
On Designing a Database for Integrated User Management:
Pitfalls and Possibilities

Amy LaMeyer

Shankaranarayanan Ganesan

Jesper M. Johansson

Boston University

Abstract

Decisions on implementing IT systems have often been departmental or isolated in nature. As a result many organi-

zations now are faced with the challenge of integrating different networks and computers (in different departments

or possibly even within each), each managed by a different operating system, and each running different types of

applications. In the last decade all organizations have understood the importance of integrating the different systems

and applications. While practitioners and researchers have proposed and implemented several methods for integrat-

ing systems, applications, and data, one area has been and continues to be difficult to integrate - user accounts.

In this paper we present an approach to integrate user account information from several systems. This approach is

interesting for several reasons. First it is not specific to managing users on a particular system and is general enough

to be used in an integrated environment that includes several systems of different types. Second, it is easily scalable

to include applications and networks that have users and need user management. Third, it is simple and easy to un-

derstand and implement. The approach results in a database of user accounts that can be queried for specific users,

groups, and so on. The design can be implemented in any relational database, or for example in the Windows 2000

Active Directory to take advantage of the fact that it already tracks user accounts and related information.

1. Introduction

Decisions on implementing IT systems have often been
departmental or isolated in nature. As a result many
organizations now are faced with the challenge of inte-
grating different networks and computers (in different
departments or possibly even within each), each man-
aged by a different operating system, and each running
different types of applications. In the last decade all
organizations have understood the importance of inte-
grating the different systems and applications. While
practitioners and researchers have proposed and imple-
mented several methods for integrating systems, appli-
cations, and data, one area has been and continues to be
difficult to integrate - user accounts.

There may be several reasons why user account inte-
gration has not received a great deal of attention. Every
enterprise system supports the management of users on

that system. As a matter of fact, it is a basic security
requirement (C1) that the OS be capable of identifying
users (Department of Defense 1985). To further com-
plicate matters, many applications, such as databases,
define their own user accounts. Many systems have
sophisticated user account databases that can store in-
formation not just about the user accounts, but com-
ments about the users as well. Windows NT 4.0, for
example, supports this, and the schema used to store
user accounts in Windows 2000 can be extended to
support a much richer set of information about each
user. On the other hand, it is not at all uncommon to
find systems that do not even support storing a user’s
real name, not to mention critical identifying informa-
tion such as employee ID. This invariably results in an
extensive duplication of user information, and the in-
ability to answer specific question such as what access
privileges a specific user of a system has on other sys-
tems in the organization, or even fundamental questions

such as which employees have access rights on a spe-
cific system. Employees may also have different user
account names on different systems. Organizations
have often chosen not to deal with this problem, as they
understand it to be vicious cycle. If the organization
could track all of its IT users across all systems user
management would be considerably simpler. To resolve
this issue many organizations see the need to manage
users in an integrated fashion, which is difficult, if not
impossible, given the obscure status of current user
information. The problem has therefore not been ad-
dressed and no feasible, practical solution suggested.

In this paper we present an approach to integrate user
account information from several systems. This ap-
proach is interesting for several reasons. First, it is not
specific to managing users on a particular system and is
general enough to be used in an integrated environment
that includes several systems of different types. Second,
it is easily scalable to include applications and networks
that have users and need user management. Third, it is
simple and easy to understand and implement. The ap-
proach results in a database of user accounts that can be
queried for specific users, groups, and so on. The de-
sign can be implemented in any relational database, or,
for example, in the Windows 2000 Active Directory to
take advantage of the fact that it already tracks user
accounts and related information.

1.1 User Accounts

Each system (computers or networks based on NT,
UNIX, VMS, etc.) supports ways of managing users on
that system. Microsoft's Active Directory is designed to
support the management of users enterprise-wide in a
Windows-2000 server-based network, for example.
Specifically, Active Directory addresses the manage-
ment of users in terms of the privileges and resources
available to or accessible by each. Other software firms
have created and made available software to compre-
hensively manage users in a specific type/network of
computers such as UNIX (e.g. COSadmin by Open
Systems Management). It is important to note that all of
the above address user management in a single, specific
system or network. There are approaches that present
exceptions, such as Novell’s Netware Directory Serv-
ices (NDS), which does work both on Netware and
Windows NT/2000. However, it is still limited to man-
aging user accounts on those systems for which it was
designed. Our approach does not substitute these user
management features but supplements them and helps
pull them together by providing a design for a central
location to track user accounts.

1.2 Identifying User Accounts

To completely understand the issues involved, let us
briefly visit these. Individual computer systems typi-
cally have users identified either directly by a username
(as in UNIX based implementations) or by a unique
user identifier (the SID on NT based systems). Individ-
ual systems may be part of one or more computer net-
work(s) and these have users who need to be managed.
Further, large shared applications such as an application
database, email, knowledge management subsystems
etc. may use the user account database of the host OS,
or support their own accounts. Some databases, such as
Microsoft’s SQL Server, support both approaches. Very
often, however, the access to such applications is inde-
pendent of the access to the computer systems they run
on. Most of the above systems manage privileges as-
signed to users using groups or roles. We now have
different systems that users have access to, different
groups within each system that define and manage user
privileges, different applications within each system
that are accessed by users, and networks/sub-networks
that connect these systems together. The proposed de-
sign for managing users in an integrated fashion ad-
dresses a majority of the above issues and can be ex-
tended to deal with the rest as well. We do not deal with
privileges and access to specific resources in this paper,
as individual systems provide good support for manag-
ing privileges and resources within each. As a first
step, we address the other user management issues that
are not adequately supported.

The remainder of the paper is organized as follows. The
specific problem that motivated this paper is described
in detail in Section 2. For convenience, and to protect
the identity of the organization, we henceforth refer to
the organization as Information Systems Inc. (ISI. Also
described in Section 2 are the existing systems and cor-
responding user accounts, and the need for integrating
the user management as well as specific issues that
need to be addressed in this process. Section 3 presents
a design of a database that incorporates existing ac-
counts and integrates the management of users in the
organization. A discussion of how to utilize some of the
features of Windows 2000 to make the user identifica-
tion task easier, are presented in Section 4 and the is-
sues that need to be addressed to resolve problems in
importing the existing data into this schema are de-
scribed here. Concluding remarks, directions for im-
provement, as well as directions for further work are
presented in Section 5.

2. The Current State of the Systems and
User Accounts at ISI

ISI Inc. is an organization that provides a variety of
high quality health care solutions. These are directed
towards individual customers as well as for use in hos-
pitals and home health care services. The categories of
products include pharmaceutical, nutritional, diagnos-
tic, and hospital supplies. ISI Inc. owned and operated a
subsidiary organization that manufactured, sold, and
more importantly provided customer service and sup-
port for some of the products manufactured at ISI that
required customer service and post-sales support. ISI
Inc., like any other organization today, uses IT and IT
systems to store and manage their extensive data re-
sources as well as maintain the applications that capture
and make use of this data. Typical applications include
the standard corporate applications for sales force plan-
ning, sales and demand forecasting, financial applica-
tions, human resource management, customer service
and support, as well as applications for monitoring and
planning their manufacturing and production processes.
The human resource management applications maintain
data on over 500 employees and more than 60 percent
of their employees (> 300 employees) required and
were given access to one or more computer systems and
applications that were part of the IT infrastructure at ISI
Inc.

The IT infrastructure at ISI Inc. included a variety of
computer systems and applications. Some of these sys-
tems were integrated together in a networked environ-
ment while others were standalone. The corporate ap-
plications (CAS) resided on a Microsoft Windows NT-
based client server network that included a set of desk-
top computers running Windows NT. The customer
data and customer service applications are maintained
on a system of Oracle databases that we shall refer to as
Customer Service System (CSS). The production data is
also captured on a different system of Oracle databases
and we will refer to this as the Production Data System
(PDS) for convenience. The manufacturing applications
and data are managed by a manufacturing application
system (MAS) installed on an IBM AS/400. The hu-
man resource (HR) data is maintained in a spreadsheet
application (MS-Excel) and is part of the data that re-
sides in the NT network for corporate applications.
Each system is part of a specific functional unit within
the organization. The manager of a functional unit is
responsible for authorizing and managing the users in
the system that is part of that functional unit.

The user-management was performed at two levels: the
system level and the application level. The hard-
ware/platform specifically, the operating system for
each hardware/platform controlled the access for each
user at the system level. This defined the authentication
of the individual users, the files and directories within
each system that the user had access to, and the read,
write, and execute privileges each user held for the dif-
ferent applications that resided on this system. This is
accomplished by creating groups/roles, assigning a set
of permissions and privileges for each, and enrolling
each user as being part of the appropriate group/role.
The application level user-management managed user
access to the specific application modules and associ-
ated queries (and data). It defined the manner in which
each individual user accessed each module, defined the
types of permissions (read or write/update) each user
had on the data associated with each module, and de-
fined the specific view of data for that user or the set of
users. This was accomplished largely through the crea-
tion of user groups/roles (similar to the system level)
with the exception of the MAS.

The MAS application system included 19 application
modules. Each module performed several functions
such as querying accounts payable, maintaining ac-
counts payable master, identifying payment cycles, and
reporting receipts that are not invoiced. These func-
tions may be part of a single application module. As
each module performed several functions ISI Inc. man-
aged users by providing them access to specific func-
tions within each module. To accomplish this, each
module had several groups, each group with the privi-
leges to execute a specific set of functions. A user was
assigned to a group depending on the function(s) he/she
needed access to. Each user was part of many different
groups in different modules. The MAS hence had 277
unique user identifiers but over 9500 records to capture
the user-access data to the different groups and applica-
tion modules. The number of groups in each application
module ranged between 6 and 50 (with an average of
27). There were over 500 such groups distributed over
19 modules. The number of users in each group varied
between 1 and 210. There were 19 groups with more
than 100 users in each, 24 groups with 50-99 users
each, 191 groups with 10-49 users in each, and over
270 groups with less than 10 users in each group.

Users in the CAS were managed using 108 groups.
There were 482 unique user identifiers created in the
CAS belonging to the 108 groups defined. The user
records in CAS numbered more than 2500 as each user
was assigned to several groups. Interestingly, 16 of the
108 groups created did not have any users, 3 had over

380 users in each, 5 with 50-99 users in each, 34 with
10-49 users in each, and 50 groups with 1-10 users in
each. The PDS was accessed by 19 unique users and
managed with 5 groups (one with 10 users and the other
4 with 2 or 3 users in each) and each user belonged to
one and only one group in this system. The CSS users
were divided into three categories based on how they
used the system: the developers, the database users, and
the CSS application users. The 5 developers were as-
signed to one group and their privileges managed using
that group. The database users (22 users) were managed
using 3 groups. The administrator of the Oracle data-
base was the only member of the administration group.
Two experienced Oracle users were allowed to create
ad-hoc queries from any of the tables in the database
and were part of the second group. The rest of the data-
base users belonged to the final group that permitted
them to run pre-defined periodic reports. Members of
the first and second group were also part of the third
group. The CSS application users were managed using
10 groups. Some of these groups are customer support,
sales, administrative groups for each, system adminis-

trator, training, and a group for supervisors. Of the 86
application users, 63 belonged to the customer support
group.

Employee information was maintained and managed by
the HR department. Each employee of ISI Inc. was
permitted to have multiple user identifiers and the first

problem that ISI faced was matching employees with
their corresponding user identifiers. Many of the user
accounts were no longer used and these accounts con-
tinued to remain in the different systems at ISI Inc.
Also, HR did not have employee information for many
user accounts since some accounts were given to con-
tracting employees who were not maintained in the HR
database. These problems surfaced when the managers
of functional units in ISI Inc. were asked to verify each
of the user accounts and the access these accounts had
on their systems. The purpose was to ensure that the
right employees had the necessary access to the system
functions and data and to remove the defunct or unau-
thorized accounts. No coherent report on users of sys-
tems could be generated using the existing data on user
accounts. The management discovered that integrating
the set of users across all of the systems in ISI Inc. was
a complex task. ISI Inc. also understood that this situa-
tion compromised information security at ISI Inc. The
specific objectives in integrating the user accounts in-
cluded the following:

1 . Reconciling employee names with user ac-
counts to identify the employees (and con-
tractors) who owned user accounts on the sys-
tems.

2. Identifying the groups on systems and modules
in systems and understanding the privileges

Employee (HR)

EID

LastName

FirstName

Dept

MacPac (MAS)

ID

UserID

Source

Group

Vantive (CSS)

ID

UserID

Group

NT (CAS)

ID
UserID

LastName

Galileo (PDS)

ID

UserID

Group

NT_DESC

Key

Group

Description

Figure 1 Original Schema

given to each of these groups. Almost all sys-
tems had multiple distinct groups with the
same set of privileges but were managed sepa-
rately. Users were assigned to one or the other
and some users belong to both groups.

3 . Identifying users of each system and the
groups within the system that the users be-
longed to. This aids in better managing each
user with a single user account and reduces the
"garbage" in the user management data.

4. Removing defunct accounts, and more impor-
tantly, removing accounts for employees who
were no longer with ISI Inc.

5. Communicating to each user the specific man-
ager(s) he/she should report to when accessing
restricted data in each system.

6. Generating reports on users to assist managers
in identifying and authorizing the users of the
system that the manager was responsible for.

3. Designing a Database for Integrated User
Management

The organization had four systems, each maintaining
their own user accounts: a Windows NT 4.0 domain,
and three mainframe systems: Macpac, Vantive, and
Galileo. In addition, there was a database, unrelated to
the user accounts databases on any of the systems, that
stored employee information, such as employee IDs,
names, and so forth. The schema we started with is de-
picted in Figure 1. The problem was that we had to an-
swer the question: who has user accounts on which

system, and what groups are they members of? None of
the systems could provide us with that information, and
of the four, only Windows NT stored anything that
could be used to relate UserIDs to employee names.

We started by defining the optimal schema; essentially
stating what we wanted to know. Then the task was to
fit the data we had into the schema that we wanted to
produce the result we wanted: a list of employee names
that listed their usernames and access to all systems.

The optimal schema is shown in Figure 2. The problem,
however, was how to migrate the data from the original
schema to the optimal one. The additional data in the
Windows NT account database presented us with an
avenue. We therefore used NT to create the link be-
tween the employee table and the UserIDs table.

Employee

EID

LastName

FirstName

Dept

Groups

GroupKey

Group

Source

Groups2UserIDs

UserIDKey
GroupKey

UserIDs

UserIDKey
EID
UserID

Figure 2 Optimal Schema

The first step was to remove all duplicates from the NT
table, and then join it onto the Employee table to map
the NT usernames to employee IDs. This was done us-
ing a right join of Employee onto NT. The right join
ensured that all NT usernames, even those that did not
match an employee ended up in the table. The problem
with this approach is obvious: Employee first and last
names are very often not unique. To deal with that
problem we put the data into a temporary table, called
NT_Users, which we could analyze for duplicates later.

To match up usernames to employee IDs, a method for
relating usernames to employee IDs is needed. With the
Windows NT accounts, we can assume that if the first
and last name of the NT user matches a first and last
name in the Employee table, we can relate the NT user-
name to the matching employee ID. However, the re-
mainder of the systems do not have any name informa-
tion, other than the UserID itself. We therefore need to
make the following assumption:

Assumption 1: If a username in any of the other sys-
tems matches a username in the Windows NT database,
they refer to the same user.

Assumption 1 sounds very logical. But, it is quite a leap
of faith. However, in the situation where the systems
have grown uncontrollably without a central authority,
such as the one presented here, it is the best we can do.
Since the employee database contained a manager for
each employee, a business decision was made to create
a list of user accounts for each manager and make the
manager sign off on the list and report any anomalies,
such as employees that no longer work for the organi-
zation.

Under assumption 1 we can now go ahead and match
user accounts in the various systems. We do this by
using a left outer join of the appropriate table with the
temporary table created to hold the NT Users. The join
condition is the UserID. This ensures that all those in-
stances of users that do not match a UserID in the NT
Users table get included. For those that do match the
IDs in the NT Users table we also add the EID. Doing
that for all the other systems results in a set of new ta-
bles that have the appropriate UserIDs for each user, as
well as an EID where available.

Certain UserIDs did not match a known entry in the
Employee table, and consequently no EID could be
automatically assigned to those entries. A separate table
called MISMATCH was created to highlight these en-
tries. The MISMATCH table contained only three at-
tributes: the UserID, the EID (which started out blank),

and the source of the entry (the system it came from,
such as NT, Macpac and so on).

The entries that end up in the MISMATCH table essen-
tially fall into three categories:

1. Contractors who are not regular employees of
the corporation and therefore do not have an
EID, or even an entry in the Employee table

2. Names where the entry in the NT Users table
do not match that in the Employee table, such
as Jim versus James

3. Employees who changed their names for some
reason, such as a marriage

Of these, numbers 2 and 3 are relatively easy to deal
with by inspecting the entries and comparing them to
entries with the same first or last name in the Employee
table. This requires two queries, one that joins the
MISMATCH table onto the employee table based on
first name only, and one that joins the MISMATCH
table onto the employee table based on last name only.
Historical versions of employee tables help greatly in
identifying entries falling into category 3. In the end,
those entries that could not be resolved in this manner
were passed to a manager to authorize. This was done
for those entries where uncertainty remained as to the
true owner of the UserID

Contractors presented a special challenge. These entries
do not exist in the Employee table, for several reasons.
Therefore, it becomes a challenge to locate the person
and that person’s manager to authorize the account. In
section 5 some strategies for using Windows 2000’s
Active Directory for better tracking these users are pre-
sented. However, in most cases, it holds that it is im-
perative to track contractors in some form of database.
This could be either the same or a similar format data-
base as what is used to track employees. If contractors
do not have an EID, one should be assigned to them
that then links to the employee table such that a man-
ager can be tracked for that contractor.

Once entries in the mismatch table have been assigned
IDs, those entries can be re-introduced into the tables
holding the users from the particular system.

After verifying that all UserIDs in the various user ta-
bles have EIDs, we can export them to the UserIDs
table, and turn to dealing with the groups.

To build the Groups table is not terribly difficult, given
that the original User tables have a group for each per-
son. The problem is that the tables are not in any kind
of normal form. Hence, if an employee is a member of
several groups, that employee had several entries in the
user table. A simple SELECT DISTINCT from each
users table solved the problem and populated the
Groups table with all the groups. As part of each SE-
LECT query from the users table the source system for
each group was populated as well, using a pre-
determined string.

At this point, three of the four tables in the final model
are finished. The only one remaining is the intersection
entity Groups2UserIDs, which holds the primary keys
from the UserIDs and Groups tables and maps UserIDs
to the groups they belong to. Creating that table, again,
is not difficult. A single query can be constructed for
each source (system) that joins the user IDs in the
UserIDs table to the original IDs in the source table,
extracts the group information, and inserts this into the
Groups2UserIDs table.

4. Tracking Better Information

One of the major problems faced when attempting to
validate users is that of incomplete information. Most
systems do not allow you to track any information
about user accounts, other than the account itself and
any groups that the account is a member of. However,
as we saw in the discussion above, this leads to prob-
lems when attempting to identify the users. Without a
reliable way to tie a user account to a person, adminis-
trators cannot be sure whom the accounts belong to and
who is responsible for the security and proper usage of
that account. A very basic security requirement is that
the system is capable of holding users accountable for
their actions on the system. However, holding user ac-
counts accountable is not useful. For accountability to
be meaningful, we must be able to map user accounts to
a physical person, which can be held accountable for
the actions taken with that account. In addition, if a
person no longer needs the account, we would need the
person’s manager to decide whether to disable the ac-
count. This information, as well, must be tracked by a
system tracking user accounts. As we saw above, only
Windows NT had some ability to track that informa-
tion, in that it can track a person’s name. However,
even Windows NT fails in its ability to reliably connect
that to an entry in an employee database. None of the
other systems had even that basic functionality.

In February of 2000, Microsoft released the long
awaited upgrade to Windows NT 4.0. Originally named
Windows NT 5.0, the market name for the product at
release is Windows 2000. Windows 2000 is quite pos-
sibly one of the most complex products ever designed
by man, in any category. One of the features that Mi-

crosoft added to Windows 2000 is the ability to track
more information about users. Windows 2000 is built
around a directory services module known as Active
Directory. The Active Directory is essentially a data-
base of objects that exist in an organizational comput-
ing environment. It can track not only user accounts but
also computer accounts, groups of users and computers,
organizational groups (known as Organizational Units)
and many other objects. Microsoft’s objective was to
supplant the organizational employee database with
Active Directory. Whether they have succeeded is a
matter of significant debate. What is certain, however,
is that the Active Directory can track much more in-
formation about each user than the SAM database in
Windows NT 4.0 could.

Figure 3 User Properties Dialog

Figure 3 shows the user properties dialog in the Active
Directory. It is possible to track not only the user’s
name and a description, but also telephone number,
office number and e-mail address. Furthermore, by

clicking the Organization tab, one is presented with the
screen shown in figure 4.

Active Directory permits tracking of organizational
attributes, such as the person’s title, the department they
are with, and the manager. These are all items that were
stated as missing from the systems involved in the pro-
ject described above, and are a significant advance. It is
also possible to interface with the Active Directory
through a set of APIs that can be used directly by a pro-
gramming language, or through a data provider, such as
the ActiveX Data Objects (ADO). This affords the
ability to create an application that simultaneously que-
ries a SQL database that serves as a repository for user
accounts from a different system and the Active Direc-
tory, and presents this information in a uniform manner.

This means that the Active Directory can be conceived
of as a node in a federated database system, and treated
as a source by an application that provides services
such as a repository of users. The reporting capabilities

are extended significantly over what is possible with the
information present in the systems described above.
However, this information needs to be tracked in the
Active Directory to be useful. To enable an organiza-
tion to track that information, a procedure such as that
outlined above is necessary to identify the existing user
accounts. Few organizations have the luxury of starting
over with their user accounts databases today.

There are several very important pieces of information
missing in the Active Directory and assumptions that
were made in its design. The first one is that an em-
ployee only reports to one manager. This is not neces-
sarily true. Many organizations employ a matrix struc-
ture where people have multiple managers. In addition,
certain employees are “lent” to other managers on a
project-by-project basis. These employees may have a
permanent manager and a temporary manager, each one
of which might need to be notified of events regarding
that employee. Furthermore, category three of the users
found above to have no Employee ID were employees
that had changed their names, e.g. as a result of a mar-
riage. Therefore, it may be desirable to track employ-
ees’ former names to be able to match user accounts on
different systems to those on Windows 2000.

All of these values can be added to the tracking capa-
bilities in Active Directory by means of extending the
schema of the Active Directory. The Active Directory
schema is designed such that it can be extended with
new types of objects and attributes. This can be done
through the capabilities of Active Directory itself.
However, schema changes are irreversible operations in
Active Directory. While new classes and attributes can
be disabled, the changes cannot be undone. Therefore,
it may be preferable to create a middleware application
that joins the Active Directory to a database that con-
tains the additional attributes. Further research is
needed into this technique to determine what is the best
course of action. Depending on the operations needed,
schema extensions may be the only viable solutions.

5. Conclusion and Further Work

In this paper we have described a typical problem that
organizations face - that of managing user accounts
belonging to the many different IT systems in the orga-
nization in an integrated fashion. Organizations are
increasingly forced to deal with this situation due to the
emergence of Intranets / Extranets, the need to share
data/applications both within and across organizations,
and the need to migrate to new systems combined with
the desire to track more information about users on

Figure 4 Organizational Information Tracking

those new systems. Ad hoc creation and management of
user accounts to support Intra/Extranets results in the
wasteful duplication of user information. More impor-
tantly, managers lack the ability to identify and associ-
ate employees with user accounts and match user ac-
counts with system/application privileges granted to
each. This compromises the security of their corporate
network of systems and must be resolved. In this paper
we have examined one such situation and proposed a
practical implementation to address the resulting prob-
lems. The proposed solution offers several benefits be-
sides being simple and practical. It is not specific to
managing users on a particular system and can be used
in an integrated environment with several types of sys-
tems as illustrated here. Further, it is scalable to include
applications and networks that users may be authorized
to access and hence requires user management. Finally,
it can be implemented in any relational database system
or incorporated into the Active Directory of MS-
Windows 2000 to exploit the user accounts and related
user information that is already tracked by that data-
base.

In extending this work, there are two specific research
directions that need to be investigated. The first is to
examine the capabilities of the Active Directory with
the view to extend our solution to include the capabili-
ties in this user management tool. Active Directory per-
forms extensive user management services but is re-
stricted to the Windows 2000 network. Organizations
typically maintain several networks of systems and
managing all of these using Active Directory is impos-
sible. The current solution described here has a very
limited set of user management capabilities when com-
pared with those offered by the Active Directory. The
objective of this extended solution is to provide organi-
zations with the ability to comprehensively (all user
management services) manage user accounts across all
networks in an integrated fashion. An application that
integrates the Active Directory with the user account
databases of several other systems is therefore needed.
This application could store additional data in a data-
base of the administrator’s choice, and have the ability
to act as the interface to all of the managed systems.
Such an application is under investigation by the
authors of this paper.

Each individual operating system (network or other-
wise) and application supports the management of users
on that system/application. One approach to integrating
several such systems/applications/networks for inte-
grated user management is to model user information in
each system as a simple relational schema. The result-
ing set of schemas can be integrated to create a feder-

ated/global schema by applying well-known techniques
for schema integration. This type of schema is a re-
quirement for the management system described above.
Several questions need to be answered before realizing
this solution. Would the federated schema accurately
track user account information? How scalable or ex-
tendible is this schema and how would changes to indi-
vidual schemas be reflected and managed? What is the
overhead cost/time involved in creating and managing
such a federated schema? Attempting to answer such
questions and defining a global solution for integrated
user management is the second research direction that is
currently under investigation.

References

Department of Defense, "Department of Defense
Trusted Computer System Evaluation Criteria," Report
DOD 5200.28-STD, 1985.

