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Abstract

Typical just-in-time compilers for the Java™ platform are often too large and too slow to be used in small computing
devices such as cell phones or PDAs. In contrast, the JIT described here was targeted for such devices, and was built
on Sun Microsystem’s KVM product. Key to making the JIT effective were: a pre-compilation transformation of the
bytecodes to make compilation easier; compilation of only a subset of the bytecodes to make the production of the
system simpler; quick and simple management of the JIT code buffer; and an effective heap comparison technique
that greatly aided debugging of generated code. The JIT speeded up execution by a factor of between 5.7 and 10.7.
Its implementation required only 60KB of ARM machine code.

1. Introduction

Slow and space-constrained computing devices have
tended not to include virtual computing technology. The
advent of Java 2 Platform, Micro Edition Connected
Limited Device Configuration (CLDC) [1] has changed
this because its small size, and natural portability, has
attracted a number of cell phone manufactures to
standardize on the Java language as the programming
language for third party software.

The Java programs being written for these small
systems are often not compute intensive, and so can be
satisfactorily executed using a simple interpreter loop
written in C or assembly language. Nonetheless, a
growing number of these programs are games that
require better execution performance than can be
provided by interpretation alone. Dynamically
compiling bytecodes into native machine code
addresses this problem. However, different techniques
to those used in larger system are needed to make this
feasible.

2. Background

2.1 Traditional JIT compilation strategies

JIT compilation has been used in many programming
environments [1][2]. This technique has mostly been

used in desktop or server class systems, albeit in
different ways. Servers typically benefit from high
quality code generation, whereas desktop systems tend
to be optimized for reduced program startup latency and
better interactive response. To avoid the overhead of
compiling and optimizing all an application’s classes at
runtime, a number of incremental compilation strategies
have evolved. Many use an interpreter and a compiler.
Others use a number of compilers with different levels
of optimization. The general strategy of only compiling
the "hot" parts of an application will often result in only
a small percentage of an application being compiled,
thus saving considerable compilation time.

2.2 Typical J2ME programs

In sharp contrast to larger Java systems the number of
classes included in the average J2ME program is far
lower, typically less than 50. Compute intensive games
are also typically small, which lessens the importance of
heuristics that select only the performance critical parts
of an application for compilation.

3. Design

The system described here used as its foundation the
KVM, a small footprint JVM designed specifically for
memory constrained devices.



3.1 Interaction with compiled code

Because the JIT was implemented on top of an existing
virtual machine, it was easy to build a compiler that
produced native code for only some bytecodes, with the
interpreter handling the rest. The compiler was thus
straightforwardly targeted to the bytecode subset that
produced the greatest increase in performance. There
were four reasons why a JIT for the complete bytecode
set was not implemented:

1, Thread context switching would have had to be
performed whilst executing generated native code.
This would have added complexity to code
generation, runtime support, and the base KVM
code. By only performing context switching in the
interpreter no changes were made to the way the
thread scheduling was done in KVM.

2, The generated machine code would have needed
to be more rigorous in the way it dealt with error
conditions and other exceptional conditions. As it
is, the machine code only needs to check for error
conditions. When they occur the error handling
bytecodes can be then executed by the interpreter,
which then can deal with the details of how the
error should be processed.

3, A complete JIT would have required more
complicated interactions between the generated
machine code and the virtual machine as a whole.
For example, the generated machine code could
cause the compiler, class loader, garbage collector,
or native code to run. In retrospect some of these
restrictions were not strictly necessary, but the
system probably has fewer undiscovered bugs, and
it does not seem to have limited the performance of
the type of compute-intensive software that is the
target of the design.

4, A debugging technique (discussed below) was
used which could not have been employed so easily
with a complete JIT.

Therefore the system was designed to allow execution
to pass from the compiled code to the interpreter at any
time, and also for the interpreter to be able return to
generated code in a timely fashion. Additionally, to
keep the interpreter from getting trapped in a long loop
of bytecodes it was necessary to be able to return to
compiled code in the middle of a method as well as at
the start.

The basic interpreter loop is as follows:

Start:
Try to enter compiled code.
Interpret the next bytecode.
goto Start.

The attempt to enter compiled code has several parts.
First, if the current method has not been compiled then
checks are performed to determine if it can be.
Compilation may not be possible for one of the
following reasons:

1, The method is a native method. (A function
written in C or assembler).

2, The method has more than a certain number of
parameters or local variables, is unusually large, or
has some other condition that basically only occurs
in test code and is too troublesome to deal with.

3, There is no available memory for more compiled
code.

If a method can be compiled then a jump table is also
produced that contains the machine code addresses of a
number of entry points into the compiled code, and their
corresponding bytecodes addresses. When attempting to
re-enter compiled code a search is then made of this
table to see if the address of the current bytecode is
present. If it is then the corresponding machine code
address is found and the compiled code is entered at this
place. The jump table contains the addresses of all
backward branch targets so it is therefore not possible
to be stuck in a loop in the interpreter.

If compiled code is entered, then some amount of
computation will result. The return to the interpreter is
simply done by having the compiled code update the
interpreter's state (instruction pointer, local variables,
etc.), and then exiting back to the interpreter loop. The
interpreter will then start executing the method where
the compiled code left off.

There are several conditions that will cause control to
be returned to the interpreter. Some of these conditions
exist because the JIT lets the interpreter deal with
complex situations (such as exceptions,
synchronization, or garbage collection):



1, A native function was called.

2, The thread was blocked because of a monitor
enter operation.

3, An object could not be created without running
the garbage collector.

4, A method was called but a monitor or an
activation record could not be created without
running the garbage collector.

5, An operation was attempted that required a class
to be initialized.

6, The start of an exception handler was reached.

7, An exception or error occurred. The interpreter
always processes these.

8, The part of a method was reached for which no
corresponding machine code could be generated.

9, A function was called for which there was no
compiled code.

10, A method return was executed but there was no
record of the where in compiled code to return to.

11, A method return was executed but there was no
compiled code to return to because the code buffer
had been flushed.

3.2 Register allocation

It is important that compiled code can be entered at
places other than the start of a method. Without this a
long running method might be prevented from entering
compiled code for a long time. To support this, a table
of entry points is generated that contains, at least, an
entry for the start of the method and all the backward
branch targets.

There is, however, complexity associated with entering
compiled code at an arbitrary branch target, because the
correct machine state must be established before this
can be done. This is complex because a Java interpreter
is, most naturally, a stack based computing machine,
whereas the generated machine code for most computer
hardware will, most profitably, use a register-oriented
model.

This problem is neatly avoided in this system by pre-
processing the bytecodes into a form where there is
never anything on the interpreter’s evaluation stack at a
place where control might be transferred between the
interpreter and compiled code. This essentially means
that there is no evaluation stack, and to compensate,
additional, local variables are used instead to hold
intermediate expression results. This creates a simple
one-to-one correspondence between the registers used
in compiled code for expression evaluation and the
local variables on the Java stack.

In the ARM implementation of the JIT there are 12
registers used by the compiler to represent local
variables. Three of these are regarded as general
temporary registers. The other nine are used to shadow
the first nine local variables of the activation record for
the method being executed. The three general registers
are used in the cases where a local variable is required
that is not one of the first nine. There are three because
of the three-address nature of the ARM instruction set.

This simple form of register allocation worked
surprisingly well in the tests made upon the system
because they rarely used more than nine local variables.
Nevertheless, this register allocation is not, in itself, a
complete solution.

3.3 Pre-compilation by bytecode
transformation

A key part of the JIT design was to split the compilation
process into two passes. The first pass transforms the
standard, stack-based bytecodes into a simple 3-address
intermediate representation in which all temporary
expression results are placed into new local variables
instead of entries on an evaluation stack. The second
pass converts this three-address form into native
machine code.

Because of the relatively small number of methods used
by programs in small devices, the system simply
converts all methods in all classes as they are loaded.
Although some care has been taken to make this process
fairly fast, it has not been optimized, as its efficiency
does not appear to be an important factor. In testing,
there have typically only been between 200-400
methods (including the methods of system classes).
What is an important factor is the amount of temporary
memory needed to do the conversion. Consequently, the
system only holds one basic block’s worth of IR at a
time, discarding it after the block is converted.



The basic process being performed in the first pass will
be familiar to the author of the simplest compiler. The
instructions that use values from the stack are linked to
the instructions defining these values; local variables
are then assigned the temporary values that connect the
instructions  together. A number of standard
optimizations are then employed.

The resulting 3-address intermediate representation is
then converted back into standard bytecodes. Figure 1
shows the bytecode sequence for the expression a
= I — (b * c) before transformation. Figure 2 shows the
corresponding bytecode sequence after transformation.
It can be seen that a new local variable (number 4) has
been added to hold the intermediate result. This type of
transformation typically causes the code length to
increase by about 30%.

iconst_1
iload 1
iload 2
imul
i sub
istore_3

Figure 1. The bytecodes for the expressiona =1 —(b * ¢).

iload 1
iload 2
i mul

istore_4
iconst_1
iload 4
i sub

istore_3

Figure 2. The bytecodes after transformation

It is important to note here is that transformation
essentially eliminates the evaluation stack, even though
the output of transformation is bytecodes. The
instruction granularity of the IR is preserved in the
bytecodes, so that the evaluation stack is only used
within the bytecode implementation of a single IR
instruction. Switching between the interpreter and
native code is only done at the boundary of an IR
instruction, so the use of the stack is never a factor
because it is always empty at these points.

The transformation process is currently not very
sophisticated, but it is clearly feasible to use simple
static analysis to order the local variables so that the

most used ones would be assigned to machine registers
by the compiler.

An attractive benefit of this transformation process is
that it is possible to perform it ahead of time. However,
one problem that arises when it is done ahead of time is
that the transformer needs to know how many local
variables can be mapped into registers. Since not all
target architectures are the same, the transformed result
cannot run optimally on all of them. A solution would
be to do the transformation on the target device as a part
of application installation, perhaps done as a
background activity (only while the devices is having its
battery charged for example), or as a one-time operation
by the virtual machine with the results being saved for
future execution.

3.4 Code Generation

A basic hypothesis of the design of the JIT was that
code generation can be done very quickly. This means
that a relatively simple strategy can be used for
managing the memory buffer for the generated code,
since, if code is discarded non-optimally, it can easily
be regenerated. Therefore a single fixed-sized buffer is
used for the generated machine code. When it becomes
full, the entire contents are discarded. This strategy
makes simple a number of standard optimizations. For
example, in common with the HotSpot virtual
machine[4], monomorphic method invocations are
generated for calls to methods where there is only one
known receiver type at code generation time. Simply
discarding the entire code buffer when the relevant
method is subsequently subclassed makes this simple
strategy completely safe.

As mentioned above, the current implementation does
not retain the IR created by the bytecode transformer.
The code generator works by parsing the bytecodes
back into three-address form, then emitting the
corresponding machine code. On a StrongARM PDA
running at 206MHz the process of compiling 250
methods takes less than 100 ms. An experiment using a
version of the JIT that generates Pentium instructions
reveals the compilation cost to be 75 Pentium cycles for
each byte of the input bytecode stream. This experiment
has not yet been done on the ARM system; one would
expect it to be faster because the Pentium code
generator contains a more sophisticated register
allocation algorithm than the ARM implementation.
Nevertheless, even at 75 cycles per byte it is more than
an order of magnitude faster then most other JIT



systems. Obviously this comparison is not really fair
because it does not take into account the time taken by
the bytecode transformer. However, by accepting a
small pause when starting up a program (typically only
10% extra startup time) the code generation time is
made virtually insignificant, and by saving the
transformed bytecodes for future invocations the
transformation cost would only paid once. Seventy-five
cycles is roughly the time needed to interpret two
bytecodes on KVM, so the cost of code generation is
quickly amortized during execution. When the size of
the code buffer is reduced to about 60% of the code
working set of a program the compiler has to run very
frequently to regenerate code, because the buffer is
constantly being filled and then flushed. Nevertheless,
even in this case the execution time is typically two to
three times faster than running the bytecodes using the
interpreter alone.

3.5 The format of activation records

The KVM implementation is a very literal encoding of
the Java virtual machine specification. Five significant
virtual machine registers are maintained, and the
processes of method invocation and method return are
quite lengthy. It was found that replicating this very
literal behavior in compiled code slowed down method
invocation significantly, so a different calling
convention is used in compiled code. This calling
convention was designed so that return to the interpreter
can occur at almost any place in a method. This led to
the implementation of a stack frame converter that can
change the activation records from the form created by
compiled code back to the form used by the interpreter.
It also necessitated that local variables held in machine
registers be saved and loaded into the activation record
by the caller instead of by the callee (which would be
more efficient because registers unused by the callee do
not require saving and restoring). This issue seems not
to have hurt performance too badly, probably because
all the registers can be saved using a single ARM
instruction. The stack frame converter is not particularly
complex, but various performance tradeoffs were
encountered during its implementation. At one point the
normal calling procedure was made faster at the cost of
more work being done by the stack frame converter.
This considerably lengthened the time it took to switch
back to the interpreter. This in turn caused the
frequency of this operation to be more of a factor in
overall performance. It was no longer possible to
'quickly' switch back to the interpreter to execute an
unimplemented bytecode. In early versions of the

implementation, execution would switch hundreds of
thousands times per second. It thus became necessary to
compile many more types of bytecodes to get the
performance up. In the end the benchmark programs
only switch about every 10 milliseconds.

3.6 Threading issues

Since the KVM is relatively simple and portable, it has
its own internal “green” thread implementation. This
made possible a considerably simpler JIT design
because there are no native thread preemption or SMP
issues to be concerned with.

However, thread switching is an issue. In the current
JIT implementation, if a compiled thread goes into an
infinite loop the virtual machine will hang forever.
Although this does not appear to contradict the Java
language specification it is not an acceptable situation.
A solution to this would be to dedicate a machine
register to be used as a counter decremented at each
backward branch. When the counter reaches zero
execution would pass to the interpreter so that a context
switch could be performed.

3.7 Native methods

Native methods are primitive functions that are usually
written in C or assembler. In KVM they naturally fall
into two categories, those that take a "long" period of
time because they are (typically) waiting for I/O to
complete, and those that do not. The former are
normally coded in such a way as to cause KVM to
context switch, if possible, to another thread of
execution. For this reason, compiled code cannot,
generally, call native methods directly. However, it was
found to be very important for compiled code to be able
to call certain non-blocking functions for performance
reasons. The compiler was modified to generate direct
calls to the code for Syst em arraycopy()and to
the graphic drawing functions (although the latter were
not called when running the benchmark programs).



3.8 Debugging

The implementation was quite easy to debug due to a
new dual execution feature, which enabled
straightforward comparison of the results of
interpretation and compiled execution. Before the
execution of each basic block of machine code the heap
was saved. A single basic block’s worth of machine
code was then executed (this was achieved by the code
generator inserting special code to return to the
interpreter at the end of each basic block). The heap
was then saved a second time, and then the original
heap was restored. The same basic block’s worth of
machine code was then executed on the interpreter
using the bytecodes that were used to generate the
machine code. Comparing the heaps after two such
executions then verified (or not) that the interpreter and
the compiled code had done the same work. When a
word in object memory was found to differ, the address
was noted, and then the garbage collector was run in a
special mode that just looked for the given address. If
the structure containing it was found the structure was
dumped out. Having special annotations for stack
structures made identifying corrupt local variables very
easy. The vast majority of code generation bugs showed
themselves this way.

Although the target platform was the Compaq Pocket
PC, most of the debugging was done using the GNU
gdb debugger on a workstation. The debugger can be
built (with considerable difficulty!) so that it executes
code using a machine code simulator. The ARM
simulator included with gdb proved very reliable and a
great deal faster then the tools available for the Pocket
PC, which exhibited a painful delay of 15 to 20 seconds
when stepping from one assembly instruction to
another.

The combination of using the gdb ARM emulator and
running the compiled code one basic block at a time
often proved too slow to be practical. In these cases
another strategy was employed. Internally, functions
with names like Asm_MoveRR() were used to
encapsulate the generation of code (this example would
generate a register-to-register copy). It was very easy to
have these routines generate equivalent machine code
for a workstation so the program could be tested
without the ARM simulator. Debugging the resulting
workstation machine code was not easy, but the much
increased speed of execution made it worthwhile.

4, Performance evaluation

The performance of the JIT was measured and
compared to the performance of the KVM interpreter.
All the optional performance features of the KVM were
enabled in order to make the comparison as meaningful
as possible. The JIT implementation was based on
version 1.0.2 of the KVM. A number of enhancements
were subsequently made to this code to incorporate all
the significant interpreter performance improvements
present in KVM version 1.0.4.

In addition to determining performance improvements
due to compilation, measurements were made to
investigate the effects of code buffer size on
performance. These effects are clearly heavily
dependent on the size of the application, but the
experiment of particular interest was to see how the
system performed when the buffer size was reduced to
below that needed to contain the whole application.

4.1 Benchmark tests

In order to evaluate the effectiveness of the design three
real-world Java programs were used to test the system.

1, A graphical program specifically written to
demonstrate the effect of the JIT. This program
renders a number of rotating cubes. (In normal
operation, with graphics enabled, it was possible to
navigate through this virtual world.)

2, The DeltaBlue constraint solver.
3, An MPEG-1 video decoder.

All three of these programs were run in a special mode
in which graphical output was disabled in order that
only VM execution time would be measured.

4.2 Results

The three benchmark programs were run on the
interpreter-only version of the system and on the JIT-
enabled version using a number of different code buffer
sizes. Table 1 shows the execution times for the
benchmarks in seconds (not every test was performed
with the smallest buffer sizes). The same information is
presented in figures 3, 4 and 5 in graphical form.



Table 1. Benchmark execution times in seconds
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Figure 3. Cubes Execution time.

Cubes DeltaBlue | MPEG
Interpreter | 25.8 6.04 47.5
JIT 4.3 1.05 4.4
w/128KB
JIT w/64KB | 4.3 1.09 4.8
JIT w/48KB | 4.3 1.03 5.8
JIT w/32KB | 4.3 3.3 12.5
JIT w/24KB | 58 5.3 39
JIT w/20KB | 89 83 49
JIT w/18KB | 510 89 90
JIT w/16KB | 567 163 132
JIT w/14KB 188 168
JIT w/12KB 173 206
JIT w/10KB 170 351
JIT w/8KB 318

The first observation is that with a large JIT buffer of
128KB the performance of the JIT-enabled version was
faster by a factor of between 5.7 and 10.7.

The second observation is that the performance of all
the benchmarks remained roughly the same until the
buffer size was reduced to 32KB, after which execution
times rose significantly due to the code generator
running periodically. Code generation has two cost
components. One is the basic execution time of the code
generator. The other is the cost of converting the stack
from the format used by compiled code to the format
used by the interpreter, which is done when the code
generator is invoked when compiled code is running.

Note how performance degrades differently with the
three benchmark programs. The performance of the
cubes program drops off sharply below 20KB, the
DeltaBlue program demonstrates two distinct plateaus,
and the MPEG program shows a more linear decline.
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Figure 5. MPEG Execution time.




5. Conclusion

This paper describes a small JIT specifically designed
to run Java games on a handheld device. The
implementation size is only 60KB of ARM machine
code. Although the quality of code produced by the JIT
compiler is relatively low, the system nevertheless runs
programs five to ten times faster than the KVM
interpreter. The noteworthy features of the design
include: transforming the input bytecodes into a form
that does not use the evaluation stack for temporary
results, making it easy to switch between interpreted
and compiled forms of execution; switching to the
interpreter for the handling of complicated bytecodes,
such as those involving exception handling and
synchronization; and favoring fast compilation speed
over sophisticated code buffer management. The
ultimate result of these features has been a simple
overall design.
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