
The following paper was originally published in the
Proceedings of the Large Installation System Administration of Windows NT Conference

Seattle, Washington, August 5–8, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Patch32 : A System for Automated Client OS Updates

Gerald Carter
Auburn University

Patch32 : A System for Automated Client OS Updates

Gerald Carter
Engineering Network Services

Auburn University
jerry@eng.auburn.edu

Abstract

The adage “a chain is only as strong as its weakest
link” is true for network security, the link being the
host on the network. To secure a network, hosts must
be thoughtfully installed and kept updated with the
appropriate patches. For hosts running Microsoft
Windows 95 or Microsoft Windows NT Workstation

keeping patches current is problematic.

Unlike most Unix variants, neither Windows 95 nor
NT Workstation ship with a network extensible update
mechanism. Though third party solutions are available,
they can be costly to implement for large networks.
This paper presents a free update mechanism for hosts
running Windows 9x or NT Workstation served by
Samba (see Appendix A).

Developed to patch Microsoft’s 32 bit operating sys-
tems, the name Patch32 was adopted. Patch32 was
developed for an existing network dominated by Sun
Microsystems’ SPARC servers running Solaris, how-
ever, Patch32 can be used in any environment that
provides SMB file services.

1. Introduction

The initial design criteria for Patch32 was simple:
Provide for completely automated, remotely adminis-
tered updates to Microsoft’s 32 bit operating systems.
Essential to any automated update mechanism is the
ability to determine what operating system the ma-
chine is running and what updates have already been
installed so that the necessary updates can be deter-
mined. To be effective, any update mechanism must
be able to access the necessary updates from a central
location without human intervention and with a
mechanism to guarantee that the program will be run
on the client systems with reasonable regularity.

This paper addresses issues that arose during the im-
plementations of Patch32. The remaining sections are
organized as follows. Section 2 discusses solutions to

the various requirements of such an update system.
Section 3 describes security concerns related to
Patch32 and ways to address these concerns. For
those wishing to implement the system, suggestions
for customization are described in Section 4. Finally,
lessons learned from the implementation process as
well as plans for future enhancement are included in
Section 5. The appendix contains the perl source code
for the Patch32 script, example patch listings, URL’s
and other references for the reader interested in finding
out more about the software and ideas presented here

2. Implementation

2.1. File Access

The file services needed to support Patch32 are pro-
vided by a dedicated 196MB Sun Ultra 170 running
Solaris 2.5.1. Samba, which is available under the
GNU General Public License, provides file and print
services to Server Message Block (SMB) clients in-
cluding Microsoft’s Windows for Workgroups, Win-
dows 95 and Windows NT. Samba also includes the
capability to act as a Primary Domain Controller
(PDC) for Windows NT Domains, although this sup-
port is currently in the testing stages and is not in-
cluded in the main source distribution as of version
1.9.18p7.

SMB services were chosen rather than other file shar-
ing protocols such as NFS due to the native support for
SMB within the Microsoft operating systems. This
support, combined with the Microsoft Network Client,
allowed built-in tools such as domain login scripts and
System Policies to be used to configure the execution
of patch scripts on remote machines.

Two separate copies of Samba were configured on the
physical server, each have its own network interface.
This was accomplished by utilizing two settings in the
samba configuration file (smb.conf). The “interfaces”
parameter specifies the correct network interface to
which the samba processes should attach and the value

for the “socket address” parameter determines the IP
address to which the samba processes should bind.
The reader should be aware that using this second pa-
rameter may cause problems with network browsing.
The problem has been reproduced when the domain
controller is bound to the second network interface
which has been created as a virtual interface. There-
fore it may be necessary to use a central WINS server
in order for a client to resolve names correctly even if
it is on the same subnet as the samba server.

At the College of Engineering, the first samba server,
\\USERSERVER, provided access to department
shares, user shares, and various network printers. The
second copy of samba, \\GUESTSERVER, provided
access to various system and development tools such
as the Java SDK, Perl5 for Win32, administrative
scripts and command line utilities.

Both servers are configured with user level security
however, \\GUESTSERVER is configured to only al-
low guest connections. This is accomplished by de-
fining GUEST_SESSETUP to be the integer 2 in the
file local.h, which is part of the samba source code
distribution, and by isolating \\GUESTSERVER from
the normal list of accounts. Therefore any user at-
tempting to connect is validated as the guest account
specified in the smb.conf file. This mechanism allows
machines to access specific shares without validation.
Since all files accessible on \\GUESTSERVER have
been deemed as public access, the setup does not cre-
ate a security concern.

At this point is may be obvious why it was decided to
run two separate samba servers. Guest connections are
not often desired to shares containing data or to print-
ers where page accounting has been enabled. It is pos-
sible to recreate this same type of behavior without
maintaining two servers, but separation was deemed
necessary for management purposes.

2.2. Patch Preparation

The updates discussed in this paper were released by
Microsoft and downloaded from the their web site (see
Appendix A). This section will discuss the preparation
of the archived files necessary to integrate the patches
into the model presented here.

A system update contains three basic components.
The first is the collection of updated files. This may
include dynamic link libraries, executables, informa-

tion files, device drivers or any other imaginable por-
tion of the local system.

The second component is the patch installation pro-
gram. Windows 95 updates normally rely on the
rundll.exe and setupx.dll files, which are by default
located in the \windows and \windows\system directo-
ries respectively. Windows NT Service Packs and
Hotfixes normally include an installation executable.

The final necessary component for an installation pro-
gram is a listing of directory locations and registry
keys where the updated files and information is to be
placed. This listing may be internal to the installation
executable or, as is the case with both Windows 95
and Windows NT fixes, external in the form of an in-
formation file (INF).

Both the Windows 95 and the Windows NT updates
released by Microsoft are packed in a self-installing
executable file. The method for extracting the internal
files is different for each operating system.

To install a Windows 95 update such as the Service
Pack 1, a user would normally simply launch the up-
date executable. At this point the setup program will
extract the archived files into the %TEMP% directory.
When prompted to continue with the update, the user
may then make a copy of the files that have been ex-
tracted and cancel the setup program.

In order to extract the archived files from either a
Windows NT Service Pack or Hotfix, one must simply
run the archived executable from a console window
and pass the appropriate parameter to the program.
For example, to extract the files contained in the up-
date named “hotfix1_i.exe”, the standard method
would be run “hotfix1_i.exe /x” from a command
prompt. Please consult the service pack or hotfix
documentation for the correct syntax.

2.3. Script Implementation

Once machines are able to the access the updated files
from a central location, the next step is to automate the
process of applying the patches. For this process, Perl
(see Appendix A) was chosen as the implementation
language. Reasons for selecting Perl include fast de-
velopment time due to familiarity with the language
on a Unix platform as well as the availability of mod-
ules to interface with specific Windows 95 / NT enti-
ties such as the event log and the system registry.

determine what OS we are running;
set the patch directory;
set the install method;
open $patchdir\$patchFile;
foreach (entry in patch listing) {
 split the entry into parts;
 if (registry key does not exist) {
 install the patch;
 }
}

if (any patches have been installed) {
 execute rebootMessage;
}

Figure 1: Patch32 algorithm

As stated previously, the first thing that is necessary to
install updates to an operating system is to determine
what version of the OS is currently running. The fol-
lowing segment of code will return all the information
needed.

($osString,$majorVer,$minorVer,$osBuild,
$osId) = Win32::GetOSVersion ();

$osString OS revision string
$majorVer Major version number
$minorVer Minor version number
$osBuild OS build number
$osType integer (win32s = 0; Win95
 = 1; WinNT = 2)
Figure 2: Win32::GetOSVersion() and return values

The OS specific patch location is determined by test-
ing $osType and then creating a directory path by
catenating the Patch32 root directory specified at the
beginning of the script with the OS name (either win95
or winnt) and $osBuild. For example, Windows 95
OSR1 has a build number of 67109814. The full path
to the correct patches would be

$basedir\win95\67109814

From this patch directory, the program will open a list
of updates to be applied to the client. The format of a
patch listing entry is given below.

<registry key>:<install patch directory>

Figure 3: Patch entry format

Each entry is delimited by a carriage return. Lines
beginning with a semicolon (;) or a pound sign (#) are

ignored as comments as are blank lines. The “registry
key” field is the absolute path to a key in the local
system registry whose existence implies a previous
application of the patch. The hive key
HKEY_LOCAL_MACHINE is abbreviated as HKLM.

; This fix corrects GETADMIN problem
HKLM\SOFTWARE\...\Hotfix\Q146965:admnfix

Figure 4: Example patch listing entry. A portion of
the registry key field has been deleted to prevent line
wrapping.

Once the patch entry is read, it is split into its compo-
nent parts. Using the given registry key, the program
checks for its existence in the local registry. The
nonexistence of the registry key indicates that the
patch has not been installed. If it does exist, then the
patch has previously been applied and the program
does not attempt to install it. Because of the frequency
with which the patch program will be run, it is neces-
sary that the script be efficient when evaluating the
current state of the client. Therefore no attempt is
made to verify the integrity of previously installed
updates or to examine the version of installed files.
The “install patch directory” field is the name of the
directory containing the update. This is a path relative
to the previously determined OS specific patch direc-
tory and will be used during the patch installation pro-
cess described in the next section.

2.4. Patch Installation

During the development of Patch32, one goal was to
provide a method of deploying new patches with
minimal effort. By default, all Windows NT hotfixes
released by Microsoft store a patch identification
number in the following registry key

HKEY_LOCAL_MACHINE
 Software
 Microsoft
 Windows NT
 CurrentVersion
 Hotfixes
 <patch number>

Therefore it is possible to determine the presence of a
hotfix by the existence of its ID in the registry. The
Service Packs create a string value in

HKEY_LOCAL_MACHINE
 Software

 Microsoft
 Windows NT
 CurrentVersion
“CSD Version” = “ <Service Pack Name>”

Checking for the existence of this value will only de-
termine if any service pack has been installed rather
than a specific one. Therefore the setup INF file for
the Service Pack is modified to create a key in

HKEY_LOCAL_MACHINE
 Software
 Microsoft
 Windows NT
 CurrentVersion
 Hotfixes
 < SvcPackNo>

The existence of an installed service pack may then be
determined by examining only one registry key. The
same method may be used when an update creates
many keys but only one need be examined.

By default, Windows 95 update information is stored
in

HKEY_LOCAL_MACHINE
 Software
 Microsoft
 Windows
 CurrentVersion
 Setup
 Updates
 UPD< patch number>

These default keys are used only to reduce the amount
of effort needed to integrate a new patch into the ex-
isting setup. Site specific keys may be used as long as
they are created by the update once it has been applied
to the local system.

Once the registry key for the patch and the location
from which to install the patch is known, the setup
program for the update can be executed using the sys-
tem() function. Patch32 allows for a single install
method to be specified for Windows 95 and one for
Windows NT.

In the case of Windows 95, the INF file provided with
the update is used for the installation. This file is
parsed using a modified version of the Windows 95
default method that is stored in the system registry.

rundll.exe setupx.dll
 InstallHinfSection 132
 DefaultInstall <filename>

Figure 5: Default Windows 95 install method for INF
files.

Setupx.dll is instructed to process the “DefaultInstall”
section of the file given by the last parameter. The
only difference in the install method used by the
Patch32 script is that the fourth parameter is 133 rather
than 132. This has the effect of not prompting the user
to reboot after the INF file is processed.

For Windows NT service packs and hotfixes, the up-
date.exe utility provided with Service Pack 3 for Win-
dows NT 4.0 can be used to install both

update.exe -z -u –q <filename>

Figure 6: Windows NT install procedure for a non-
interactive update without a reboot after patch com-
pletion.

These methods are used to reduce the work needed for
new patches. They are not the only possible installa-
tion methods. Custom setup programs may be may be
used as long as the method to install each update per
OS is the same. Modifications to the patch installation
method are discussed in Section 4.

The Patch32 script continues until all entries have
been processed. At the end of the program, if any
patches have been installed, the contents of a string
variable which specify a reboot message are executed
by another call to the system() function. Windows 95
clients are informed that the system has been patched
and changes will take effect after the next system re-
boot. Windows NT displays a message that the system
will reboot due to patches having been applied and is
restarted using the shutdown utility included in the
Windows NT 4.0 Server Resource Kit[1].

(a) $basePatchDir\win95\w95upd.exe

(b) start $basePatchDir\winnt\shutdown
 /l /y /r /t:30 "Patches completed.
 System rebooting."

Figure 7: (a) Windows 95 and (b) Windows NT re-
boot messages executed if any updates were applied.

2.5. Script Execution

The last issue to be resolved is to guarantee that the
client machines will execute the patch script on a
regular basis. This program must be run during the
operating system boot process but after network sup-
port has been enabled.

Windows 95 clients are able to run the program during
a domain login script or from the

HKEY_LOCAL_MACHINE
 Software
 Microsoft
 Windows
 RunOnce

registry key which can be set using a remote update of
the system policies.

In order to install updates on Windows NT clients, the
update program must have administrative privileges on
the local host. Therefore the patch program may not
be run during a normal user’s domain login script.
The Windows NT 4.0 Server Resource Kit contains a
service utility named AutoexNT that, upon start up,
executes a batch file named %SYSTEM-
ROOT%\System32\AutoexNT.bat. By configuring the
service to start up automatically, AutoexNT.bat will be
executed during the boot process. It is from this batch
file that the Patch32 script is launched. By running the
AutoexNT service under a local administrative ac-
count, the program is able to update system files and
settings.

@echo off
set LOG=%SYSTEMROOT%\log\autoexnt.log
set PERL=\\GUESTSERVER\perl\bin\perl.exe
set PATCH32=\\GUESTSERVER\bin\patch32.pl

echo :::::::::::::::::::: >> %LOG%
date /t >> %LOGFILE%
time /t >> %LOGFILE%
echo :::::::::::::::::::: >> %LOG%
net start LanManWorkstation >> %LOG%
%PERL% %PATCH32% >> %LOG%

Figure 8: Example AutoexNT.bat script

3. Security

3.1. Permissions

When run under Windows NT, the patch program must
run as a local administrative account in order to update
system files. This results in three security issues that
must be addressed. These are the integrity of the patch
files themselves and their associated setup programs,
the security of the registry keys which are defined by
the system updates and the security of the batch file
run by the AutoexNT service. Obviously the last two
issues are irrelevant in Windows 95 since such access
control does not exist and because the AutoexNT
service is not used.

In order to insure the integrity of the update packages,
write access to the files should be restricted to admin-
istrative accounts only. Without this protection, a vi-
rus or Trojan Horse program could easily be distrib-
uted to clients by modifying the patch files on the
server.

It is also important to maintain the security of the sys-
tem registry keys created by the updates because these
are the only means by which the Patch32 program can
determine whether or not an update has been installed.
If the security of these keys were comprised, it would
be possible to avoid the installation of an update sim-
ply by creating the correct registry key. It is important
to remember that the patch script makes no attempt to
verify the status of currently installed patches. It is not
technically difficult to perform this type of system
examination, but would result in an increased execu-
tion time and degraded system performance.

The last security issue to address is the AutoexNT
service. As stated previously, this service runs as a
local administrative account and executes the contents
of the AutoexNT.bat file whatever they may be. It is
therefore extremely important that only administrative
accounts be allowed to modify this file for reasons
similar to those given for ensuring the integrity of up-
dates packages.

3.2. Logging

In a distributed environment, it is important not only to
be able deploy updates effectively, but also to be able
to determine which machines were successfully up-
dated and those which failed. Patch32 supports log-

ging to the Windows NT EventLog via Perl’s
Win32::WriteEventLog() function.

3000 The patch32 script completed
 successfully
3001 The patch32 script failed
3002 The %1 patch was installed
 successfully
3003 The %1 patch installation failed
3004 The system was rebooted due to
 patches having been applied

Figure 9: Patch32 EventID’s and descriptions.

4. Customization

During the initial installation, Patch32 requires that
certain variables, which determine paths to OS up-
dates, be defined. These variables, located at the be-
ginning of the source file, allow the administrator to
specify the base location of the Patch32 directory hier-
archy and the install methods and parameters for Win-
dows 95 and Windows NT updates. The server ad-
ministrator may also choose to modify the reboot mes-
sage that is executed upon the successful application
of an update.

One advantage to Patch32, besides the fact the all
software components are freely available, is that the
patch script itself is very short, about two hundred
lines at the time of this writing. Because the code is
easy to understand, site specific changes can be made
easily. This makes Patch32 extremely flexible. For
example, one of the many, freely available SMTP con-
sole mail programs such as Blat (see Appendix A)
could be used to augment the system’s current logging
abilities. In this way, network administration would be
notified via e-mail upon update completions or fail-
ures.

The patch installation method is also very flexible.
The current configuration at the College of Engineer-
ing uses methods available with the updates released
by Microsoft. A simple alternative to this would be to
use a batch script named “update.bat” that would exe-
cute specific patch installation programs. This would
provide the ability to have an individual installation
mechanism for each OS patch. The only restrictions
would be that the update program runs non-
interactively under Windows NT and that it creates the
registry key necessary to allow future executions of
Patch32 to determine its existence.

Another possibility of expanding the current installa-
tion method would be to determine it based on the OS
build number. Then each version for Windows 95 and
Windows NT would have a separate method for in-
stalling updates. This would be most helpful when
supporting Windows NT 3.51 and 4.0 clients from the
same server.

5. Conclusion and Future Development

In conclusion, the Patch32 system provides a flexible
means of deploying system updates to Windows 95
and Windows NT clients on a regular basis. Thus far
Patch32 has been implemented to manage Windows
NT 4.0 and Windows 95 clients, but has also been
tested with Windows NT 3.51, Windows NT 5.0 Beta
1 and Windows 98 clients. The current system sup-
ports over two hundred Windows 95 machines and
approximately forty Windows NT 4.0 Workstations.

One issue that arose from the experience of imple-
menting this system is the question of ‘What is a
patch?’ A system update is really nothing more that a
reconfiguration of the client machine. Files and regis-
try keys are created, updated and deleted. In essence,
this is software installation. It is perceivable that the
Patch32 system could be used to configure software
packages on client machines. This, however, is left as
an exercise for the reader.

Appendix A: URL’s

This section lists relevant URLs for freely available
software discussed in this paper.

Samba is available under the GNU General Public
License and comes with full source code. Information
is available at http://samba.anu.edu.au/samba.

The Microsoft OS updates for Windows 95 and Win-
dows NT are available from Microsoft’s web server
and FTP server. See http://support.microsoft.com and
ftp://ftp.microsoft.com/bussys/winnt/winnt-public/
fixes.

ActiveState distributes Perl5 for Win32 which avail-
able at http://www.ActiveState.com.

All source code for the Patch32 system are available
on-line as will be future versions. See

http://www.eng.auburn.edu/users/cartegw/Patch32 for
information about obtaining the files.

Blat is a public domain console SMTP mailer for the
win32 platform. It is designed to run under Windows
NT and comes with full source code. Visit
http://gepasi.dbs.aber.ac.uk/softw/blat.html for more
information.

References

[1] Windows NT 4.0 Server Resource Kit,
Microsoft Press, Redmond, Washington,
1996. ISBN 1-57231-344-7

Appendix B: Patch32 source listing

###
Filename : patch32.pl
Author : Gerald (Jerry) Carter
jerry@eng.auburn.edu
Date Created : November 17, 1997
Last Update : June 6, 1998
#
ATTN: Some lines have been wrapped for readability. The real
source may be downloaded from
http://www.eng.auburn.edu/users/cartegw/Patch32
#
Perl5 for Win32 script to patch Windows 95 / NT clients on the
College of Engineering network. Client supported are
Windows 95 OSR1, OSR2, OSR2.1
Windows 98
Windows NT Workstation 3.51, 4.0, 5.0 Beta 1
#
The following variables must be set for each OS
$basePatchDir Base directory of all patches
$patchDirectory Location of the patch files
$installPatch Patch installation method
$installParameter Patch install parameters
$rebootMessage win32 command that will run if any
patches are installed
#
$installPatch . $patchDirectory . ’\’ . $pSourceDir .
’\’ . $installPatchParameter
#
==
LICENSE
==
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.
#
###

Needed module for registry functions
use Win32::Registry;

Setup some script variables
$DEBUG = 1;
$reboot = 0;
$eventLog = 0;
$eventSource = "Patch32";
$computer = $ENV{’COMPUTERNAME’};
$eventLogFile = "Application";

###
Script variables - Fill these in with values appropriate for
your site

Base patch directory
$basePatchDir = "\\\\ivy\\patch32";

Win95 patch install method
$win95InstallPatch = ’rundll.exe setupx.dll,InstallHinfSection
 DefaultInstall 133 ’;

Win95 patch install method parameter
$win95InstallPatchParm = ’install.inf’;

Win95 reboot message to be executed if patches are applied
$win95RebootMsg = "$basePatchDir\\win95\\w95upd.exe";

WinNT patch install method
$winntInstallPatch = ’’;

WinNT patch install method parameter
$winntInstallPatchParm = ’update -z -u -q’;

WinNT reboot message to be executed if patches are applied
$winntRebootMsg = "start $basePatchDir\\winnt\\shutdown /l /y /r /t:30
 \"Patches completed. System rebooting.\"";

###

First we must determine what OS we are running
($osString, $majorVer, $minorVer, $osBuild, $osId) = Win32::GetOSVersion ();
if ($DEBUG >= 2) {
 print "ID = $osId\n";
}
win32s
if ($osId == 0) {
 print "Can’t patch win32s!.";
 exit (-1);
}
Windows 95
elsif ($osId == 1) {
 # Print the OS information
 print "OS version is Windows 95$osString.\n";

 # Set the $patchDirectory
 $patchDirectory = "$basePatchDir\\win95\\$osBuild";
 $installPatch = $win95InstallPatch;
 $installPatchParameter = $win95InstallPatchParm;
 $rebootMessage = $win95RebootMsg;
}
Windows NT
elsif ($osId == 2) {
 # Needed by Windows NT EventLog
 require "NT.ph";

 # Print the OS information
 print "OS version is Windows NT $majorVer.$minorVer ";
 print "(build $osBuild: $osString)\n";

 $patchDirectory = "$basePatchDir\\winnt\\$osBuild";
 $installPatch = $winntInstallPatch;
 $installPatchParameter = $winntInstallPatchParm;
 $rebootMessage = $winntRebootMsg;

 $eventLog = 1;
 Win32::OpenEventLog ($ntlog, $computer, $eventLogFile) || warn $!;
}
Unknown
else {
 print "Unable to determine what OS we’re running!\n";
 print "Script exiting...\n";
 exit (-1);
}

if ($DEBUG >= 1) {
 print "Patch Directory = $patchDirectory\n";
 print "Install Patch method = $installPatch\n";
 print "Install Patch parameters = $installPatchParameter\n";
 print "Reboot Message = $rebootMessage\n";
}

Now we are ready to gread the patch.list file
open (PATCHLIST, "$patchDirectory/patch.list") || die $!;

Now we loop through the listing of patches
while ($patch = <PATCHLIST>) {

 # Check for comment
 $tmpChar = substr ($patch, 0, 1);
 if (("$tmpChar" ne ";") && ($tmpChar ne "#")) {

 # Get the individual patch information
 chop ($patch);
 ($pRegKey, $pSourceDir) = split (/:/, $patch);

 # ...This should be able to handle other hives as well as HKLM...
 # ...a kludge for now...
 $pRegKey =~ s/HKLM\\//;
 $regObject = $HKEY_LOCAL_MACHINE;

 # If we can open the given registry key, then we assume that
 # the patch is in place and go on
 if ($pRegKey ne "") {
 if ($DEBUG >= 2) {
 print "Patch Registry Key = \n $pRegKey\n";
 print "Patch Source Directory = \n $pSourceDir\n";
 }
 if ($regObject->Open ("$pRegKey", $patchVer)) {
 print "Patch $pSourceDir already installed!\n";
 }
 else {
 $reboot = 1;
 print "Installing $pSourceDir...\n";
 $installTmp = $installPatch . $patchDirectory . "\\" .
 $pSourceDir . "\\" . $installPatchParameter;
 print "$installTmp\n";
 system $installTmp;
 print "\n";
 if ($eventLog == 1) {
 if ($regObject->Open ("$pRegKey", $patchVer)) {
 Win32::WriteEventLog ($computer, $eventSource,
 &EVENTLOG_SUCCESS, &NULL, 3002, &NULL, 0,
 "$pSourceDir");
 }
 else {

 Win32::WriteEventLog ($computer, $eventSource,
 &EVENTLOG_ERROR_TYPE, &NULL, 3003, &NULL, 0,
 "$pSourceDir");
 }
 }
 }
 }
 }
}

Check to see if we installed patches
if ($reboot) {
 system $rebootMessage;
 if ($eventLog == 1) {
 # Event : rebooting the system
 Win32::WriteEventLog ($computer, $eventSource,
 &EVENTLOG_INFORMATION_TYPE, &NULL, 3004, &NULL, 0, "");
 }
}

if ($eventLog == 1) {
 # Event : Successful script completion
 Win32::WriteEventLog ($computer, $eventSource, &EVENTLOG_INFORMATION_TYPE,
 &NULL, 3000, &NULL, 0, "");
 Win32::CloseEventLog ($ ntlog);
}

exit (0);

########## end of patch32.pl ##
###

Appendix C: Example patch.list

;
; Patch listing for Windows NT 4.0 (build 1381)
;
; Author : Gerald (Jerry) Carter
; jerry@eng.auburn.edu
; College of Engineering Network Services
; Auburn University
; Date Created : February 20, 1998
; Last Update : June 1, 1998
;

; Service Pack 3
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Hotfix\ServicePack3:sp3

; This fix corrects GETADMIN problem
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Hotfix\Q146965:admnfix

; This fix corrects the chargen/telnet port issue (135)
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Hotfix\Q154460:chargen

; Workaround for Pentium problem with invalid opcode
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Hotfix\Q163852:pentfix

; Fix for newtear and bonk attacks. Also ICMP attacks
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Hotfix\Q179129:tearfix

; This fix is for lsahack.exe problem.. Also increased encryption on
; the LSA secrets in the registry.
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Hotfix\Q184017:lsa2fix

