
The following paper was originally published in the
Proceedings of the Large Installation System Administration of Windows NT Conference

Seattle, Washington, August 5–8, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Designing an Optimized Enterprise Windows NT/95/98
Client Backup Solution With Intellegent Data Management

Kevin Workman, Earl Waud, Steven Downs, and Mikel Featherstone
Qualcomm Inc.

Designing an Optimized Enterprise Windows NT/95/98 Client Backup Solution
with Intelligent Data Management

Kevin M Workman, Earl Waud, Steven Downs, Mikel Featherston
Qualcomm Inc.

Abstract

Recent times have seen a vast increase in the number of
PC’s deployed on company networks, as well as a sig-
nificant increase in the drive space attached to those
machines. This situation presents a growing problem for
those responsible for both maintaining corporate net-
works and insuring the integrity and safety of corporate
data. The increase in the enterprise data set translates to
an increase in the amount of data on the wire, as it is
sent over the network to be archived, as well as an in-
crease in the amount of tape media that must be used to
protect the data. Faced with an ever-increasing amount
of data to support, it is becoming necessary to discover
a means to identify business critical data, so that only
the necessary files are committed to long-term storage,.
At the same time, the non-critical data must also be
tracked, so that machines can be fully recovered in case
of machine failure.

In this paper we will discuss the concept behind our
system of intelligently managing redundant and un-
needed information in the enterprise. Our method em-
ploys a rule system that allows us to reduce or eliminate
the redundant and useless information that we backup
while still providing quick restore times in the event of
data loss.

1. Introduction

Experience is showing us today that in the Windows NT
class machines, historical backup systems are ill
equipped to deal with the massive growth we are seeing
in both the sheer number of client workstation machines
to manage, as well as the size of the data to be backed
up.

As the industry finds larger NT/95/98 client deploy-
ments with larger, cheaper, newer technology hard
drives, we discover that in large corporate environ-
ments, more than half of the information that we com-
mit to backups is considered redundant or short term
information. This data does not need to be committed to

tape storage since it either exists in other areas of the
enterprise, or is used for short term reasons such as
Internet cache files or temporary work files.

We have identified several data types that can be han-
dled in a much more efficient manner, through the defi-
nition of an intelligent rules system. Rather than back-
ing up all of the data in the enterprise all of the time, we
can backup only the data that matters, and reduce the
amount of redundant and unneeded files that we are
committing to backup via a complete inclu-
sion/exclusion rules system.

This system also provides us with a means of allowing
users the ability to define their own exclusions and in-
clusion in the backup set as well as a level of server
dictated excludes and included based on commonality
or criticality for information and files.

2. Common File Determination

In a normal enterprise with 5000 machines, each of the
machines will contain a local copy of Windows NT/95
System files, and will also probably contain a multitude
of workflow applications that the user keeps locally.

All of these system files, workflow applications, and
cache files lend to the large amounts of data that is
stored locally, and subsequently backed up to ensure
that we can recreate a users machine in the event of data
loss or total system loss

Many would argue that users could themselves exclude
the directories and files that are redundant and do no
need to be backed up, but Windows NT and Windows
95/98 lacks the concept of a user directory where user
information is stored locally for the users applications
and data. Thus applications and users are free to dis-
perse their applications and data all over the structure of
their local storage device, and experience has shown
that this often occurs.

This makes a user driven visual exclusion system ex-
tremely unreliable, and by itself, is clearly insufficient
as the sole means of determining file/directory level
exclusion. In addition, the user may unknowingly ex-
clude a critical area of their storage device thinking that
only application data was stored in this area, while
really also excluding from the backup system critical
information needed to recreate their computing envi-
ronment in the event of data loss. Finally, the users fre-
quently fail to utilize the system at all, rendering it use-
less.

The answer would seem simple. When backing up the
client, don’t have it send files that are considered re-
dundant, and in the event of data loss or a total system
failure the server gets the needed redundant information
from another tape that did have this information backed
up.

This isn’t a foreign concept, and many backup vendors
are using this approach such as IBM’s ADSM and Sea-
gate Software’s Palindrome software’s “Tower of Ha-
noi” system. The basic premise that they work on is
keep a list of files that have been backed up X number
of times and once X has been reached, the server then
instruct the clients to not send those files during the
backup session. However these systems make an as-
sumption that large tape changers or storage facilities
are on-line. This is because a file that might be refer-
enced for a restore would only exist on a few backup
sets in the enterprise backup system. In the event of a
large amount of information to be restored from tape
such as an application directory, or a collection of ap-
plication directories the number of tapes needed for the
restore could become very large for a relatively small
amount of information to be restored. This is because
you could encounter massive data dispersion across the
restore set referencing a multitude of tapes to recreate
an area or an entire local storage device for a user.

2.1. Finding the Unique Components in the
Commonality Set

In our research on how to combat this problem we
looked at the file/directories across 3500 Windows NT
machines in our local LAN environment that had simi-
lar applications installed on them.

The total amount of information scanned was approxi-
mately two terabytes of information across 3500 ma-
chines. After we indexed the information across all of

the machines in the enterprise we found that almost
61% or 1220 gigabytes of information was common to
more than one machine. After determining the size of
the common information contained in the enterprise, we
then re-indexed the common information to find out
how much unique information was contained in the
1220 Gigabytes of information.

Example:

The installed version of Microsoft Office is
300 megabytes of information loaded on a user
machine.

MSO=300 Megabytes on single machine

Microsoft Office is then installed on 3500 ma-
chines, so the total amount of combined space
across the enterprise would be:

MSO X 3500 Machines = 150GB

So the total amount of space to backup Micro-
soft Office across the enterprise would be
150GB in storage costs, but the unique amount
of that common information was only 300MB.

So by applying this method on index of the total infor-
mation in the enterprise that was common (1220GB) we
find that by reducing this information down to the
unique components in the commonality set, we find that
for the 1220GB of common information that only 18GB
of that information is unique to the commonality sam-
pling of data.

2.2. Centralized Storage of Redundant In-
formation

By seeing that the amount of unique information that is
contained in the redundant information set is approxi-
mately two percent of the overall size of the redundant
information we find that we could keep this information
on-line so that the restore engine could draw from this
common file repository for common files instead of
having to request multiple tapes from a library system
or off-line vault.

Since a dramatically less amount of workstation infor-
mation will no longer be sent across the network to the
backup system, we will have a dramatic reduction in the

impact on the network bandwidth in the LAN as well as
quicker backup and restore times since the amount of
data being transferred has been drastically reduced..

Tape cost in the enterprise will also be reduced since
less information is being sent across the wire to the
backup host. This results in less information that will
have to be committed to tape since common information
will be stored on a network shareable fileserver that
backup/restore system will use for referencing common
files during restores.

3. “Unique Trash” Identification

During the initial data collection of machines in the
enterprise we also isolated another source of potential
unneeded data that is being passed from the backup
client to the backup host that would not fall within the
commonality exclusion engine because of the unique
nature of the data.

Many current internet applications and browsers utilized
a local client side caching system where they can store
commonly used files, images, and meta information that
is passed to the client during web browsing or client
activity.

Although this cuts down on the use of network band-
width to the local workstation, this cache information
can collect over time, and even when most local client
side caching is set to a minimum of 10 megabytes on
the client, if we were to multiply that across 5000 ma-
chines in the enterprise that would mean that we are
backing up on the order of 50GB of information each
time we do a full backup of a machine. Do to the ran-
domness of this information caused by each client vis-
iting different Internet sites and looking at different
information, their local collection of this information
would vary from machine to machine, thus negating our
commonality exclusion rules system.

So now we must enact a new exclusion rule to handle
this “unique trash” that would not normally be excluded
by a commonality engine, and must then be picked up
by an application specific unique trash rule.

As an example:

Possible unique trash filters for common appli-
cations

ServerExclude
C:\ProgramFiles\Netscape\Cache*.*
C:\Temp*.tmp
C:\Temp*.~oc

4. Incorporating the Rules System

The ability to identify the large amount of redundant
data does not, by itself, give us the ability to develop a
software package that takes advantage of the research
that we performed. In order to do anything useful with
the information we had gleaned from our network, it
was necessary to create a system by which we could
define what we wanted included or excluded in out
backups. This system had to be both compact and easily
interpreted, to minimize both the time needed to load
the information and to process it. The system also had to
be ultimately flexible, to allow for any and every com-
bination that might occur. Finally, the system had to
handle questions of precedence, so that conflicts be-
tween different rules (as we chose to call our defini-
tions) could be quickly resolved.

This rule system is designed to provide the ultimate in
flexibility in determining which files to back up and
which to ignore, without overwhelming the user with
complexity. In this system, a rule refers to some defi-
nition that describes a set of files. That set may consist
of one file, several files, or no files. In addition to de-
fining a set, a rule also describes an action to be taken
with that set, either to include or to exclude those files
from the backup set.

To provide the extreme level of flexibility that is part of
this system, rules are divided into a total of twenty-five
categories. With the exception of one rule category, all
of these categories can be defined by a set of four char-
acteristics: source, scope, direction, and type.

Source
Refers to whether a rule is defined as a client-
level rule, or a server-level rule.

Scope
Determines if the rule applies to an explicitly
named file, or a group of files defined using
wildcards.

Direction
States if the rule defines an included set of
files, or an excluded set of files.

Type
States if the rule applies to the files in a single
directory (hereafter known as a file level rule),
to all files in a given directory tree (hereafter
known as a directory level rule), or to all files
on a given machine (hereafter known as a
global level rule)

Rule Categories

These four characteristics can be combined into twenty-
four different categories of rules, each governing a dis-
tinct set of files. The combinations, and what they en-
compass, are described below:

Server Explicit File Inclusions and Exclusions
A rule in either of these categories will refer to a single
fully qualified file name.

Server Wildcard File Inclusions and Exclusions
A rule in either of these categories will refer to a set of
files in a given directory.

Client Explicit File Inclusions and Exclusions
A rule in either of these categories will refer to a single
fully qualified file name.

Client Wildcard File Inclusions and Exclusions
A rule in either of these categories will refer to a set of
files in a given directory.

Server Explicit Directory Inclusions and Exclusions
A rule in either of these categories will refer to all files
in a given directory tree.

Server Wildcard Directory Inclusions and Exclu-
sions
A rule in either of these categories will refer to a subset
of the files in a directory tree.

Client Explicit Directory Inclusions and Exclusions
A rule in either of these categories will refer to all files
in a given directory tree.

Client Wildcard Directory Inclusions and Exclusions
A rule in either of these categories will refer to a subset
of the files in a directory tree.

Server Explicit Global Inclusions and Exclusions
A rule in either of these categories will refer to all oc-
currences of a given file on a system.

Server Wildcard Global Inclusions and Exclusions
A rule in either of these categories will refer to all oc-
currences of a set of files on a system.

Client Explicit Global Inclusions and Exclusions
A rule in either of these categories will refer to all oc-
currences of a given file on a system.

Client Wildcard Global Inclusions and Exclusions
A rule in either of these categories will refer to all oc-
currences of a set of files on a system.

The twenty-fifth rule category is a special case that is
always server defined, is always an include, always
defines an explicit file name, and always applies to the
entire machine. How it differs from the other rules is
described below. It is called an “Always Include Rule.”

4.1. Rules Priority System

In order for this system to work, a priority system is
also defined, giving each rule category a level of im-
portance with regards to other categories. This allows
for a means of simply defining very complex backup
sets. In determining priorities, the following considera-
tions were used:

1. Given two rules where only the source dif-
fers, the server rule has higher priority.

2. Given two rules where only the direction
differs, the inclusion rule has higher prior-
ity.

3. Given two rules where only the scope dif-
fers, the explicit rule has higher priority.

4. For rule types, file rules are higher priority
than directory rules. Global rules are han-
dled slightly differently.

Below is a table giving the priority levels and the rule
categories at each level:

Level
5 Server Explicit File, Server Always

Include

4 Client Explicit File, Server Wildcard
File, Server Explicit Global

3 Client Wildcard File, Server Explicit
Directory, Server Wildcard Global

2 Client Explicit Directory, Server
Wildcard Directory, Client Explicit
Global

1 Client Wildcard Directory, Client
Wildcard Global

When defining the priority scheme, file direction is used
as the tiebreaker for rules at the same priority level.
The twenty-fifth category is given the highest priority,
due to its special nature.

It is possible to define a system with a different priority
set. It is also not necessary for every rule category to be
present or utilized.

The Always Include rule is used by the administrator to
define files that must be backed up every time the server
connects to the client, regardless of any other consid-
erations, including user level excludes, or
full/differential backup type. This is to guarantee that
the most recent backup tape will always have this file,
making the restoration of that file easier.

5. Optimization

There are two types of backups performed in our sys-
tem: full and differential. The full backup encompasses
the entire contents of the hard disk, taking into account
any exclusions that are in force. The differential back-
ups contain all files that are new or modified since the
last full backup. This system is designed to minimize
the data backed up, while at the same time making it as
simple as possible for restores to be performed. It is
possible, however, for the following situation to occur:
A day or two after a full backup is performed, the user
installs a huge number of files on the system. Using the
backup scheme defined above, these files will be backed
up every day until the next full, which may not occur

for another four weeks. To solve this problem, we fol-
low the following procedure: When the server contacts
the client to perform a backup, it asks for an estimate of
the backup size. The client returns both the full backup
size, and the differential backup size. If the size of a
differential backup would exceed a user-defined per-
centage of the full backup size, then the full backup is
performed instead of the differential. By defining a
maximum time between full backups of thirty days, we
also guarantee that the last full is more accessible for
restores.

6. Conclusions

Our conclusion at the end of this study was to imple-
ment our inclusion/exclusion rules system in our corpo-
rate backup system to reduce backup costs in hard dol-
lars and infrastructure.

We are fortunate in the fact that we use an internally
developed system for backing up Windows NT/ Win-
dows 95/98 workstations in the enterprise and have
complete control over our own software for clients and
servers.

These modifications at the time of this writing are being
integrated into our existing product for in house use and
we expect to see it come to full production use some-
time in the summer of 98 in our corporate LAN envi-
ronment.

7. Acknowledgments

The entire development and design team would like to
thank Qualcomm who made this backup project possi-
ble, and to our manager TJ Fiske who had confidence in
our coding Kung Fu.

Also a special thanks to the engineering teams at Com-
paq, and JD Marymee at Novell Inc. for his big brain.

