
The following paper was originally published in the
Proceedings of the Large Installation System Administration of Windows NT Conference

Seattle, Washington, August 5–8, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

A Comparison of Large-Scale Software Installation Methods
on NT and UNIX

Michail Gomberg, Rémy Evard, & Craig Stacey
Argonne National Laboratory

A Comparison of Large-Scale Software

Installation Methods on NT and UNIX

Michail Gomberg, Rémy Evard, & Craig Stacey

Mathematics and Computer Science Division, Argonne National Laboratory

Abstract

Our computing environment consists of hundreds of UNIX and NT-based computers. We have a
coherent UNIX software installation model that scales comfortably to hundreds of machines. We
have spent a great deal of time in the last year learning to understand the software installation and
support mechanisms for a similarly large NT infrastructure. In this paper, we examine the
underlying requirements for large-scale software installation support, and compare and contrast
the NT and UNIX environments, identifying strong points, weak points, and issues.

1. Introduction

The computing environment in the Mathematics and
Computer Science Division of Argonne National
Laboratory consists of nearly a thousand computers,
including supercomputers, servers, workstations,
desktop machines, and laptops. The majority of
these are running UNIX, but the number of NT
machines is steadily growing, particularly on
desktops.

This set of machines is managed by a group of seven
system administrators, meaning that, like most
systems administration groups, we have more than
enough work to go around. Our ability to administer
the environment relies on scalable techniques. We
have to manage large sets of machine as if they were
one single system, most preferably from one single
location. We were originally nervous about our
ability to do this in a growing Windows NT
environment due to its reputation as a system
requiring hands-on administration. Software
installation was one such area that we were worried
about.

On each of our UNIX architectures, including
SunOS, Solaris, Linux, FreeBSD, AIX, and IRIX
installations, we use a common method of installing
software. It scales well, in that we are able to install a
given piece of software once and have it
automatically work on every machine of a given
type. This system is described in detail below.

As we began to look at software installation on NT
in detail, we began to feel that our fears were
justified. The usual software installation methods on
NT require the administrator to sit in front of an
individual machine, answer questions interactively,
wait for the software to load, possibly reboot the
machine, and then do a lot of tweaking in order to
make the software available to other people who
might log in to the machine. This approach doesn’t
scale to hundreds of machines. Fortunately, there are
ways around most of these problems, but, as
described below, they are not uniformly applicable to
all NT applications. As a result, we started a long-
term project to understand NT application
installation better, to test the various installation
tools, and to develop a philosophy and method of
software installation that scaled as well as the
methods we use on our UNIX machines. Ideally, we
would learn some new approaches with NT that we
could then apply to our UNIX systems to help some
rising problems on those systems.

In this paper, we describe the software installation
methods that we use on our UNIX machines, because
they provide a context for our desired result. We
explain what we have learned about NT applications
and why we feel they should be considered
differently than typical UNIX applications. Finally,
we describe the system that we have begun to use,
explain how it helps us, and identify remaining
problems.

This is an interesting time for NT administrators
because the range of tools is changing so quickly,
due primarily to Microsoft’s growing effort to help
solve scalable administration problems. Many of the
tools that we are now using didn’t exist when we
started this project, and most likely, some tools will
be released between the time this paper was written
and the time it will be presented. However, we
believe that our desired solution, our observations on
applications, and our current approach will still be of
use to other administrators who have to surmount
similar problems.

2. UNIX Software Installation

When we started our NT application installation
project, we initially looked at our existing
infrastructure to identify the components that we felt
worked well for us. These helped shape our concept
of an ideal NT solution. We present a brief overview
of our UNIX software installation here.

All of our UNIX machines are interconnected over
our internal LAN. We manage several different
flavors of UNIX, but we have the same software
installation methods for each of them, so we will
only discuss the Solaris implementation in detail.
Although we don’t use Depot [1] because it doesn’t
solve all of our problems, any readers familiar with
that software installation method will recognize the
concepts presented here.

The software installed on our Solaris machines can
be broken into two different categories:

1. Software that is installed on the local machine.
This includes the operating system, some
daemons, and any licensed third party software
that has to run on a specific system.

2. Software that is installed on a networked file
system. This includes the vast majority of
software installed on Solaris, including
programs that have graphical user interfaces,
application suites, and simple command line
utilities.

Locally installed software is usually installed at build
time by our Solaris build scripts. If we decide to
install a new piece of software locally onto a
machine, then we install it on every Solaris machine.
This is very important - it is much easier to manage
all of our Solaris computers as a single unit if each of
them has an identical set of installed software. We
modify the build scripts to ensure that new Solaris
machines also get this software. As mentioned
above, this is a rare occurrence.

Most of the installed software on our Solaris
machines is installed into a networked file system.
In our case, the path to this networked file system is
/software/solaris, but this same concept is more
commonly available as /usr/local at other sites. Each
Solaris computer mounts this single network
repository. This means that, once a piece of software
is installed in /software/solaris, every Solaris box
immediately has access to it. In the overwhelming
majority of cases, no extra work is required on any
computer in order to make the software available.

The /software/solaris filesystem is exported via NFS.
It doesn’t deliver software quite as quickly as local
disk would, but that has never been an issue. It will
scale reasonably to several hundred client machines.
Beyond that point, we will replicate the directory and
serve it from multiple servers, which will require a
minimal amount of work.

One serious problem with this approach is that if the
network server goes down, then all of the Solaris
hosts are crippled. In our environment of relatively
reliable networks and computers and a relatively
small number of administrators, we deem this to be
an acceptable tradeoff. Further, we replicate the
/software/solaris file system to a disk on a second
server, and have the clients automatically fail over to
the second disk when possible. This helps when the
server has a problem, but doesn’t solve the case of a
network outage. In practice, this has not been an
issue. (If the network is down, there are usually
bigger problems.)

When a piece of software is installed, we put it in its
own directory under /software/solaris. The path is
hardcoded to include the software’s category and
version number. For example, emacs is in
/software/solaris/apps/packages/emacs-19.34.6/. All
emacs files of this version are stored under this
directory. This allows us to install many different
versions of emacs without any collisions between
them. This is crucial.

Not every package can be easily convinced to live
under one directory, but in practice, we have always
been able to get around this. UNIX software is
typically easy to modify with configurable files, and
in the most cases, can be fooled with symbolic links.

All that the user needs to do to access most
applications is to put this directory in their PATH
environment variable: /software/solaris/apps/bin. We
populate this directory with symbolic links to the
actual executables that live in their own directories,
and, using the “soft” [2] system, we modify the
user's startup shells to update any environment
variables necessary. We can change the default

version of an application with one quick command.
Again, we trade off a minor performance hit
(symlink resolution) for increased flexibility of
administration.

Our UNIX installation is not without problems. As
the size and complexity of applications grows larger,
and the cost of local disk grows cheaper, we find that
we would like to install more applications on
individual machines. Doing so is more problematic
than installing them centrally. Also, an increasing
number of third-party applications have arbitrary
restrictions that nearly force us to do by-hand
installations on individual machines. Our general
feeling is that in these cases, those vendors are
borrowing the worst ideas from the world of PC
applications.

The key points of our UNIX installation methods
are:

• Each machine is identical to every other
machine of the same type.

• Most software is installed in a network file
system, and in this case, no extra work is
required to make software available on all
machines.

• All information related to an application version
is kept in one place -- the directory for that
software.

• No extra work is required to make software
available to all users.

• We make heavy use of symbolic links to glue
different areas of the file system together into a
seamless interface for users.

3. NT Software Installation
One of the hardest tasks that we have with our NT
environment is installing software. Some people
have expressed surprise at this. After all, they point
out, it’s much easier to install an application under
NT. All you have to do is put the CD in the drive,
click setup, and answer some questions as
InstallShield goes to work. One would expect that

UNIX software management would be much harder,
since there is no uniform way of installing
applications, configuring them requires editing
various arcane files, and sometimes they even have
to be compiled. This is true; if one’s goal is to build
a single machine for a single user and install a given
set of applications, it is much easier to do on NT than
on UNIX.

However, managing a large environment for many
different users is entirely different from building an
isolated machine. Ironically, it is the NT
application’s focus on the user and on the single
machine that primarily makes it so much harder to
maintain on a large scale. But this is not the only
difference between software on NT and software on
UNIX, and not the only reason that large-scale NT
software installation is difficult.

In this section, we identify the issues that have made
NT application installation challenging in our
environment. It is our hope that some of these issues
will be addressed in future releases of NT and the
various applications. Understanding these issues
(and why we consider them to be issues) is also key
to understanding how we install applications.

3.1. NT Software is GUI-based

The first difference noted by most people is that NT’s
applications generally have graphical user interfaces,
while UNIX applications may or may not. We find
that whether or not an application as a GUI really has
no bearing on how difficult it is to install.

A somewhat related issue is whether or not
administration tools should be based around GUI.
Generally, GUI-based tools are harder to automate
and extend. Large environments all have their own
particular requirements, so administration tools for
them require customization. At the present time,
command line tools are easier for us to use when
managing a large, diverse environment.

3.2. NT Software is More Complex

Most of the applications that we install on NT have a
different focus than those we install on UNIX. To
illustrate this point, see the line in Figure One. On
the far left-hand side of the line are small, single-

Figure One: Software Continuum

grep emacs FrameMaker
pconfig Windows NT Explorer Microsoft Word

Smaller, single-purpose applications Larger, multipurpose applications

purpose command line utilities such as “cat”, “grep”,
and “traceroute”. On the far right are large,
multipurpose monolithic applications such as “Office
97” and “Internet Explorer”. These applications tend
to provide a very large set of features from a single
interface. Applications like emacs and perl lie
somewhere in between.

The majority of the applications that we install on
UNIX are on the left side of the line, while the
majority of the applications that we install on
Windows NT are on the right side of the line. This is
not to say that UNIX has no large, monolithic
productivity-based applications. It certainly does.
But in our environment, UNIX owns the left side of
the line, while Windows NT owns the right side. We
believe that the wealth of these types of applications
for NT is the primary reason for its steady rise in
popularity.

The focus of the program generally does not have an
impact on installation. However, the applications on
the left side of the line are often easier to install,
regardless of their OS. There are several reasons for
this.

• Footprint. The smaller the application, the
smaller the fixed storage footprint. When
applications are stored on network file servers,
the application load time becomes an important
factor. For small programs this is often not an
issue, but for very large ones, the startup delay
can be painful. As a result, one leans toward
installing the application on a local disk rather
than on a network file server, making it much
more difficult to install and update.

• Options. Typically, the larger and more
complicated an application, the more options it
has at install time. And, during the lifetime of
the application, the larger, more comprehensive
applications seem to want more add-ons and
more components. This makes it quite a bit
more difficult to get a single installation that will
satisfy a large group of users.

• OS integration. Large applications are very
nearly operating systems in and of themselves.
(Emacs used to be accused of this, but it has
been far outclassed by applications in the NT
world.) They depend on a large portion of the
OS, and they often have a very strong reliance
on the OS being set up in an exact manner. On
NT, this has resulted in the applications being
tightly integrated with the OS. The problems
with this under are described in the next section.

It is interesting to note that we are seeing an
increasing number of large, GUI-focused

applications available for UNIX. This is one of the
areas where we hope that our lessons learned from
NT application installation will help us out on the
UNIX side.

Also, there are more utility-style programs available
for NT, including ports of perl, various UNIX
utilities, and a batch of new, NT-specific tools.
Unfortunately, it is still difficult to install networked
versions of these tools to be shared by all the
workstations from a single location, usually because
they are too tightly bound to a specific machine.

3.3. NT Software Lives in a Single-
User World

Historically, NT applications come from an
environment where they could make certain
assumptions that are no longer valid:

• The application would only be installed on a
single computer.

• Only one user used the computer.

• The application would be installed on local disk.

• The application might have to add things to the
operating system.

This set of assumptions, combined with the usual
large size and complexity of NT applications, has
resulted in a set of conventions for NT application
configuration that make large-scale installation
particularly difficult.

• NT applications are too intertwined with the OS.
Most applications depend on mfc42.dll or
shell32.dll to be present on the machine. When
these files aren't there or are different from the
expected version, software will replace them
with the version that they were built with. This
can cause other applications to crash or act
oddly. Since they also often copy in other DLLs,
they tend to bloat system32, making it more
difficult to install network versions of the
application, and also rather difficult to decide
what is safe to uninstall. Also, applications that
are written for Windows95 will often try to write
to areas that are protected under NT and require
Administrator privileges.

• NT applications are too machine-specific. Most
applications write their configuration
information into the registry. Since the registry
is machine-specific, the software is only
configured correctly for that one machine. The
usual solution, which doesn't scale well, is to
copy portions of the registry to other machines.
Discovering which portions of the registry to

copy, and doing so without causing side effects,
is a challenge. Some software also makes use of
a user’s environment variables, which, unlike
UNIX, are set up on a per machine basis, as part
of the local registry.

• NT applications are user-specific. This shows
up in two ways. First, when an application is
installed, it will often add itself to the current
user’s Start menu. Other users, if they login,
will not be able to run the application, even
though it’s installed on the machine. This can be
fixed by making sure every application is added
to the ’All Users’ portion of the Start menu. Not
all applications are smart enough to do this yet.
Second, applications tend to store user-specific
data in various places on the local machine,
including the registry, user directories,
application directories, and even operating
system directories. So, for example, one user
may login to a particular machine and be able to
read some other user’s email because the email
program wasn’t programmed to handle multiple
users.

• Roaming profiles aren’t quite right. Roaming
profiles attempt to solve some of the above
problems, but they create new issues. When
applications are installed on a single machine,
roaming profiles end up pointing to applications
that aren’t there. If a roaming profile is loaded
onto a workstation that has a differing
installation of the same app, they munge the
correct settings.

Because of these differences, we have to approach
NT software support completely differently than
UNIX software support. Overcoming the above
problems requires special tools, special care, and a
lot of planning.

4. Possible Installation Approaches

In order to decide on which installation methods
we’d ultimately use, we had to evaluate and consider
as many options as we could. Some of these have
been used by other sites, some of these we came up
with on our own. Our final solution was a mix of
these.

4.1. Installation By Hand

The first option is the obvious: by hand. You sit at
the machine, pop in the CD-ROM, answer all the
questions, wait while it copies files, you answer
some more questions, and eventually you’re finished.
For a minor optimization of this technique, you can

put copies of the CDs or floppies on the network, and
install from that.

The by-hand method is usually done by sitting at the
console of the machine, but it’s also possible to bring
up a remote console of the machine using various
third party software, including the SMS Help Desk
application. Neither of these is what you really want
to do, as the by-hand approach almost always
involves too much of time overhead. Worse, for
each iteration of the install, you introduce the chance
for things to change from machine to machine, such
as accidentally selecting different options.

We decided that by-hand installs should be avoided
if at all possible. (However, if you have a lot of free
labor lying around, this may be the easiest solution.)

4.2. Installation at Build Time

For a default set of software that you know will
seldom change, arranging for the software to be
automatically installed at build time is ideal. This
method is automated, it scales, and it remains
consistent for each machine. After an automated
build with software install, you have a base machine
with a known set of software. You know exactly
how that machine is configured.

In order to automatically install software at build
time, you usually run a command script after the
initial OS install, or initiate an automated
administrator login that executes a series of install
scripts. In our current solution, we ended up doing
both.

The first option, running a command script, we use
to apply the latest NT service pack and hot-fixes --
admittedly more of an OS issue than a software
issue. We could make more use of this, however the
system needs to reboot after the application of the
service pack, so we turned to the second option.

To use an automated login, it’s best to create an
account dedicated to that purpose. That way you can
disable it when you’re not using it, but, more
important to the task, you can assign it a specific
login script. The script should execute any post-
install cleanup that couldn’t be done before the first
reboot, and then launch an installation script of your
choosing, be it a batch file, a perl script, a CMD file,
or what have you. Properly done, this can spawn the
appropriate package installs, one at a time, and in the
order you specify. The order can be important -- for
example, getting perl or Winzip on the system first
would be prudent as later installs will want to use
them.

We experimented with a third option: using the OEM
install tools found in the Resource Kit [3], notably
sysdiff. With sysdiff, you take a snapshot of a
machine before an installation and a snapshot after.
Sysdiff records the differences, which, presumably,
can then be applied to any other machine to install
that same piece of software. We found, however,
that sysdiff did not scale well. We started using it
when we were first mass-building our NT
environment. As is common in these cases, what we
thought should be a default build at the start of the
project and what we eventually discovered should
have been the default build were vastly different, the
latter being a much larger set of applications. With
each attempt to add an application to the sysdiff
package, it took more and more tweaking to the
various configuration files to make the creation of
the snapshots actually succeed. Sysdiff also had
serious problems when our machines weren’t
compatible at a hardware level. More often than not,
as the default build grew, sysdiff would fail
miserably, usually with a fatal error at the last step of
the procedure, creating the distribution directory.

However, installing software at build time has one
serious problem. It only fixes the installation
problem once, which is fine if you never expect to
install a new application in the future. However, if
you do upgrade your software, you have to modify
the software that is installed at boot time. This
changes the known base, so you are likely to end up
with inconsistent machines. Worse, you probably
will also have to install this application on machines
that were built months before. This essentially puts
you back where you started -- trying to figure out
how to install software on existing machines.

Installing software at build time, then, is not a
complete solution, but it’s certainly useful to be able
to do it.

4.3. Automated Remote Installation

What you really want is some way of automatically
installing software on remote machines. We
considered several different methods.

SMS has other uses besides remote control. It also
has a feature called the “package command
manager”. This allows the administrator to specify
software 'packages' that can be installed on
workstations in one of two ways. She can schedule
compulsory software packages that will be installed
at a certain time. For optional software, the user can
be presented with a list of software that can be
installed at login. The second option helps with the
problem of buying licenses that you don't need,

allocating expensive software packages only to those
who need them.

In order to use the package command manager, you
need to bundle your software into a package.
Creating a package involves finding or creating a
single-command install option that is usually silent to
the user, defaults to all the right options and
preferably runs in the background. For some
applications, this is trivial. For others, it can be quite
painful, but we've yet to find a package we
absolutely can't do this with. As a last ditch resort,
we wrap the setup program in a Visual Basic
program that basically clicks the correct buttons
automatically. (This borders on ridiculous, but it
works.)

It's also possible to do remote installs without SMS.
The administrator wraps the software installation in
the same kind of package, and then uses rsh or rlogin
to connect to the machine and execute the setup
command locally. The Microsoft supplied rsh is less
than ideal, so we use the Ataman package. The
advantage of using rsh is that it runs when you tell it
to, in contrast to Package Command Manager, which
has its own internal scheduling mechanisms. If you
need to push a hotfix out right away, you will want
to use rsh.

An administrator can also use the NT scheduler
service to execute commands on remote machines.
This is again similar to the package command
manager method of installation. We only briefly
toyed with this idea, as it involves configuring the
machine to run the scheduler service as a user with
administrative privileges, and we were unsure of the
security aspects involved. The other options seemed
to provide the same functionality, but this method is
an option to consider.

In essence, remote installation consists of three
issues:

• Wrapping the software in some kind of package
that essentially turns the entire install into one
single command.

• Initiating that command on a remote machine.
SMS handles this the most gracefully.

• Worrying about the permissions with which the
remote command will execute.

4.4. Installation Via Replication
Another approach is to replicate a disk image onto
the local disk. (We've heard of some sites that boot
into linux in order to update Windows95 FAT
partitions remotely.) The replication can come from
a CD or a networked disk. The problem with this

method is that it essentially involves constantly
erasing the local disk, which has two side effects.

First, this prevents any user data being stored locally.
This may not be so bad if your users are careful
about keeping their data on a network server, and if
you store profiles on the servers. But we’ve had
interesting problems with that solution, particularly
in an environment that has a lot of laptops. In terms
of a time investment, this can be almost as bad, or
perhaps even worse, than manual software
installations.

Second, there’s an inherent SID problem replication
brings up, in that that the machine’s SID needs to be
retained, or in the case of building new machines, a
new SID has to be created. Finally, not all machines
in an environment share an identical hardware base.

The replication solution just doesn’t scale to a large
environment, at least not with today’s available
replication software.

4.5. Remote Booting

Finally, one can consider remote booting by using a
boot PROM on the network card on a machine with
no local disk. From an administrative standpoint,
this is a dream setup. From a user standpoint, this is
the worst possible solution, as you’ve sacrificed local
disk performance for ease of installation. If this is
the option you go with, you should probably consider
some of the Windows terminals that are available, or
wait for the NT 5 caching schemes.

5. Requirements for a Software
Installation Solution

When we first started installing NT machines in our
workplace, we took the simple solution to installing
software: we installed it by hand. That worked fine
as long as there were only a few machines, and those
of us using them knew exactly what we were doing.
But the situation quickly got out of hand, and we
realized were spending a lot of time walking from
one machine to the next, a lousy solution that we’ve
never had to implement on our UNIX machines.

At that point, we went through our analysis described
above - understanding how NT software is installed,
considering various options for large-scale
installation, and identifying what we liked about our
solution for UNIX.

We decided that whatever solution we developed had
to have the following requirements.

• The installed applications need to achieve
reasonable performance. Our first attempt was to
use a network installation for major software.
Performance was miserable. Not only did users
complain, but in some cases, the software
crashed. This was in part due to slow network
storage, and in part because the applications
didn't handle non-local disk installation very
well. So, this meant that we had to plan to
install most software onto local disk.

• The distribution to each machine had to be
automated. We refuse to do more walking from
machine to machine. We'd like to visit each
computer only twice in its lifetime: once to
install it, and once to take it away. We should
be able to do everything else remotely. Note that
this isn't because we're lazy, it's because visiting
each computer simply doesn't scale.

• Our solution should attempt to keep the
application from interfering with the operating
system. This would help reduce mysterious
problems with the operating system and
collisions with other applications.

• We would like every machine that we manage to
be as identical as possible, differing only when
the hardware configuring forces it. The
operating system, the patch levels, and the
applications should otherwise be the same. This
allows us to generalize across the machines, to
simply know, without looking, that an
application is installed or that some command
should work. Unfortunately, this doesn't work
in the NT world for two reasons. First, no
machine has that much local disk space.
Second, the licensing cost would overwhelm us.

• More realistically, we decided to define several
classes of machines: developer machines,
visualization machines, student machines,
secretary machines, and so on. Computers in a
particular group all have the same software
installed on them. This is not quite as good as
having one flavor of machine, but it still lets us
generalize.

• We've learned not to trust applications that have
been known to mess with the OS. We'd like to
have a way of discovering what they did at
installation, and what they did over time.
Ideally we would have a way of checking each
machine regularly. This would help us maintain
our goal of keeping every machine the same.

• Our solution should be as simple as possible.
(It's currently not.) For example, it should be

possible to build a machine and all the software
on it by popping a floppy in it, booting, and
walking away. Hours later, it should have all
software installed on it correctly. Afterwards,
when we update software across the net, it
should only take one command, and it should
automatically happen on all of the appropriate
machines.

• We have a lot of students who work with us for
short periods of time. They should be able to
come up to speed on the tools that we’re using
relatively quickly. This means that an
encyclopedic knowledge of NT and NT tools
should not be required.

• Our method needed to help us keep track of
installed software so that we could ensure that
we are legal with respect to licenses for installed
software.

• Finally, we’re aware that the NT world changes
pretty quickly. We didn’t want to spend a lot of
time building a custom solution that would be
useless in a year. Instead, we wanted to build it
out of existing tools, using Microsoft-sanctioned
methods, so that we would be more likely to be
able to adapt to changes.

6. Our NT Software Installation
Approach

There are three main components to our current NT
software installation method.

1. A repository of packaged software.

2. A build procedure that installs a pre-determined
set of packaged software on new machines.

3. An update process that installs packaged
software on existing machines.

When we have a new application to install, we
package it, put it in the repository, and arrange for
new machines to install it. Then we initiate a
network push that installs that software on all
existing machines. This solution doesn’t quite meet
all of our ideals (for example, packaging software is
not particularly simple), but it’s a rational method
that has reduced the amount of legwork and helped
to keep our machines running consistent sets of
software.

6.1. The Software Repository

The software repository is a networked share where
we store software that is ready to be installed. Each
of these applications is “packaged”, meaning that it

can be completely installed by running a single
command.

The majority of the work here comes in creating the
package. In many cases, applications already have a
silent or unattended install option, and the package
simply consists of running 'setup' and directing it to
the correct “answer” file for its defaults.

In other cases we have to use additional software to
prepare the package for unattended install. Internet
Explorer and Microsoft Office, both required the use
of their resource kits to create an unattended
distribution.

And then there are the applications that have no
concept of unattended install. For these, we write
simple VB apps which send the correct key
sequences to the installer applets.

6.2. The Build Procedure

 We use the NT 4.0 unattended installation procedure
and our own boot floppy to initiate the install
process. We found that we can significantly reduce
the initial build time by following the Microsoft
recommendation to remove portions of the NT
distribution from the distribution location on the
network. The initial build time, which includes
formatting a portion of the workstation disk, takes
about 25 minutes per machine on a fast ethernet
network. The initial distribution applies the latest
service packs and hot-fixes, installing them by using
the “run at install time” feature in unattended install
mode.

Once the OS is installed, our build procedure adds a
registry key for auto-logon of a predetermined
account at boot. The machine reboots, and logs in as
that account. The logon script for that account
registers the machine with the SMS database. Next,
the script initiates the step that installs all of the
packaged software. First it looks to see what class of
machines this computer is (for example, secretary or
developer), from which it can determine which
applications need to be installed. This length of time
that this takes depends on the number of applications
that we add, but 10 to 15 minutes is about average.

Finally, the login script makes some local registry
modifications, copies in some shortcuts, and adds
printers.

Setting the network correctly is tricky, especially
since the machine is usually moved from our lab to
someone's desktop after it has been built, which may
require that it get a new network address. When the
machine is initially built, we use DHCP to let assign
an IP address from the server’s pool of available

addresses. This is how DHCP servers are normally
used. However, we don’t use Dynamic DNS, and we
want DNS to work for every machine, so we have to
make sure that once a machine is built, it gets the
same IP address from that point on. We accomplish
this by configuring the DHCP server to reserve a
specific IP address for a client MAC address. We
obtain the MAC address from SMS during the part of
the build process in which the new machine adds
itself to the SMS database.

6.3. The Update Process

Once a piece of software is packaged, installing it on
a remote machine is simply a matter of remotely
invoking the package with the right permissions. A
number of ways to do that are discussed in Section
4.3.

For the most part, we use SMS to push software
packages out, because it runs with the right
permissions and it gracefully handles machines that
are temporarily off. Occasionally, if we’re in a hurry,
we use rsh rather than SMS. At the moment, these
pushes are initiated by hand, but they could be
automated to ensure that every machine of a certain
class always has the correct software.

6.4. Observations on Our Approach

The approach we’ve taken is working very well for
us. We integrated the best parts of what we
researched, and came up with a reasonably
automated system that requires little administrator
presence at the machine after the initial build.

Being able to specify that all machines get the latest
hot-fix without having to leave our office is a big
win from an administrative standpoint. In fact, that
very situation came up at our site after the recent
denial of service attacks aimed at .gov sites.

We are able to keep a steady base level of machines
by ensuring that when a software package is added to
the default build for new machines, it also gets
installed on the existing base of machines. This
keeps guesswork at a minimum when it comes to
troubleshooting or license tracking. It’s about as
close as we can come to a unix environment, where
all applications sit in a common nfs-shared
repository. We at least can be assured of a common
platform.

Using these methods, the only differences between
machines within the same group (general
workstation, development, etc) are at a hardware and
driver level. It’s still not the perfect world, but it’s at
least as level a playing field as unix.

We have a few problems left. We don’t have a way
of carefully monitoring all machines to see what has
changed during an installation, and we occasionally
run into problems with this. While we think our
current solution is pretty simple, packaging a piece
of software can sometimes be fairly tricky. Our
biggest problems, though, are associated with the
basic NT installation issues that we can’t fix: the
tendency of an application to be too closely tied to a
specific machine and user.

7. Comparing NT and UNIX Installation
Methodology

Having implemented fairly comprehensive software
installation methods for both NT and UNIX, we find
that neither of our solutions is completely
satisfactory. Indeed, there are features of our UNIX
machines that we wish we could use on NT, and
aspects of the NT installs that would be very handy
on UNIX.

7.1. Our UNIX Wishlist

Here are the features of our NT application
installation that we wish we could easily duplicate on
UNIX:

• Better fault tolerance. When the UNIX file
server with all the applications crashes, which is
rare, everyone is in trouble. On NT machines,
nearly all of the applications are local, so people
can continue to work even when the network
crashes. One way to fix this with UNIX would
be to have smarter automounters that can handle
server failover. Another would be to install
applications locally on each machine, just as we
do now with NT.

• A common push/pull method that’s better than
rdist.

• Even fewer machine-specific applications.
We’re worried about the trend we see in some
UNIX software that forces us to install
applications locally and then node-locks the
licenses.

• A one-step configure, build, and install
mechanism similar to NT’s InstallShield.

7.2. Our NT Wishlist

• Symbolic links.

• A clean, enforced separation of the operating
system, applications, and user space.

• A clean separation of multiple versions of the
same application. It’s very handy to be able to

try out a beta version of an application without
having to move completely away from the stable
version.

• More useful profiles. Profiles go a long way
towards capturing a user’s configuration, but not
enough applications use them, and roaming
profiles just don’t work right. Storing profiles
on the server, with options to copy, link or
create machine-specific profiles, similar to the
irix method, would be a better solution.

• Less reliance on the local registry. Too many
applications use it for storing configuration and
state information. This doesn’t allow for a
consistent work environment for users that use
more than one machine. We’d like to see
software installs stay away from the HKLM
registry tree altogether, and instead of editing
HKCU, putting configuration settings into a
globally available repository.

• Consistent silent installation mechanisms. There
are too many different installer technologies for
Windows, each with its own learning curve and
methodology, and many of these installers don’t
support a silent install option, forcing ugly
hacks.

8. Conclusions

We set out to develop a scalable software installation
procedure for NT that was as useful to us as our
existing UNIX installation strategy. After learning
about NT application issues, many tools for NT
installation, and trying out various options, we have
developed a solution that, while unlike UNIX
strategy, is still fairly scalable. During the process,
we identified some features of NT that we would like
to replicate on UNIX, and vice-versa.

Our remaining difficulties with large-scale support of
NT application installation are intrinsic to the way in
which NT applications interact with the operating
system. We know that some of these issues will be
addressed in future versions of NT, and look forward
to that event.

9. Author and Project Information

Michail Gomberg is a systems administrator in the
Mathematics and Computer Science Division at
Argonne National Laboratory. He was the lead
technical architect for this project. His email address
is gomberg@mcs.anl.gov.

Rémy Evard is the manager of Advanced Computing
Technologies and Networks in the Mathematics and

Computer Science Division at Argonne National
Laboratory. He is actively pursuing research in
systems administration, with the hope of making it
less difficult and more fun. His email address is
evard@mcs.anl.gov.

Craig Stacey is a systems administrator in the
Mathematics and Computer Science Division at
Argonne National Laboratory. He was the one
whose soles were saved with this procedure. His
email address is stace@mcs.anl.gov.

This work was supported by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Computational and
Technology Research, U.S. Department of Energy,
under Contract W-31-109-Eng-38.

10. References

[1] Colyer, Wallace & Wong, Walter, Depot: A Tool
For Managing Software Environments,
LISA VI Conference Proceedings, 1992.

[2] Evard, Rémy and Leslie, Robert, Soft: A Software
Environment Abstraction Mechanism, LISA
VIII Conference Proceedings, 1994.

[3] Microsoft Windows NT Workstation 4.0
Resource Kit, Microsoft Corporation,
Microsoft Press, 1996.

Appendix A: Tools

The following is a list of many of the tools that we’ve
found to be very useful.

NT Resource Kit:

Srvinfo A very useful utility to look at
services on a remote machine from
the command line.

Shortcut Allows us to copy .lnk files to the
right places without remaining
linked to the source location.

Windiff A graphical comparison tool that
can be used to look directory
differences.

Instsrv Allows installation of services
from the command line.

rkillsrv Allows processes to be killed
remotely.

rconsole Remote console for NT.

setupmgr GUI used to create a base answer
file for the unattended setup. We
had to do a lot of tuning to this file
to get it to be really useful.

NT Rollout tools:

Sysdiff Creates snapshots and difference
databases of a machine after
software is installed.

IEAK Internet Explorer administrator kit.
It creates a custom distribution,
which can then be installed in
unattended mode.

ORK Office resource kit. Same function
as the IEAK, but for MS Office.

Winnt This is the NT installer that comes
on the NT 4.0 CD. We use it to
install NT in unattended mode.

regedit Merges registry edits into the
machine registry.

NT Services:

Dfs Lets us create a single distribution
location, spread over multiple
disks and multiple servers.

SMS SMS provides a database of clients
on the network, along with the
ability to schedule commands for

execution across the clients. Also
includes software auditing and
remote control.

SMS Package Command Manager

This service comes with
BackOffice resource kit and allows
SMS jobs to run unattended.

DHCP Server We use DHCP to get the machine
onto the network initially, without
having to assign an IP address at
build time. Once the machine is
built, we use DHCP to assign a
specific IP address to it, by getting
the MAC address from SMS.

Scheduler Service

Can be used to run jobs remotely,
however there are security issues
regarding ’system’ account.

Other Microsoft Tools:

DOS 6.22 Boot disks need to be DOS 6.22 in
order to fit all required files on it.
Windows95 or 98 system files take
up too much room.

MSLANMAN We use LAN Manager for DOS to
copy the NT files onto the
workstation disk.

MSDN CDs Incredibly useful for getting the
latest information, especially
pertaining to the reduced TCO
initiatives from Microsoft.

Windows Development Tools:

Visual Basic We use VB to run queries on the
SMS database, and create
automated installations for
applications that don’t have an
unattended install option.

Third party:
Ataman rsh Execute commands remotely on

machines.

Perl5 We use the Activeware version.
Without this we would be sunk, or
at least very unhappy.

