. If more than six minutes pass between one notifi-
cation and the next, we’d want to know about it,
which is where Maximum Delta comes in. See Figure
4.

[category_type]
threshold_delta_max = 5m

Time

I
n
c
o
m
i
n
g
A
l
e
r
t
s

T
h
r
e
s
h
o
l
d
_
i
n
t
e
r
v
a
l

1 2 3 4

t
h
r
e
s
h
o
l
d
_
d
e
l
t
a
_
m
a
x

Figure 4: Maximum delta threshold.

Time

I
n
c
o
m
i
n
g
A
l
e
r
t
s

T
h
r
e
s
h
o
l
d
_
i
n
t
e
r
v
a
l

1 2 3 4

t
h
r
e
s
h
o
l
d
_
d
e
l
t
a
_
m
i
n

Figure 5: Minimum Delta Threshold

Minimum Delta: Like the Max Delta above,
Minimum Delta measures the time between received
Alerts of a given Category. However, in this case we
want to receive a notification if the Alerts start coming
in too quickly instead of too slowly. A potential use
for this type of threshold might be monitoring ‘‘user
not found’’ errors from a mail server, where a few of
them spaced out over a whole day is fairly typical, but
ten in rapid succession might indicate a misdirected
mailbomb or denial-of-service attack. See Figure 5

[category_type]
threshold_delta_min = 3m

Average: The most complicated (arithmetically,
not configuration-wise!) type of RedAlert threshold

keeps a running average of the rate the server is
receiving alerts of a particular type, and sends a notifi-
cation if the average exceeds the configured value.
This is quite similar to the idea of ‘‘load factor’’ on
UNIX machines, and can be used in the same situa-
tions where you’d normally monitor the load average.
Average thresholds are more complicated than Interval
thresholds because they don’t use an absolute value
for the trigger; rather, they keep relative values and
thus provide greater flexibility for monitoring things
like proxy transactions per minute.

current_average =
((interval - current_delta) * old_average + 1)

interval

The threshold_average config variable is used.
It’s a numeric value which expresses the number of
Alerts received over an interval value. As such, you
need to define the threshold_interval as well as thresh-
old_average to configure this type of alert.

[category_type]
threshold_interval = 60s
threshold_average = .5

Note that thresholds are additive wherever possi-
ble: except for ones which trigger a notification on
each Alert received or only do statistics-gathering,
RedAlert will check the most complex type of thresh-
old first, and then continue down the list to make sure
none of the lesser-order thresholds are triggered too.
This means that if you define a threshold_trigger and
threshold_interval as well as threshold_delta_max for
a particular Category, this will create a Maximum
Delta threshold plus an Interval threshold for that type
of Alert. This allows you to simply and quickly set up
a very powerful monitoring profile for your server.
Notifications

So, once a threshold is triggered, what next?
There are two kinda of Notifications which can result
from a new Alert the server receives: email and
SNMP. Each of these methods will prepend its own
message onto the text of the Notification, so the worst-
case Notification you receive will say something like
Listing 4.

Time

In
co

m
in

g
 A

le
rt

s

threshold_trigger

send_only = 3 send_after = 2

Figure 7: Send After and Send Only

Line 1 is from the Panic method, Line 2 from
Server::CheckThresholds, and line three was the origi-
nal Alert we received.

30 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Sorenson and Chalup RedAlert: A Scalable System for Application Monitoring

All categories can specify two attributes which
will reduce likelihood of being ‘‘spammed’’ with
RedAlert notifications. send_only will increment a
counter upon each trap sent, and only send up to this
many notifications in one accounting interval.
send_after will wait until receiving N alerts above a
threshold before sending a Notification. See Figure 7.
Let’s take a closer look at each type of Notification in
turn.

Email: Email is pretty self-explanatory; it simply
sends an email using the Mail::Internet modules to the
SMTP server you specify or to the Panic destination if
that gateway is unreachable. To configure email notifi-
cations, use lines like these in your server config file:

1 Panic! Couldn’t connect to traphost.ops.domain.com sending:
2 Trigger threshold exceeded:
3 Cannot fork on operation SMTP_VRFY! Message-ID:

<199904291241.FAA17062@mailhost.ops.domain.com>

Listing 4: Worst-case notification.

Trigger threshold exceeded:
Cannot fork on operation SMTP_VRFY! Message-ID:

<199904291241.FAA17062@mailhost.ops.domain.com>

Listing 5: The traps.sendTrap.

[global]
alert_type = email
alert_dest =
redalert-admin@ops.domain.com

alert_host =
mailhost.ops.domain.com

[category_type]
alert_dest =

category-owner@eng.domain.com

The implication here is true: the definitions in
the [global] section will act as defaults unless they’re
overridden by category-specific values. This is known
as ‘‘translucency’’ in OO parlance.

SNMP: SNMP Notifications are (by the proto-
col’s very nature) more involved than those of the
Email type. They are sent as an SNMP trap to the trap
destination port (generally udp/162) of your network
management station. The usual object ID of the trap is
1.3.6.1.4.1.43.33.3.9.6, which translates into the
‘‘enterprises.a3Com.palm-mib.redalert’’ branch of the
root SNMP-mib2 tree. The last two places are the leaf
nodes of the RedAlert MIB: ‘‘traps.sendTrap’’, the
value of which trap will look like Listing 5.

If you want to use SNMP traps, you’ll first need
some kind of network monitoring software like HP
OpenView which first, has the ability receive the
traps, and second, can be configured to do something
useful, like log a message or flash an icon on the
screen, upon receipt of said trap. You should compile
the included redalert.asn1 MIB definition into your

management station’s MIB tree and prepare its config-
uration to receive RedAlert traps (the procedure varies
on the software you’re using).

In the server’s config file, setting ‘‘alert_type’’ to
‘‘snmp’’ requires you to add an ‘‘alert_community’’
variable and transform the meaning of the
‘‘alert_dest’’ line from an email address into an SNMP
Object-ID with which to tag the trap. Again, lines in
the [global] section will be used as defaults unless you
override them in the section for a Category.

[global]
alert_type = snmp
alert_host =

traphost.ops.domain.com
alert_dest =

1.3.6.1.4.1.43.33.3.9.6
alert_community = public

[category_type]
alert_dest =

otherhost.ops.domain.com
alert_community = private

RedAlert uses the SNMP::Session [5] module to
build up the UDP trap packet, encoding all of these
values and adding the Notification message, and then
registers it as an Event in the main Event Loop to send
as soon as possible. This generates a ‘‘queue’’ of out-
going SNMP alerts, which if not sent within a ten-sec-
ond timeout, will go into ‘‘Panic’’ mode and send the
notification (plus the fact that it couldn’t be sent) to
your Host of Last Resort.

OTHER: RedAlert is always evolving and
maturing, and among the ways it is becoming more
useful are additional Notification messages. A Syslog
facility is in the works, further refinements might add
the ability to dial a modem and speak TAP directly to
an alphanumeric paging service. The simple, stan-
dard, text-based nature of the Notifications make it
very easy to add new backends in response to new
technologies or your site-specific requirements.

Gilding the Lily

As a generic Perl program, a RedAlert client can
of course undertake whatever additional, non-
RedAlert actions you require, such as logging the

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 31

RedAlert: A Scalable System for Application Monitoring Sorenson and Chalup

message-ids of ‘‘hostname not found’’ bounce mail.
An unusually diligent postmaster whose queues are on
a Network Appliance server might save the message-
ids and try to pull back the queued messages via snap-
shot files, but this level of hand-intervention is cer-
tainly uncommon in an ISP environment.

An individual running their own site could easily
attempt to resubmit bounced mail of certain types
using a modified RedAlert client. It would require rel-
atively little effort to write a client which could tally
mail bounces for you and compare each bounced
recipient and destination against a personal directory
of frequent addressees, rewriting and resubmitting
such bounces that appear to be simple typos on your
part. Postmaster copies of bounces will usually have
the body deleted for privacy/security reasons, so this
approach works only with the individual recipient
copies.

If you are running high-volume services and
wish to do sophisticated post-processing of messages,
such as rewriting and resubmission, you will probably
wish to redirect them to a separate server. Since most
filtering methods are non-threaded, and many have
clumsy locking, separating the traffic from your
important mail server is a reasonable idea.

Extensions for the Future

• Filter messages right in the MTA and call our
Sendmail client as a program or local mailer.

• Object Persistence in the form of a database
backend to the RedAlert server. This would
allow greater reporting and analysis of incom-
ing Alerts, as well as enabling Threshold state
to be maintained indefinitely.

• Add SNMP listener to make internal state of
client monitoring and configuration available
directly.

Availability

The RedAlert code base is released under the
GNU Public License, and is available via FTP or by
anonymous CVS. If you’re interested in using
RedAlert, or even in helping to make it more useful by
joining the development team, check out the RedAlert
homepage at: <URL:http://explosive.net/opensource/
redalert/>

The extreme configurability of the client side and
the robust, platform independent nature of Perl lead us
to believe that the tool will find wide acceptance and
use in the systems administration community. Email
and Squid monitoring clients exist as of this writing,
and we look forward with interest to seeing new
clients emerge. For general RedAlert discussion,
please send mail to majordomo@explosive.net with
‘‘subscribe redalert’’ in the subject of your message.
You will automatically be sent back an authentication
token to complete the subscription process, so please
make sure your return address is valid.

Acknowledgements

As with any open source project, we stand on the
shoulders of giants and add our small contribution to
the view. We would like to thank Larry Wall and all
the CPAN contributors for their excellent and irre-
placeable work in creating the foundation for RedAlert
and countless other tools. We also express our grati-
tude to the pioneers of SNMP, and to 3Com for grant-
ing us space in the Enterprise MIB.

Author Information

Eric Sorenson is a UNIX sysadmin and systems
programmer currently living the good life in Silicon
Valley. When he’s not LARTing developers or work-
ing on his hardened garage NOC, he enjoys ultralight
sailboat racing with his friends and fiancee and listen-
ing to experimental ambient music. Reach him elec-
tronically at <eric@explosive.net>.

Strata Rose Chalup <strata@virtual.net> has
been a sysadmin professionally since 1983, long
before all the Internet hype. For the past several years,
she has specialized in high-volume network service
architecture, particularly for email. Following a road
paved with good intentions, Strata has drifted into the
shady netherworld of Project Management and looks
forward to resuming more hands-on technical work.
All year she has been promising herself ‘‘just one
more contract’’ before taking a month off to catch up
on scuba diving, learning Perl, and getting back into
tai chi. In her minimal spare time, Strata is learning to
program her new digital camera and working with her
husband to convert a 24-foot school bus into a custom
motorome for dive weekends up and down the Califor-
nia coast.

Inline References

[1] Data::Dumper 2.101 by Gurusamy Sarathy, <gsar@
umich.edu>.

[2] MailTools 1.13 by Graham Barr, <gbarr@pobox.
com>.

[3] AppConfig 1.52 by Andy Whardley, <abw@cre.
canon.co.uk>.

[4] Event 0.51 by Joshua Pritikin, <bitset@mindspring.
com>.

[5] SNMP_Session 0.70 by Simon Leinen <simon@
switch.ch>.

Other References

Chalup, Hogan, et al., ‘‘Drinking From the Fire
Hose,’’ 1998 LISA.

Pree, Wolfgang, ‘‘Design Patterns for Object-Oriented
Software Development,’’ 1995, ACM Press.

Friedl, Jeffrey E. F. ‘‘Mastering Regular Expressions,’’
1997, O’Reilley and Associates.

Srinivasam, Srinam. Advanced Perl Programming,
1997, O’Reilley and Associates.

32 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Sorenson and Chalup RedAlert: A Scalable System for Application Monitoring

Comprehensive Perl Archive Network (CPAN),
AppConfig-1.52 by Andy Whardley <abw@cre.
canon.co.uk>,
Data::Dumper-2.101 by Gurusamy Sarathy <gsra@
umich.edu>,
Event-0.51 by Joshua Pritikin <joshua.pritikin@
db.com>,
Event-tcp-0.007 by Joshua Pritikin <joshua.pritikin@
db.com>,
MailTools-1.53 by Graham Barr <gbarr@pobox.
com>,
SNMP_Session-0.70 by Simon Leinen <simon@
switch.ch>.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 33

34 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

