USENIX Association

Proceedings of the
2" Java™ Virtual Machine
Research and Technology Symposium
(JVM '02)

San Francisco, California, USA
August 1-2, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Experiences Porting the Jikes RVM to
Linux/TA32

Bowen Alpern
Julian Dolby Stephen Fink

Maria Butrico

Anthony Cocchi
David Grove Ton Ngo

IBM T. J. Watson Research Center
Yorktown Heights, NY, 10598

Abstract

This paper describes our experiences in
porting the Jikes Research Virtual Machine
from its first platform, AIX/PowerPC, to its
second, Linux/TA32. We discuss the main is-
sues in realizing both an initial functional port,
and then tuning efforts to achieve competitive
performance. The paper presents software en-
gineering issues in building a portable runtime
system and compilers, as well as specific opti-
mizations to improve performance on IA32.

1 Introduction

In early 2001, developers of the Jikes™ Re-
search Virtual Machine (RVM) committed to
releasing the software open-source by the end
of 2001. At the time, the virtual machine ran
on PowerPC™ processors running ATXTM !
In order to increase the utility of the open-
source release, we decided to port the software
to run on Linux© on the Intel 32-bit architec-
ture (IA32), our second platform.

The porting activities focused on two mile-
stones:

Functional port: establish a working ver-
sion of the virtual machine on the second
architecture as soon as possible, and

Performance port: achieve acceptable per-
formance by the end of 2001.

This paper describes our experiences in
working towards and reaching these mile-
stones. The next section provides background

IThere was also a partial port available for
Linux/PowerPC, provided by collaborators from the
University of Massachusetts.

on the Jikes RVM and an overview of the port-
ing effort. Section 3 describes issues involved
in getting the virtual machine up and running
on a second platform. Section 4 presents the
changes and innovations required to achieve
good performance on that platform. Finally,
section 5 concludes.

2 Overview

The Jikes RVM began life as the Jalaperio
virtual machine in late 1997. The project had
two design goals: 1) support high-performance
Java™ servers running on PowerPC multipro-
cessors under the AIX operating system, and
2) provide a flexible research platform “where
novel virtual machine ideas can be explored,
tested, and evaluated”. Although it was writ-
ten in the Java programming language, in the
initial implementation portability was “not a
design goal: where an obvious performance ad-
vantage can be achieved by exploiting the pe-
culiarities of Jalapeno’s target architecture ...
we feel obliged to take it” [2].

Jikes RVM does not interpret bytecodes;
rather it compiles each method to machine
code and executes the machine code natively.
In an adaptive Jikes RVM configuration, the
baseline compiler performs the initial compila-
tion of a method. Methods that are either fre-
quently executed or computationally intensive
are identified via a sampling mechanism and
recompiled by the optimizing compiler [4].

The baseline compiler directly mimics the
stack machine behavior of the JVM specifica-
tion. The baseline compiler translates byte-
codes to machine code quickly, but the re-
sultant machine code typically runs slowly.
The baseline compiler implementation de-

pends heavily on the target instruction set ar-
chitecture. Much of the work of a functional
port lies in constructing a new baseline code
generator, more or less from scratch.

The optimizing compiler expends more ef-
fort to produce high quality machine code for
selected methods. The optimizing compiler
implementation far exceeds the baseline com-
piler in size and complexity. However, most
of the optimizing compiler does not depend
on the instruction set architecture, reducing
porting effort for a second architecture.

The Jikes RVM does not directly map Java
threads of an application to operating system
threads (POSIX pthreads). Instead, the sys-
tem creates a virtual processor object for each
pthread in use (normally one for each physical
CPU). The Jikes RVM thread scheduler mul-
tiplexes the application’s Java threads and the
RVM’s daemon threads onto these virtual pro-
Cessors.

Although the Jikes RVM is written in the
Java programming language, it must perform
actions (e.g. access registers and manipulate
raw memory addresses) which cannot be ex-
pressed in the Java programming language [8].
The virtual machine provides a VM_Magic class
to circumvent these restrictions [3]. The
compilers do not translate the bytecodes of
VM_Magic methods. Rather, the compilers rec-
ognize calls to these methods and inline cus-
tom machine code in place of the call.

The original implementation exploits the
large PowerPC register set, with 32 general-
purpose registers and 32 floating-point regis-
ters.? Adjusting to the register-scarce IA32
architecture presented a major challenge for
this port. Differences in the instruction sets
led to different calling and stack conventions
for the two architectures. Writing in the Java
programming language (explicitly big endian)
shielded us from many, but not all endian
problems? (For instance, with pre-loaded con-
stants and when atomically updating bit and

2These registers are treated as dedicated, scratch,
volatile (caller-save), or non-volatile (callee-save). Pa-
rameters are passed in volatile registers. Intermediate
results can be accumulated in volatile or scratch reg-
isters. Non-volatile registers retain their value across
method calls.

3PowerPC is “big endian” — the high-order byte of
a word is at the lowest address within it — while IA32
is “little endian”.

byte maps). Still, despite our initial indif-
ference to the possibility of an eventual port,
large portions of the Jikes RVM more or less
worked on Linux/TA32 without modification.

As of February 1, 2002, the source code for
the Jikes RVM itself contains approximately
203,000 lines of Java code, 18,000 lines of
“meta” source files that are the inputs to sev-
eral code generation tools, 6,000 lines of C++
code to interface with the operating system
and to get the RVM started, and about 50
lines of assembly code to effectuate the ini-
tial transition from C++ to Java.* Most of
this source code is independent of the tar-
get platform. The Java source files contain
162,000 lines of platform-independent code,
22,000 lines of PowerPC-specific code, and
19,000 lines of TA32-specific code. Approxi-
mately 6,000 lines of the “meta” source files
are platform-independent, 3,600 are PowerPC-
specific, and 8,400 are TA32-specific. The opti-
mizing compiler comprises the largest subsys-
tem of Jikes RVM, with 100,000 lines of Java
source code; 78,100 are platform-independent,
14,200 lines are PowerPC-specific and 7,700
are IA32-specific. About 900 lines of the C++
operating system interface code are TA32-
specific; 1200 are PowerPC-specific (these
support both Linux and AIX). The assem-
bly code is completely architecture-dependent.
The FullAdaptiveSemispace configuration on
Linux/TA32 represents a typical RVM build:
it contains 821 Java classes comprising 225,000
lines of code (66,000 are machine generated).

3 Establishing functionality

A central aim of the functional port
was to achieve a clean decomposition of
the RVM into architecture-independent and
architecture-specific pieces. The RVM was de-
signed to be a family of virtual machines with
different variants incorporating different mem-
ory management and compilation schemes as
well as more minor peculiarities. It uses three
mechanisms to achieve this variety: static
final variables called controls, subdirectories
of the file system, and a minimal preproces-
sor that allows limited conditional exclusion

4In addition, the Jikes RVM source tree contains
several tools used in the build process (5,600 lines)
and the jdp debugger (33,300 lines).

of blocks of source text.> The port uses these
mechanisms to support variants that run on
Linux /TA32.

The remainder of this section discusses the
specific issues that needed to be addressed to
construct such variants.

3.1 TIA32 Assembler

An TA32 assembler must contain a large
body of complex and tedious code, full of odd
special cases and strange idioms, simply be-
cause it must reflect the nature of the TA32
instruction set. For the TA32 port, this yields
two obvious consequences: the two compilers
should share a single assembler backend,® and
this single backend should, in so far as is prac-
tical, be generated from specifications of the
ISA to simplify attaining complete and correct
coverage.

To accommodate the vastly different struc-
tures of the baseline and optimizing compil-
ers, the shared assembler consists of two parts.
The first consists of low-level code that gen-
erates binary code for specific IA32 instruc-
tions and operands; for example, it provides
a function to emit a 32-bit add of a reg-
ister and an immediate. It also has low-
level support for other code generation miscel-
lany, e.g. convenient support to generate for-
ward branches. This low-level interface natu-
rally suits the baseline compiler, which invokes
it directly. The second part of the assem-
bler processes the optimizing compiler’s MIR
(machine-dependent intermediate representa-
tion) instructions, and calls the appropriate
low-level assembler routine for each one. This
process involves examining the opcode and
each operand of an MIR instruction, and, from
them, determining which low-level assembler
primitive to call.

Both levels of the assembler would be te-
dious and error-prone to write by hand. For
the low-level functionality, we introduced a

5To keep down instances of this rather ugly fea-
ture, we try to limit it usage to three cases: to define
a control, to reference a class that would not other-
wise be loaded, or to define or reference a field that
would not otherwise be needed. In the 162,000 lines of
platform independent Java code, there are 38 prepro-
cessor blocks impacting 479 lines of source code that
are related to the choice between AIX/PowerPC or
Linux/IA32.

6The original PowerPC compilers each had their
own assemblers.

semi-automated approach. We first divided
the TA32 instructions into equivalence classes
based on instructions having similar legal sets
of operands and similar generated bit patterns;
for example, binary ALU operations such as
ADD, SUB, AND, and XOR all fit similar for-
mats. We then wrote a template for the low-
level functions to generate each such equiva-
lence class, and instantiated the template for
each instruction in the class. This saved ef-
fort, and facilitated debugging, since an error
in a template would occur in all its instruc-
tions and thus be more likely to show up in
tests.

The higher-level assembler for the optimiz-
ing compiler is, if anything, even more com-
plex; it consists of nested case statements de-
pending on the operator of each instruction,
and on properties of each of its operands. A
stand-alone program generates this code fully
automatically at build time, as follows. Text
files holding tables define the MIR instruction
formats. For each MIR operator, the program
examines the low-level assembler for functions
generating that opcode, and generates a table
of the operand types those functions support.
It then generates a tree of queries of the MIR
instruction operands to determine which low-
level function to call. The generator also in-
serts error-checking code to catch any instruc-
tion that cannot be assembled.

3.2 Baseline Compiler

A baseline compiler actually consists of two
main components of roughly equal size: a
target-independent portion that is responsible
for generating GC maps and other descriptive
information and a target-specific code genera-
tor. The heart of baseline compiler code gener-
ation executes a switch statement that emits
code for each Java bytecode. Most of these
209 cases present simple exercises that are
“solved” by emitting a dozen or fewer straight
line assembler instructions. For those cases
that are more complicated — for instance, the
seven bytecodes that sometimes entail class
loading — the internal structure of the case
was imported from the PowerP C baseline com-
piler. We were careful to verify that each case
(except for some of the “wide” variants) were
exercised against a library of bytecode tests
developed in conjunction with that original
baseline compiler.

3.3 Optimizing Compiler

Because writing an optimizing compiler rep-
resents a significant investment, from the be-
ginning we designed the optimizing compiler
for portability. A key aspect of this design di-
vides the intermediate representation (IR) into
three levels of operators:

1. High Level IR (HIR): The HIR oper-
ator set is architecture independent and
resembles the bytecode instruction set, al-
though the IR uses a register transfer lan-
guage in place of the bytecode stack ab-
straction.

2. Low Level IR (LIR): The LIR operator
set is architecture independent and resem-
bles the instruction set of a typical RISC
machine. The main difference between
HIR and LIR is that complex HIR op-
erators such as new or call virtual are
expanded into the appropriate sequence
of primitive operations.

3. Machine Level IR (MIR): The MIR
operator set is architecture-specific; with
the exception of a few pseudo-operators
that are expanded as part of final assem-
bly, the MIR provides a one-to-one map-
ping between operators and the target
ISA.

Translation from bytecodes to HIR, HIR opti-
mizations, translation from HIR to LIR, and
LIR optimizations are all architecture inde-
pendent.

At system build-time, the builder gener-
ates classes representing the IR operators and
helper functions from template files. Thus, the
task of defining MIR operators corresponding
to TA32 instructions consisted of defining new
instruction formats and operator characteris-
tics in two machine-dependent template files.
The MIR operator definitions for TA32 consist
of about 1300 lines in two files, defining 153
operators falling into 29 formats.

After defining the MIR, the main tasks
in porting the optimizing compiler to a
new ISA involve implementing the three
major architecture-specific compiler phases:
translation from LIR to MIR (aka instruc-
tion selection), register allocation, and fi-
nal assembly. Fach of these stages actually

contains both architecture-independent and
architecture-specific portions; we adopted a
common idiom to define abstract classes that
implement the shared functionality in terms
of abstract methods defined by architecture-
specific subclasses.

The instruction selection phase trans-
lates the machine-independent LIR into
architecture-specific MIR. This translation
phase partitions the dependence graph of
each basic block into a forest of trees, and
feeds the forest to a Bottom-Up Rewrite Sys-
tem (BURS)-based tree-pattern matching sys-
tem [7]. Thus, the major porting task is to
define the tree patterns and associated actions
that serve as the input grammar to the BURS
engine.

The register allocator maps the infinite set
of symbolic registers onto a finite set of phys-
ical registers and spill locations. In addi-
tion, this phase generates prologues, epilogues,
and calling sequences that respect the Jikes
RVM and/or native OS calling conventions.
The optimizing compiler relies on a variant
of linear-scan [9] register allocation. The core
of the register allocator should be machine-
independent, but the implementation han-
dles a fair number of low-level architecture-
specific issues. Unfortunately, the origi-
nal PowerPC implementation deeply inter-
twined the machine-dependent and machine-
independent register allocator code. Rather
than tackle a major refactoring problem with
the old implementation, we decided to re-
implement the register allocator from scratch
for TA32. The new implementation cleanly
separates machine-dependent and machine-
independent code and includes expanded func-
tionality and heuristics to suit both register-
scarce and register-rich architectures. We have
since back-ported the new implementation to
PowerPC, so both platforms now share the
machine-independent portion of the register
allocator.

Final assembly generates executable ma-
chine code from the MIR and finalizes descrip-
tive data structures such as exception tables
and GC maps. The code for generating the de-
scriptive data structures does not depend on
the target architecture. Furthermore, as de-
scribed above, the build system mechanically
generates code that interfaces the MIR to the

assembler. Therefore this stage introduced lit-
tle work for porting.

The optimizing compiler also performs some
optimizations on the MIR. The main MIR
peephole optimizations, branch simplification
and null check folding, do not depend on the
architecture and worked immediately on TA32.
We have not yet ported the instruction sched-
uler to TA32.

One difficulty in generating IA32 code com-
pared to PowerPC is dealing with register re-
strictions imposed by the non-orthogonal in-
struction set architecture. Figure 1 shows
some examples.

For some IA32 instructions, a particular
operand must reside in a distinguished regis-
ter. For example, in Figure 1b, the value of
t2 must reside in ecx at the shift instruction
(shl_acc). We represent this information in
the IR by explicitly assigning t2 to ecx before
the shift instruction during instruction selec-
tion for the shift (Figure 1¢). The register al-
locator respects liveness for physical registers,
and will further attempt to allocate t2 to ecx
to remove the copy operation. Similarly, in our
calling convention eax holds the return value;
we enforces this by inserting a copy from the
symbolic return value register to eax, as shown
in Figure 1c.

When BURS inserts a memory operand, the
register allocator must respect further restric-
tions. For example, if the allocator were to
spill t0 in Figure 1c, this would force a later
pass to move t0 to a scratch register before its
use in the movsx memory operand. For this
reason, the linear scan spill heuristics consider
a spill of a symbolic register used in a memory
operand to be more expensive than a spill of
a register operand that could be replaced by
a memory operand representing the spill loca-
tion.

Furthermore, for many instructions, the
TA32 architecture dictates that only four of the
eight general-purpose registers can hold 8-bit
values. For example, in Figure 1c, t3 can re-
side in the low word of eax, ebx, ecx, or edx;
but not, for example in ebp or edi. The regis-
ter allocator handles these types of restrictions
with special case code, computing the restric-
tions as a pre-pass to register allocation.

3.4 Other VM Subsystems

The other VM subsystems — memory man-
agement, thread scheduling, locking, class
loading, dynamic type checking, etc.
ported without change to Linux/IA32. Our
use of Java as an implementation language
shielded this code (some of it very low level)
from any target dependencies. The only ex-
ceptions occur in about half a dozen sequences
which use VM_Magic methods to perform direct
loads or stores of byte quantities; the address
computation needed to be parameterized on
whether the target platform was big or little
endian.

3.5 VM Conventions

Details of IA32’s CALL and RET instructions
forced major differences in stack and calling
conventions. CALL pushes the return address
on the stack and then branches to an indicated
address. RET pops a return address off the
stack and branches to it (discarding an indi-
cated number of parameter bytes in the pro-
cess).

On AIX the return address is saved at a
fixed address in the caller’s stackframe. Using
CALL effectively prevents this since the relative
address of the stacktop off the frame pointer
varies from call-site to call-site. To be con-
veniently accessible at all, the return address
must be at a fixed address in the callee’s stack-
frame. Thus, on IA32 the return address starts
a new stackframe.

This introduces a number of complications
some of them minor.

First, the header is at the bottom of an AIX
stackframe but the top of an TA32 stackframe
(stacks growing down from high memory in
both cases). This does not present a stack
addressing problem: stack offsets are positive
on AIX, negative on TA32.

Second, the ordering of fields in the headers
of stackframes differs on the two architectures.
This did not cause a problem since the header
fields are always accessed with static final
constants off the frame pointer. These con-
stants differ on the two architectures.

Third, the size of stackframes, which is fixed
(per method) and known a priori on AIX,
varies from call-site to call-site on IA32. On

byte foo(bytel[] a, ecx = t2 ecx = [esp + 12]
int x, int ¥){ tl = shl_acc t2 t1 = shl
, y shl_acc ecx edx = shl_acc ecx
int i=x<<y; t3 = byte_aload t0,t1 {3 = moysx [t0+t1] eax = movsx [eax+edx]
return alil; return t3 eax = t3 return eax
} return eax
a) b) c) d)

Figure 1: Examples of architectural register restrictions in the optimizing compiler IR. a)
Java source code; b) IR fragment before instruction selection; ¢) IR fragment before register
allocation; d) IR fragment after register allocation.

ATX it is natural to check for stack overflow
when allocating a new stackframe; on IA32
this requires explicitly testing against a cal-
culated upperbound of the eventual size of the
stackframe.

Finally, stack-walking (e.g. during ex-
ception handling or garbage collection) was
severely complicated by the fact that the re-
turn address was in the caller stackframe
on AIX and the callee stackframe on IA32.
The code difference was finally minimized by
adopting the convention that the return ad-
dress would be computed immediately before
moving from callee to caller. On AIX this
entails a redundant load off the contents of
the callee’s frame pointer. But, since stack-
walking is not expected to be performance crit-
ical, we tolerate the pain in the interest of com-
patibility.

To facilitate the functional port, we initially
added an extra word to the header of an TA32
stackframe. Whenever a method was called,
the return address in the callee’s stackframe
header was copied into the new slot in the
caller’s header. This allowed immediate uti-
lization of code that assumed the AIX con-
vention. However, restructuring this common
code so as to eliminate the need for this re-
dundant header word was an ongoing porting
headache for several months.

3.6 Synchronization

The PowerPC and IA32 architectures have
different mechanisms for synchronizing multi-
processors.

The PowerPC architecture uses a weak
memory consistency model. The PowerPC in-
struction set includes two synchronization in-
structions: lwarx and stwcx. The first of
these loads a word from an address memory

while setting a reservation for the executing
processor on this address (any reservation an-
other processor may have on the address is
cleared as a side effect). The second stores a
word at an address provide the executing pro-
cessor holds a reservation on the address. The
success or failure of this operation is recorded
in a condition register.

The IA32 architecture enforces stronger
memory consistency among the multiple pro-
cessors. The TA32 instruction set has a
compare-and-swap instruction (cmpxchg): the
value at a specified address is compared to a
second value, if the two are equal, a third value
is stored at the address. The success or fail-
ure of the operations can be obtained from a
machine register. A locking prefix byte to this
instruction makes its behavior appear atomic
to any other processors.

The initial PowerPC implementation of
Jikes RVM used methods of the VM Magic
class to directly emit lwarx and stwcx in-
structions. Rather than create architecture-
specific classes for all the methods that called
these methods, we designed VM Magic meth-
ods that could be used on either architecture
but whose implementations were architecture
specific. We developed a synchronization id-
iom whereby attempting to perform a syn-
chronized write first requires obtaining the old
value using a prepare operation and then is-
suing an attempt operation which takes both
the old and a new value as well as the raw
address. Higher level pseudo-primitives, such
as fetch-and-add, were implemented in Java
using this discipline and provided as runtime
utilities.

The int VM Magic.prepare() method
takes a raw address as its only parameter.
On the TA32 architecture this is implemented

as an ordinary load instruction. On the

PowerPC it is a lwarx instruction.

The boolean VM Magic.attempt () method
takes a raw address and two (32 bit) values as
parameters. On the TA32, it causes the corre-
sponding atomic compare-and-swap to be exe-
cuted. On the PowerPC, the second parameter
is ignored, while the other two are used by a
stwex instruction.” In either case, the success
of the operation is returned as the result of the
method.

3.7 Operating system issues

The thin layer of C/C++ code that inter-
faces between the RVM and the operating sys-
tem was ported from AIX to Linux either with-
out change or by replacing the invocation of a
system function on AIX with its Linux equiv-
alent. We rewrote for IA32 less than half a
page of assembly code which transfers initial
execution to the RVM image. The only sys-
tem service which proved troublesome was the
Linux POSIX thread (pthread) library where
we had troubles both with the earlier imple-
mentation of the library and with differences
between the AIX and later Linux implementa-
tions.

We started this work on the 2.2 Linux ker-
nel and associated libraries. For this Linux
release, the pthread library computes the iden-
tity of a thread as a function of the ESP (stack
pointer) machine register. Since the RVM vir-
tual processors multiplex several Java threads,
each with its own stack (none of them begin-
ning on the large power of two boundary ex-
pected by the library), and since our imple-
mentation used the ESP register to address
the stack of the running thread, we cannot run
with this pthread library. (On 2.2 Linux, the
RVM only runs with a single virtual proces-
sor.)

Fortunately, the 2.4 Linux/IA32 release
(and some earlier development releases) re-
solved this problem.? We also found some dif-
ferences in the behavior of POSIX threads on

7On the PowerPC architecture, the baseline com-
piler expends unnecessary extra work pushing the un-
used middle parameter onto the stack. However, the
optimizing compiler identifies the computation as dead
and eliminates it. Thus, the optimizing compiler pro-
duces code for the prepare and attempt primitives that
is as efficient as architecture-specific primitives.

81t remains in the 2.4 Linux/PowerPC release.

ATX and Linux. On AIX, one process may
have many pthreads. On Linux, each pthread
looks and acts like a separate process. One
area where this difference manifests is the be-
havior of the system with respect to signal
handling. The RVM uses two signal handlers
which are not reentrant and cannot execute si-
multaneously. On AIX, we specified that these
signals were to be masked for the duration of
the signal handler, and as expected pending
signals wait until earlier executions of a signal
handler finish before executing. Linux did not
follow this behavior, so the Linux signal han-
dlers need to provide their own explicit syn-
chronization.

4 TImproving performance

The functional port of Jikes RVM to
Linux/IA32 was mostly complete by the end
of August 2001. The initial port achieved 35%
of our performance target. Over the course of
the next five months, Jikes RVM Linux/IA32
performance more than doubled to reach 95%
of the IBM 1.3.0 DK. Figure 2 shows how the
performance® increased over this time period,
and Figure 3 shows relative performance for
each of the SPECjvm98 benchmarks'® as of
February 2002. The results show that Jikes
RVM performance is competitive overall, but
lags behind the IBM DK on the two floating-
point codes (mpegaudio and mtrt) and on
compress (an array-based set of tight nested

9The Jikes RVM FastAdaptiveSemispace images,
used for Figures 2 and 3, gives the best overall per-
formance due to feedback-directed optimization and
delayed compilation effects [4]. However, to reduce
the impact of timer-driven non-deterministic actions,
the remainder of this paper reports results using a
(non adaptive) FastSemispace image which compiles
each method the first time it is invoked at optimiza-
tion level O2. In all cases, two virtual processors and
a 400 MB heap were used. All runs are on a 4-way
IBM Netfinity with 700MHz PentiumT™™ III proces-
sors and 3 GB of memory. The Linux installation is
a customized RedHat version with a 2.4.12 kernel and
GNU Libc version 2.2.4; the libc and kernel versions
support the version of LinuxThreads that uses the GS
segment register for thread-local storage enabling it to
support Jikes RVM’s user-level multithreading mech-
anism.

10These benchmarks were developed by the Stan-
dard Performance Evaluation Corporation [6]. The
performance numbers reported in this paper are the
best run of 5 on each individual SPECjvm98 bench-
mark. These runs do not conform to the official SPEC
run rules, so our results do not directly or indirectly
represent a SPECjvm98 metric, and are not compara-
ble with a SPECjvm98 metric.

10¢-------—"—"—"—"—"—"—"—"—"—"—"—~——"—~—"—~—"—-"———— -

80+

60—

- -e—-|BM DK 130
—&— JkesRVM

% of IBM DK 1.3.0

8/1 91 10/1 w1 12/1 v 2/11

Figure 2: Monthly performance of Jikes RVM
on the SPECjvm98 benchmarks as a percent-
age of the performance of the IBM 1.3.0 DK
for Linux/TA32 from August 1, 2001 through
February 1, 2002.

H
o
I

Normalized Execution Speed
°
&
1

compress jess b javac mpegaudio mirt jack

Figure 3: Performance of Jikes RVM on the
individual SPECjvm98 benchmarks as a per-
centage of the performance of the IBM 1.3.0
DK for Linux/IA32 on February 1, 2002.

loops).

This section of the paper describes the main
TA32 specific enhancements made to improve
Linux/IA32 performance.!! The first sec-
tion discusses performance-motivated changes
to the VM’s register conventions. The next
two sections describe enhancements to the op-
timizing compiler’s instruction selection and
register allocation phases. Generating even
mediocre TA32 floating point code was chal-
lenging; section 4.4 describes some of the al-
ternatives we explored.

" During the six month period shown in Figure 2
several new platform independent optimizations were
added to the optimizing compiler and existing opti-
mizations were enhanced. Although these contributed
to the performance improvements shown in the graph,
most of the gain was caused by IA32 specific improve-
ments (during the same period AIX/PowerPC perfor-
mance only improved by about 10%).

4.1 VM Register Conventions

The initial functional port followed the Pow-
erPC implementation in dedicating four (of
the eight TA32 “general purpose”) registers:
a pointer to the currently executing stack-
frame (FP), a pointer to a region of static data
(JTOCQC), an indirect pointer to thread-local
storage for the current Java thread (TI), and
a pointer to pthread-local storage associated
with the current virtual processor (PR). In
addition, it dedicated esp as a stack pointer,
leaving only three registers for general use. It
soon became apparent that good performance
would hinge in part on freeing up some of these
dedicated registers.

We first reclaimed the TI and JTOC reg-
isters. Instead of dedicating registers to hold
these values, the system now caches these val-
ues in the pthread-local storage accessed by
the PR register. This strategy adds an ex-
tra indirection to access Java thread-local and
static storage.

Next, we reclaimed the frame pointer regis-
ter. This change required more intrusive sys-
tem modifications. As with TT and JTOC, the
system caches the current frame pointer reg-
ister in pthread-local storage. Each compiler
was modified to maintain this frame pointer
field in the prologue and epilogue sequences.
The C trap handler that handles a hardware
trap or software interrupt was modified to ac-
quire the frame pointer indirectly through the
PR register instead of from a register. Addi-
tionally, each compiler was modified to man-
age stack storage solely off the stack pointer
(esp), with no reliance on the frame pointer.
There were also some complications with TA32
baseline compiler assumptions for low-level de-
tails of stack resizing and GC map computa-
tion, which fall beyond the scope of this paper.

The current system has two dedicated TA32
registers: SP (esp) and PR (esi). The re-
maining six GPR registers are available for
register allocation. We have considered re-
claiming PR as a non-volatile by using an IA32
segment register as a pointer to pthread-local
storage. Three considerations have so far de-
terred us from making the attempt. First,
since the segment registers can’t address ar-
bitrary words in memory, it would be difficult
to encode the structures that they point to a
ordinary Java objects. Second, we do not feel

certain that Linux does not, or, more impor-
tantly, will not in the future use any particular
segment register for its own purposes. Third,
we are concerned that on some TA32 imple-
mentations segment register access might be
prohibitively slow.

4.2 Instruction Selection

The heart of the instruction selection phase
relies on a BURS-based tree-pattern-matching
system. We have extended iburg [7] to gen-
erate Java code (instead of C) and work on a
general dependence graph. The key idea is to
partition the dependence graphs into a forest
of expression trees based on their register-true
dependencies. The BURS pattern matching
system then processes each tree in the forest
to perform instruction selection and emit code,
one tree at a time, in an order that respects
the inter-tree ordering constraints encoded by
the original dependency graph [5, 10].

In the initial port, we defined a “bare
bones” grammar that described a straight-
forward translation of the 124 LIR operators
into MIR operators using 142 rules and 7
non-terminals. As the performance work pro-
gressed, the grammar tripled in size. The
current grammar includes additional patterns
for optimizing floating point computations
and conditional branching, exploiting memory
operands, and other miscellaneous enhance-
ments such as recognizing complex address-
ing modes, exploiting special instructions such
as LEA, TEST, INC, etc., and avoiding needless
sign extension of byte/short loads. Table 1
reports the contribution of each group of en-
hancements to the size of the rules.

In addition to extending the grammar as de-
scribed above, we also enhanced our BURS
driver with heuristics to reduce register pres-
sure. We label each tree node with an estimate
of the number of live values required to com-
pute it, using the algorithm from section 9.10
of the Dragon book [1]. The BURS driver uses
this numbering to choose which child node to
emit first when generating code for a given
tree and to select from the set of ready trees!?
which tree to emit next. In both cases, choos-
ing the node/tree with the largest number of
registers first tends to reduce the number of si-

12A tree is ready if all of the trees on which it is
dependent have already been emitted.

Benchmark | % Speedup |

compress 1.9

jess 7.2

db 14

javac -0.5

mpegaudio 52.3

mtrt 5.1

jack 8.0
| geo. mean | 9.7 |

Table 2: Percentage speedup obtained by
Complete rules over the initial Basic rules.

multaneously live values and thus reduce reg-
ister pressure. As reported in section 4.3, this
heuristic made a small but measurable differ-
ence in overall performance and was extremely
simple to implement.

While the PowerPC architecture supports
three-operand ALU operations (a=b+c), IA32
supports two-operand ALU operations(x+=y).
The TA32 compiler converts the three-operand
LIR to two-operand form in a pre-pass to
BURS, which tripped some subtle issues. Ini-
tially, this pre-pass took obvious actions to
avoid introducing useless move instructions.
For example, it would transform a=a+b to
a+=b. In other cases, it would use local live-
ness information to avoid inserting moves. For
example, if b is dead after a=b+c and this is
the only definition of a, then the pass would
emit b+=c and the replace uses of a with uses
of b. This second optimization tripped a sub-
tle difficulty; it can hinder instruction selec-
tion of other expression trees within the ba-
sic block by introducing additional inter-tree
anti and output dependencies and by extend-
ing the live range of b beyond the current basic
block. Thus, in some cases it is actually bet-
ter to translate a=b+c into b+=c; a=b and rely
on the register allocator to coalesce away the
move instruction.

Table 2 shows the performance improve-
ments obtained by adding all of the enhance-
ments to the basic grammar. The most impor-
tant enhancement was adding rules to exploit
the floating point stack (mpegaudio, mtrt),
but the other enhancements also resulted in
modest gains. The impact of instruction se-
lection and register allocation on floating point
performance is explored in more detail below.

Description

| Number of Rules

| Number of Non-terminals |

Basic 142 7
Floating Point Stack 90 2
Conditional Branches 42 6
Memory Operands 170 8
Misc. Other Enhancements 144 2
Complete 588 25

Table 1: The Basic grammar was enhanced with 446 rules and 18 non-terminals to support
optimizations in instruction selection. BURS must recognize 124 LIR operators.

else
return x
return y

a)

oD wWwN
@ g H e Dd2

b)

Figure 4: Example of linear scan live intervals
with holes.

4.3 Register Allocation

The optimizing compiler relies on a variant
of linear-scan [9] register allocation. To give
the register allocator more freedom, we im-
plemented a variant of linear scan that deals
with holes in live ranges. Consider Figure 4.
The basic linear-scan algorithm would not al-
locate x and y to the same physical register, as
their live intervals (denoted by the rectangular
bars) overlap. However, our enhanced algo-
rithm represents the live intervals with holes,
as represented by the black-shaded areas in
the Figure. As a result, our allocator could
allocate x and y to the same physical register.

Traub et al. [11] previously described a lin-
ear scan variant to deal with holes. Our ap-
proach differs in two ways.!® First, we per-
form the intersection of two sparse live inter-
vals, rather than insisting on perfect nesting
of one interval within another. Although this
introduces super-linear complexity to the al-
gorithm, we do not believe this causes major
problems in practice.

13We have not performed an apples-to-apples com-
parison of our algorithm compared to Traub et al.

Secondly, Traub et al.’s algorithm splits live
ranges on the fly, with a post-pass clean-up
phase to reconcile differences. In contrast, our
algorithm marks certain symbolic registers as
spilled. A post-pass clean-up phase deals with
the spills. If an instruction uses a spilled reg-
ister, the clean-up phase either introduces a
memory operand referring to the spilled mem-
ory location, or moves the spilled value into
a scratch register. On PowerPC, the original
register allocator reserved three registers for
use as scratch, so finding a free scratch reg-
ister was almost always trivial. On TA32, we
did not reserve any scratch registers, so the
register allocator must create scratch registers
upon demand.

Figure 5 details the algorithm for dealing
with spilled values. The algorithm makes one
pass over the statements. As it progresses, the
algorithm keeps track of which symbolic regis-
ter values are cached in each scratch register.
Before each statement, the algorithm vacates
any scratch registers which are needed for the
next statement. Then, the algorithm processes
a statement. It attempts to replace spilled
symbolic registers with memory operands rep-
resenting the spill location. If this is infeasible,
the algorithm chooses a physical register as a
victim to be vacated, so the victim can be used
as a scratch register. The victim will continue
to cache the symbolic value until either the
physical register is needed for a future state-
ment, or the victim is chosen to cache a differ-
ent symbolic register. Scratch register map-
pings are not maintained across basic block
boundaries; all victims are vacated at block
exits.

As a side effect of vacating and introducing
scratch registers, the code updates stack maps
required for type-exact GC.

for each statement s do

if s can leave the basic block via a call, jump, fall-through, or exception then

vacate cached value and restore original value for each scratch register before s
vacate cached value and restore original value for any scratch register used by s
for each spilled symbolic register r in s do

if r is currently cached in scratch register p then

replace r with p in statement s

else if s needs a scratch register for r then
choose a scratch register victim p to hold r in s

vacate current value of p
cache value of r in p
replace r with p in statement s

else replace r with a memory operand representing r’s spill location

done
done

Figure 5: Algorithm for dealing with spilled values after linear scan.

With the TA32 limited register set, spills are
common and have a huge impact on perfor-
mance. Subsequent to the initial functional
port, we introduced several heuristics and op-
timizations to improve performance.

We now evaluate the following heuristics to
reduce register pressure. We provide only a
high-level overview of each heuristic; consult
the open-source code for more details.

Intelligent scratch victim selection

The initial implementation of the al-
gorithm in Figure 5 chooses a victim
arbitrarily. Furthermore, the initial
implementation does not use liveness to
determine whether the victim needs to
be vacated and restored. This heuristic
uses liveness computed during linear
scan and attempts to choose a victim
that does not currently hold a live value.
Furthermore, this optimization uses the
same information to avoid vacating and
restoring dead values.

Smarter linear scan spill heuristic

When facing a spill situation, the original
linear scan implementation chooses a
symbolic register to spill at random. This
heuristic estimates the cost of spilling
based on appearances of the register,
weighted by loop depth, and chooses spill
candidates accordingly.

Register-pressure-aware BURS This op-
timization introduces a heuristic into in-

struction selection to attempt to generate
code in an order to minimize overlapping
live ranges. When faced with multiple ex-
pression trees which can be emitted in any
order, this heuristic chooses the tree that
consumes the most register values.

Global Coalescing We implemented a sep-
arate pass to coalesce registers; basically,
if there is a MOV x = y, if the live ranges
of x and y do not overlap, then we replace
all appearances of y with x.

Figure 6 shows the marginal performance
improvement gained by enabling each of these
four optimizations cumulatively, compared to
performance with none enabled. Thus, the
bar labeled “Scratch Victim” enables intel-
ligent scratch victim selection; the next bar
“LS Spill” further enables the linear scan spill
heuristic, etc.

Altogether, the register pressure heuris-
tics improve performance on average by 15%.
The results show that the spill heuristics and
scratch register selection heuristics are most
effective across the board. Anomalously, the
scratch victim heuristic hurts mpegaudio; we
currently have no explanation for this. In-
struction selection re-ordering has a mini-
mal impact, slightly improving compress and
db. Coalescing is usually insignificant; ex-
cept it causes a substantial improvement for
mpegaudio. Mtrt degrades as we add more op-
timizations; however, the floating-point results
here should be taken with a grain of salt, since

1.0

0.5

Normalized Execution Speed

= LS Spill

mm Coalesce

0.0

compress jess db javac

mpegaudio

mtrt jack geo. mean

Figure 6: Relative performance gains by enabling, cumulatively, four optimizations designed

to reduce register pressure.

Figure 3 shows that Jikes RVM IA32 floating-
point performance is mediocre, even with all
optimizations enabled.

4.4 Floating point

The IA32 architecture provides an abstrac-
tion of a floating-point stack, a sharp differ-
ence from the flat floating-point register set of
the PowerPC.

In the original functional port, in order to
minimize changes to the system, we treated
the floating-point stack locations as indepen-
dent physical floating-point registers. During
instruction selection, BURS treated symbolic
floating-point registers just like symbolic inte-
ger registers. The linear scan register allocator
allocated the symbolic floating-point registers
to seven floating-point stack locations, as if
these were seven physical registers. The eighth
stack location was reserved for use as a scratch
register downstream, in order to generate code
that moves values between stack locations and
to memory.

This original scheme had the advantage that
the linear scan allocator had full freedom to
allocate the stack locations using global anal-
ysis. However, this scheme has a severe draw-
back. Since the BURS instruction selection
saw only orthogonal symbolic floating-point
registers, it could not generate code to exploit
the stack operations available in the IA32 in-
struction set.

An alternative scheme could allow BURS
to generate floating-point stack code freely
within a basic block. With this scheme, in-
struction selection could use the floating-point
stack resources freely within a basic block.
However, since the linear scan algorithm does
not understand stack locations, it could not
allocate values to stack locations across basic
blocks. In effect, all register allocation would
be constrained to a single basic block, spilling
values to memory across basic blocks.

We chose a hybrid scheme. We give instruc-
tion selection the freedom to place a floating-
point value either on the floating-point stack
or in a symbolic floating-point register. The
register allocator allocates symbolic registers
to free stack locations. Note that if BURS
allocates a value to a floating-point stack lo-
cation, that stack location is not available for
use by the register allocator. We model this by
inserting dummy def and use instructions for
physical stack locations reserved by instruc-
tion selection.

Table 3 compares performance on the two
floating-point SPECjvm98 codes. The Table
shows that each technique helps mpegaudio,
but shows an anomaly where inter-block reg-
ister allocation hurts mtrt. Our initial func-
tional port used only the “RA” register al-
location strategy, as this option most closely
matches the extant PowerPC port. Later we
also added the BURS floating-point stack code

— Scratch Victim

== BURS Reorder

None | RA only | BURS only | Both
mpegaudio || 1 1.548 1.544 1.957
mtrt 1 0.668 1.251 1.181

Table 3: Performance comparison of alternative floating-point code generation strategies (speed
normalized to “None”). “RA” allows inter-block register allocation, while “BURS” allows intra-
block generation of floating-point stack code for expressions.

generation. We didn’t seriously consider the
other two possibilities, but include them to en-
able comparisons.

Although we have improved RVM float-
ing point performance compared to the initial
functional port, performance still lags behind
the IBM product DK. We still face the two
anomalies reported for floating-point perfor-
mance: recall that the smart scratch victim
selection hurts mpegaudio and floating point
register allocation degrades mtrt. We have not
yet investigated these anomalies, and we hope
to improve Jikes RVM floating-point perfor-
mance in the future.

5 Conclusions

We have described our experiences port-
ing a high-performance virtual machine to
its second architecture. In the process,
we have endeavored to enforce a clean sep-
aration between architecture-dependent and
architecture-independent code. As a result, we
expect that a port to a third 32-bit architec-
ture would be much easier.

A major issue only partially addressed is mi-
gration to a 64-bit architecture. Recently, a
VM_Address type has been introduced to stat-
ically isolate code that manipulates raw ad-
dresses in the VM implementation (originally
Jikes RVM used the type int to represent
raw addresses, making it impossible to stati-
cally isolate such code). However, work still
remains to find and update all code in the
VM implementation that assumes that refer-
ence/address values are four byte quantities.

Substantial work remains to be done in
the optimizing compiler. Clearly, opportuni-
ties remain to improve performance on both
PowerPC and TA32. On TA32 in particu-
lar, floating-point performance still lags be-
hind the IBM DK 1.3.0. We have recently im-
plemented live range splitting to help further
reduce register pressure, but have not yet seen

substantial performance improvements. Fur-
ther optimization passes may also help; one
optimization not yet enabled is instruction
scheduling, which could help reduce register
pressure and/or increase instruction-level par-
allelism. Also, it may be an interesting re-
search topic to determine how to constrain
HIR optimizations, such as SSA conversion
and redundancy elimination, to reduce register
pressure.

Since the open-source release in October
2001, we are aware of several efforts by aca-
demic and other researchers to help address
some of these concerns. We understand that
significant progress has been made porting to
TA32 on Win32, and to 64-bit PowerPC. We
hope these and other enhancements will make
their way into the open-source code base, so
that Jikes RVM will further mature as a plat-
form for programming language implementa-
tion research.

Acknowledgments

We thank all the members of the Jalapefio
team who have contributed to the code base
over the past four years. We especially thank
Vivek Sarkar and Mauricio Serrano, who con-
tributed key ideas in the portable design of the
optimizing compiler. (Mauricio also warned us
that we would get in trouble in a port to IA32
if we associated the return address with the
caller’s stackframe. He was right.) We addi-
tionally extend special thanks to Mike Hind
and Mark Mergen for their efforts in support
of this work. Also thanks to Dave Hansen for
making the iburg tool available, and to Steve
Blackburn for his help and feedback.

Jikes RVM is available under the
Common Public License (CPL) from
www.ibm.com/developerworks/oss/jikesrvm.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

A. V. Aho, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA,
1986.

B. Alpern, D. Attanasio, J. J. Bar-
ton, M. G. Burke, P. Cheng, J.-D.
Choi, A. Cocchi, S. Fink, D. Grove,
M. Hind, S. Flynn Hummel, D. Lieber,
V. Litvinov, T. Ngo, M. Mergen,
J. R. Russell, V. Sarkar, M. J. Ser-
rano, J. Shepherd, S. Smith, V. C.
Sreedhar, H. Srinivasan, and J. Wha-
ley. The Jalepeno virtual machine.
IBM Systems Journal special issue on
Java performance, 39(1), 2000. (see also
http://www.research.ibm.com/jalapeno).

B. Alpern, D. Attanasio, J. J. Bar-
ton, A. Cocchi, S. Flynn Hummel,
D. Lieber, T. Ngo, M. Mergen, J. Shep-
herd, and S. Smith. Implementation
of Jalepefio in Java. In ACM Con-
ference on Object-Oriented Programming
Systems, Languages, and Applications,
November 1999.

M. Arnold, D. Grove, S. Fink, M. Hind,
and Peter F. Sweeney. Adaptive opti-
mization in the Jalapeno JVM. In Pro-
ceedings of the ACM SIGPLAN Confer-
ence on Object-Oriented Programming
Systems, Languages, and Applications
(OOPSLA 2000), Minneapolis, MN, Oct.
2000. Also published as ACM SIGPLAN
Notices, volume 35, number 10.

M.G. Burke, J.-D. Choi, S. Fink,
D. Grove, M. Hind, V. Sarkar, M.J. Ser-
rano, V.C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalapefio Dynamic Opti-
mizing Compiler for Java. In ACM Java
Grande Conference, June 1999.

The Standard Performance Evaluation
Corporation. SPEC JVM98 Benchmarks.
http:/ /www.spec.org/osg/jvm98/, 1998.

Christopher W. Fraser, David R. Hanson,
and Todd A. Proebsting. Engineering, a
simple, efficient code-generator generator.
ACM Letters on Programming Languages
and Systems, 1(3):213-226, September
1992.

[8]

[9]

[10]

[11]

James Gosling, Bill Joy, and Guy Steele.
The Java Language Specification. The
Java Series. Addison-Wesley, 1996.

Massimiliano Poletto and Vivek Sarkar.
Linear scan register allocation. ACM
Transactions on Programming Languages
and Systems, 21(5):895-913, September
1999.

Vivek Sarkar, Mauricio Serrano, and Bar-
bara Simons. Register-sensitive selection,
duplication, and sequencing of instruc-
tions. In ACM International Conference
on Supercomputing, June 2001.

Omri Traub, Glenn Holloway, and
Michael D. Smith. Quality and speed in
linear-scan register allocation. In SIG-
PLAN ’98 Conf. on Programming Lan-
guage Design and Implementation, pages
142-151, May 1998.

