
The following paper was originally published in the
Proceedings of the Large Installation System Administration of Windows NT Conference

Seattle, Washington, August 5–8, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

AutoInstall for NT: Complete NT Installation Over the Network

Robert Fulmer and Alex Levine
Lucent Technologies, Bell Labs

AutoInstall for NT: Complete NT Installation Over the Network

Robert Fulmer

Alex Levine

Lucent Technologies, Bell Labs

Abstract

This paper describes how we take a bare PC
and turn it into a fully functioning NT desktop
machine with a standard set of applications in
less than 30 minutes. In 1996 we identified
OS and application loading as a significant
portion of our workload. Loading NT, loading
our standard suite of applications, and
configuring each of them to our specifications
took 4 to 8 hours. This process was prone to
errors that were not detected until months
later. We automated the process so that an SA
with our special boot disk can do the entire
process in 30 minutes (60 minutes on a slow
network). We do an actual NT installation.
We do not clone. With our new system, a
single SA can deploy up to 20 PC’s per day as
opposed to just 1 or 2 per day.

1. Introduction

How many of you are frustrated by the time
you waste setting up NT workstations
manually when there are so many other tasks
demanded of you? We have found a way to
automate the OS and application installation
for NT so that you can spend your valuable
time doing more important things than
installing machines.

2. Environment

Three years ago our environment was 90%
UNIX workstations and 10% PC's running
Windows 3.1. Over the last two years we have

migrated to Windows NT and our PC
population has grown from 10% to 40%. We
currently support approximately 1800
machines of which 800 are PC's. If this trend
continues, PC's running NT will dominate the
desktop in our area. Anyone who has
supported PC's knows this is a scary trend.
PC's tend to have a higher Total Cost of
Ownership (TCO) than other desktops
because, while they tend to be less expensive
hardware, they take more work to set up and
maintain.

3. The Problem

There are never enough hours in the day. We
are always looking for boring, error-prone
tasks that can be automated. We began to look
into areas where we could save time. One of
the first things we looked at was the NT
installation procedure. We had a lot of new
machines to install and a lot of existing
machines that did not fit our standard desktop
environment or needed OS upgrades from
Windows 3.1 or Windows 95 to NT. We
discovered that we were spending a 1/2 day to
a day installing the OS and applications as
well as performing our standard
customizations. In addition, the procedure was
tedious and error prone, as long manual
procedures tend to be, so we were also
spending time cleaning up mistakes and
omissions after the machines were deployed.
Often a mistake would not be noticed until
months later when a customer used an
application for the first time. This leaves the

SA dumbfounded, "How did that go unnoticed
for so long?"

4. The Options

There were a few decisions we had to make
when we started the project. We first had to
consider the overall method of loading the
box. We briefly considered disk cloning. It
has the advantage of being easier to get
started. You simply build a disk the way you
want it. Then use that as your master and
clone the disk via disk imaging software or
disk cloning hardware. The cloning hardware
had some limitations concerning disk size.
The target disk had to be at least as big as the
original and you would only get a partition as
big as the one on the original disk. When we
had to change packages we had the choice of
doing an upgrade (not always the cleanest
way) or reinstalling the master disk from
scratch. We also had to worry about duplicate
SID’s although there are vendors out there
who say they have solved this problem. (see
www.sysinternals.com) This procedure only
worked correctly if the hardware on the target
machine was identical to the hardware on the
source machine. Unfortunately we have a lot
of different hardware coming in and it usually
comes in a few machines at a time. Using disk
cloning would have meant rebuilding the disk
for each new hardware configuration that
came in the door. The biggest concerns here
were the type of disk controller and the
motherboard architecture. We needed
something that would detect hardware on the
fly during the installation so that we do not
need a separate disk for each hardware
platform. The NT unattended installation
allowed us to have this feature. We could have
one distribution for all of our various types of
hardware. The only requirement was that the
network card be supported by the NT
installation. We could make changes to the
distribution without having to rebuild it from
scratch each time. Adding applications and
applying bug fixes was easier and cleaner. We

didn't have to worry about duplicate SID’s
either. Unsupported network cards were not as
big a problem as one would expect either. We
discovered ways to add support for new
network cards to the original distribution.

Once we had decided which overall method
we wanted to use we needed to decide which
method to use to start the installation. We
considered boot proms for the network cards
in our PC’s, but this would have added $50-
$100 to the cost of each machine and would
have meant opening each machine to install
the proms. Also the installation process
requires several reboots and only the first boot
needs to be from the net. There is no way to
tell the machine "only boot from the net this
time and then revert back to default next boot"
as you can with Sun workstations. We also
considered Linux boot disks to bootstrap the
installation but lacked the knowledge to make
it work. We were also hampered by the fact
that Linux distributions often lagged behind
on driver support for new network cards. We
considered putting the distribution on CD. It
would have made loads faster without
impacting the network but it would have
meant burning a new CD for each SA every
time we fixed a bug or added new features to
the distribution.

We decided to use an MSDOS Lan Manager
client on a MSDOS boot disk. The Lan
Manager client was small enough to fit on one
floppy. The client's configuration files were
plain text. And the client was not started in the
config.sys file. It was started in the
autoexec.bat file. This meant that we could
write a program that asked the appropriate
configuration questions and modified the
client's configuration files. This allowed us to
configure the client and then start it with the
correct network card and IP settings.

5. The Solution

The manual procedure took 4-8 hours and

required that the SA baby-sit the machine and
answer questions throughout the procedure.
The automated procedure we designed takes at
most 60 minutes (30 minutes on a fast
network). The SA need only be present for the
first 5-10 minutes to answer questions and the
last 10 minutes to install the latest sound
drivers and perform a few local
customizations that we haven’t automated yet.

The procedure for an Autoinstall is basically
two steps. Boot from a Lan Manager floppy
and answer some questions and remove the
floppy once the installation has begun. The
SA is then free to go off and do other tasks
while the process continues. When the process
is done, a few drivers are installed and the
machine is ready to use.

6. How It Works, An Overview

The MS-DOS boot disk permits the SA to
partition the hard disk. It then asks the SA a
few questions about what Ethernet NIC is
being used and the host’s IP configuration (IP
address, netmask, etc.). At that point, the
workstation connects to an NT server and runs
"part 2" of the script that is on the network
drive. This program gives a menu of
applications that can be installed; the default
is "all". The SA chooses which applications
to install. Then SA removes the floppy and
leaves until the procedure is done.

This second script continues by formatting the
hard disk, bringing down the appropriate
distributions from the server, and running the
"winnt.exe" installation program that installs
the OS.

Applications are loaded last. As part of the OS
installation, Data is put into the registry that
causes the machine to login automatically
(autologon) and run a command of our
choosing by putting the command line in the
RunOnce registry entry. After the OS is
completely installed, control is returned to our

final script. This last script installs our
applications and performs local
customizations. Each application has a
different way to automate its installation. In
general, most can be provided with an
installation script file that answers the
questions.

Once the process is complete, the machine is
fully usable. However, with our current
configuration the machine does not have the
latest driver for the audio card installed.

7. The Details

The installation has four phases: the initial
DOS portion of the installation, the text mode
phase, the initial GUI mode phase, and the
autologon or second GUI phase. The initial
DOS phase is where the SA boots from the
floppy and fills out all of the information that
needed to install the system and then kick off
the installation. The initial installation then
copies all of the files needed to finish the
installation and reboots. During the text mode
phase the installation begins copying files to
their final location and does most of its
hardware detection. During the initial GUI
mode phase all of the rest of the OS files are
copied into place. The network card is
detected and the NT networking gets started
for the first time. This is the phase where the
machine joins the domain. This is also the
phase where the video card is detected and the
drivers for it are installed. At the end of this
phase the patches are applied to the OS and
the settings are put in place to start the second
GUI phase of the installation. During the
second GUI phase all of the applications are
installed and all local customizations are
applied.

7.1. The Boot Floppy

There are three major pieces that are key to
making this work: the boot floppy, the OS
distribution, and packaging the applications.

The main idea here is to collect all of the data
we need up front and then package everything
in such a way that no questions need to be
answered during the installation. The floppy
and the initial scripts become the most
important part of this procedure. The floppy
needs to ask for enough information to get the
machine on the net and logged into the server.
The program that collects this information
then rewrites the configuration files for the
Lan Manager client to use, starts the client and
logs into the network. Once the system is
logged into the server we can run scripts or
programs that ask for all of the rest of the
information we need to finish the installation.

The biggest problem we had with the floppy
was fitting the Lan Manager client, the
programs and drivers on one floppy. We
wanted support for multiple network cards on
one disk but the original floppy, which was
based on Windows 95’s DOS, didn’t have
enough space to fit everything we needed. We
managed to fit it all by doing three things.
First, we switched from Windows 95 to an
MS-DOS 6.22 boot floppy. It had smaller
boot files. Second, we switched from a
BASIC program (which required a 200-KB
interpreter) to C++ program. Third, we started
using a ramdisk and put all of the files we
could in a zip file which gets uncompressed to
the ramdisk. These changes gave us more
space on the floppy and gave us increased
performance. When we were done with these
changes we had enough uncompressed files on
the floppy to start the ramdisk and run the one
network driver that is started from config.sys.
All the initial autoexec.bat did was set a
variable so we knew where the ramdisk was
and then uncompress the zipfile to the
ramdisk. The autoexec.bat then called a batch
file on the ramdisk that ran our C++ program,
started the Lan Manager client and logged on
to the network. In other words, once the batch
file in the ramdisk ran, we didn’t even need to
have the floppy in the drive anymore.

7.2. The Distribution

The second important element in the process
is the OS distribution. Scripts are needed to
collect whatever information wasn't collected
from the floppy portion of the installation and
then start the OS installation. The key to this
portion of the setup is choosing the right
settings in your unattended.txt file. The
unattend.txt file was a file in which we could
specify all of the settings for the machine that
were needed to install NT without having to
answer any questions. We chose certain
settings that we wanted to be the same for all
of our workstations and then used our initial
questions to fill in the settings that we wanted
to set on a per workstation setting.

The common settings included things like
installation type, CD-key, file system
conversion, file system expansion, local
administrator password skip, End User
License Agreement (EULA) skip, and others.
We wanted all of our workstations to run on
NTFS so we chose to make NTFS conversion
a global setting. We also chose to expand the
file system to fill the disk. We chose to leave
the local administrator password blank so that
it would not be asked for in the middle of the
installation. We set the password after the
installation was done. We chose to skip the
EULA for the same reason. We set the license
key in the default unattended.txt because we
have a site license for NT and so have one
universal license key. Most people will
probably want to ask for the license key as
part of the initial installation. Because we are
using the cmdlines.txt later in the installation
and are extending the file system to fill the
disk, we need to set the installation type to
OEM. We also set the default display settings
here. Since we wanted every machine to be
part of a domain, we set the flag to join the
domain. Which domain to join is set on a per
machine basis since we have multiple
domains. The basic idea is to create a default
unattended file and put our network-wide

settings there. We then use that file as a
template to create a specific file for each
machine. We thought about using Universal
Difference Files (UDF’s). These are files that
let you specify settings that override the
unattened.txt file. UDF’s could have been used
to specify machine specific settings but some
of the settings that we wanted to be able to set
on a per machine basis could not be included
in a UDF. We quickly discarded the idea and
wrote a script that would generate a machine
specific unattended.txt file from the
information gathered and the template
unattended.txt file.

We ran into a couple of interesting problems
worth noting. One was a bug which would
make the machine pause after the file system
conversion if the file system was being
expanded. This was done by design, but we
don’t know why. There is a patch on
Microsoft’s website that must be applied to
the distribution and an extra setting that must
be added to the unattended file to fix this bug.
You can find this patch and information
about the new setting at
ftp://ftp.microsoft.com/bussys/winnt/winnt-
public/fixes/usa/nt40/hotfixes-
postSP2/setupdd-fix.

 We also discovered that the environment that
programs run in during the first GUI portion
of the installation is not what one is normally
accustomed to getting. We could not make
any assumptions about PATH setting and
other such environment settings. We also
could not make any assumptions about what
services were installed and running. As a
result, some of the things we tried to do did
not work as expected. We ended up making
sure that we used full paths and keeping the
cmdlines.txt file as simple as possible. All we
did there was patch the OS and set up the
automatic login feature and the account that
we use to do the installation of all the apps
and local customizations.

We tried to minimize the size of our
distribution, so the only directories that we
copied from the CD to our installation server
were the i386 directory and the driverlib.nic
directory under the i386 directory. If we had
wanted to install any of the personal web
server features we would have had to copy the
entire i386 directory (including all of its
subdirectories). We also uncompressed the
files in our distribution because we found that
the installation went faster if the target
machine did not have to uncompress the files
as well as copying them. There are also other
modifications that we ended up making later
that required that INF files be uncompressed
so that they could be modified easily.

When doing an OEM installation the
installation process looks for a directory called
OEM in the i386 directory and copies
anything in that directory to the hard disk of
the target computer during the initial phase of
the installation. If you create a directory called
"C" under OEM then anything under that

tree will be copied to the "C" drive using the
directory tree created under the OEM tree.
We used this feature to copy the service pack
and hotfixes over to the target machine along
with batch files and executables which were
not part of the original distribution that we
needed during the installation. The installation
process also looks for a file called
cmdlines.txt in the root of the OEM
directory and runs any commands found there
at the end of the first GUI phase. We use this
file to run the batch file that installs the
patches and hotfixes. We also set up the
automatic logon here and the account that we
used to install all of the applications and local
customizations and to set up the RunOnce
registry entry that starts the application
installation on the last boot.

All of our applications are part of the OEM
tree which means that all of the applications
get copied automatically during the initial
phase of the installation. We set up a separate
tree for all of the applications that we had
packaged. We set it up so that each
application had an appropriately named
subdirectory and that one of the files in that
subdirectory would be a script file which
would run the package for the application and
install any local customizations. One of the
pieces of information we ask at the beginning
of the installation was which applications the
installer wants on the machine. The list of
available applications was generated from the
list of subdirectories in the application tree on
the distribution. When the installer was done
selecting applications, a master script was
generated that ran the installation scripts for
all of the selected applications.

We could add an application to the
distribution in three simple steps. First,
package the application. Second, write a script
that will install it completely. Third, place it
in a subdirectory with the appropriate name in
the applications directory tree.

The RunOnce registry setting was the heart of
the second GUI phase of the installation.
Whatever command we put here was run
during the final GUI phase. We wanted this to
be a script that performed all application
installation and local customizations. This
script ended up being fairly short. We tried to
package as much as we could into application
packages so that when we selected to install
nothing, we got a completely clean machine.
We wanted this mostly for testing purposes
and for packaging applications using SMS
Installer. This script did two really important
things. First, the script called the application
installation script that we generated when the
applications were selected in the beginning.
Second, the script saved the resulting user
profile to the machine default user profile.
This assured that any new user that logged
into the machine would get the settings
needed to be able to run the applications that
were installed on the machine.

The user profile is a directory structure plus a
registry hive, a binary file which stores many
of the per user application settings. The
directory structure can simply be copied to the
default user profile. Although the registry hive
is just a file in the user profile directory, it is
locked by the system and cannot be copied.
Therefore, we needed to do a registry dump
on the autologon user’s registry key and then
copy the resulting file into the default user
profile. There were tools in the resource kit
that allowed us to dump a registry hive.
However we could only get the username
from the user’s environment. The registry key
for the user was named by SID rather than
user name. We needed to write a utility to get
the SID of the currently logged on user. We
wrote a wrapper program that called a
resource kit tool with the right parameters and
parsed the output for us.

7.3. Packaging the Applications

The third key element to this procedure was

packaging the applications so that they would
not stop and ask any questions. We discovered
four different ways to accomplish this: the
InstallShield method, the STF file method, the
vendor specific method and SMS Installer
method.

7.3.1. The InstallShield Method

We found that a large majority of applications
these days are using a setup program called
InstallShield. This type of installation
program was easy to automate. The setup
routine could be supplied with the -r switch
that causes it to record all of the answers
given during the installation in a log file. We
could then copy this log file to the application
source directory and use the -s switch that
specifies a silent mode installation. This
mode reads all the answers to all the questions
from the log file that was just created and
installs the application without asking any
questions. We used this method on McAfee
Antivirus for NT.

7.3.2. The STF file method

We found a method that was Microsoft
specific and worked on most of their big
packages, such as Microsoft Office 95,
Microsoft Office 97, and the resource kits.
During the installation these applications
generated an STF file that was designed to
record the installation so that the application
could be reinstalled or uninstalled partially or
completely at a later date. With the saved the
STF file we could give switches to the setup
program telling it to reinstall everything and
then specify the STF file on the command
line. When we did this we found that the setup
program repeated the installation that created
the STF file. For example, if the STF file was
c:\office.stf the command line would be setup
/r /t c:\office.stf /q1. The /r switch told the
setup program to reinstall everything. The /t
switch allowed us to specify the path to the
STF. We found that this path had to be an

absolute path. The /q1 switch told the setup
program to run installation in quiet mode 1.
This mode displayed the progress but did not
display the dialog box at the end that
announced that the installation was successful.
We found that the installation either moves or
deletes the STF that supplied on the command
line. So make sure that a copy of this file, not
the original, is used during the package
installation.

7.3.3. The Vendor Specific Method

Some vendors have their own setup programs
or require hacks to make them work. Netscape
appeared to use InstallShield but the silent
mode installations did not work. We had to
modify their setup.ini to change the default
installation path to our standard and add other
settings to prevent the installation from asking
questions. In a case like this, we found that
contacting the vendor was the best thing to do.
In most cases they were helpful and explained
how to automate their installation process. In
cases where the vendor could not or would not
help the final method seemed to work well.

7.3.4. SMS Installer Method

Microsoft provided a tool called SMS Installer
for sites that have Systems Management
Server installed. This tool watches the
installation and then finds all of the files,
services, registry entries, and shortcuts that are
installed during the installation and scripts and
packages those changes into a self-extracting
archive. When this archive is run it extracts
itself and performs an unattended installation
of the application that was just packaged.
Sometimes SMS Installer missed files and
registry settings. These registry entries and
files could be added to the package later
through the SMS Installer’s GUI. We used
this to package Hummingbird’s eXceed. For
those sites that don't have SMS installed
sysdiff is an adequate substitute for the SMS
Installer. The only caveat is that the sysdiff

package cannot be modified. If sysdiff misses
files or registry entries they must be added
later. Missing files must be collected and
copied manually. Registry entries must be put
in a registry script file and incorporated into
the registry manually using regedit.exe.
Another tool to consider is Seagate’s
WinINSTALL. It’s description made it sound a
lot like SMS Installer. We didn’t look into it
because we had several solutions that were
free.

7.4. Adding Support for New Hardware

One of the things that we are still working on
(as we write this paper) is adding new drivers
to the distribution. We found ways to add PCI
network cards and SCSI drivers. We think we
found a working solution for video cards but
are still testing it. Microsoft did provide ways
of specifying OEM hardware in the
unattended.txt file but using this method
would have meant asking yet another set of
questions at the beginning of the installation.
We chose to try to integrate the drivers into
the actual distribution so that they are auto-
detected during the installation. Microsoft did
NOT SUPPORT this solution. They would
not help us when we had problems making it
work. We found that most hardware vendors
tried their best to be helpful and provided
some insight into what was happening during
the installation’s two hardware detection
phases. After getting information from the
vendors and poking around in the setup files,
we found we were able to figure out what was
going on. Once we understood the driver
installation process it became much easier to
find a procedure to add each type of driver to
the original NT distribution. The solution we
chose took some extra work but seemed to
boil down to a set modifications to INF files,
script files that the NT installation runs, and in
some cases modifications to the initial system
registry hive in the distribution.

8. Future Enhancements

We have plans for several future
enhancements to AutoInstall. We are working
on a way to install drivers that the NT
installation does not auto-detect. We think we
may be able to use SMS Installer to create a
package for each of them so that they can be
installed automatically. We are planning on
moving the applications tree out of the
OEM directory tree so they can be copied
selectively. This way only the applications
chosen by the installer will be copied. We are
also planning on adding DHCP support so that
our installers don’t have to answer as many
questions as long as a DHCP server has
settings for the client computer.

9. Suggestions for Vendors

There are many things that vendors could do
to make this automation process easier. A set
of tools to add new drivers to the NT
distribution would be nice. A standard method
of packaging applications would also be a
great help. It would also be really nice if
applications were less intrusive in the
operating system. Having an application
install extra files in the system directories
does not appeal to us. If the applications were
less intrusive, it would be easier to centralize
them. NT workstations could become more
generic and easier to setup and to maintain.
Another nice feature would be a "smart"
application which knows what settings it
needs to run and adds reasonable defaults to
the user’s profile and the local machine if they
don’t exist. They could at least give a
reasonable error message upon startup, stating
which settings are missing on the current
machine so the user can fix them or call an SA
if necessary.

10. Findings

We have a similar system for our Sun Solaris
(UNIX) hosts so we knew what benefits to
expect. As we anticipated, the result was a
fundamental change in the way we install and

upgrade hardware on our network. Previously
SA’s spent most of their day doing
installations. Now that has become a minor
part of their job. They spend their time
focused on other tasks such as attending to
customer requests and trouble-shooting.

We had expected that it would be useful to
have every detail of every machine be
configured the same way. However, we
underestimated how useful AutoInstall would
be to our front-line support personnel. Our
front-line support had been spending a large
amount of their time with issues from
customers with newly installed machines that
could be traced to human error during the
manual installation process. This automated
installation process nearly eliminated these
problems. As a result, our front-line support
personnel now can focus on deeper problems.
This was a benefit we had not seen in our Sun
Solaris (UNIX) environment. On those
systems, applications could be centrally
installed, unlike NT where applications and
their configurations are loaded locally.

Our customers are extremely satisfied with the
accuracy of our installations and our ability to
roll out machines in higher volume.

11. Conclusions

Automating OS and application installation
was difficult to set up initially because we
were breaking new ground. Now that the
process is in place, it should become more
commonplace. The result of this automation
has been a productivity boost on three levels.

(1) Our installers can install more machines
per week error free. In fact, for the first time,
they can install more than one or two
machines per day.

(2) Our front-line support personnel no longer
receive problem reports from customers with
machines that were misconfigured due to
human error.

(3) Our customers are happier with their
environment because machines are more
likely to be installed on time and the machine
they receive is configured correctly.

Obviously, the happiness of our customers is
the most important gain.

12. Availability of Source Code, Etc.

Contact the author’s for code availability.

Robert Fulmer rjf@research.bell-labs.com

Alex Levine alyank@research.bell-labs.com

