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Abstract

SableVM is an open-source virtual machine for Java
intended as a research framework for eÆcient ex-
ecution of Java bytecode1. The framework is es-
sentially composed of an extensible bytecode inter-
preter using state-of-the-art and innovative tech-
niques. Written in the C programming language,
and assuming minimal system dependencies, the in-
terpreter emphasizes high-level techniques to sup-
port eÆcient execution.

In particular, we introduce a biderectional layout for
object instances that groups reference �elds sequen-
tially to allow eÆcient garbage collection. We also
introduce a sparse interface virtual table layout that
reduces the cost of interface method calls to that of
normal virtual calls. Finally, we present a technique
to improve thin locks[13] by eliminating busy-wait
in presence of contention.

1 Introduction & Motivation

Over the last few years, Java[21] has rapidly become
one of the most popular general purpose object-
oriented (OO) programming languages. Java pro-
grams are compiled into class �les which include
type information and platform independent byte-
code instructions. On a speci�c platform, a run-
time system called a virtual machine[24] loads and
links class �les then executes bytecode instructions.
The virtual machine collaborates with the standard

�This research is partly supported by FCAR, NSERC, and
Hydro-Qu�ebec.

1In this document, the term Java means: the Java pro-
gramming language.

class libraries to provide key services to Java pro-
grams, including threads and synchronization, au-
tomatic memory management (garbage collection),
safety features (array bound checks, null pointer de-
tection, code veri�cation), reection, dynamic class
loading, and more.2

Early Java virtual machines were simple bytecode
interpreters. Soon, the quest for eÆciency led to
the addition of Just-In-Time compilers (JIT) to vir-
tual machines, an idea formerly developed for other
OO runtime systems like Smalltalk-80[17] and Self-
91[15]. In a few words, a just-in-time compiler works
by compiling bytecodes to machine speci�c code on
the �rst invocation of a method. JITs range from
the very naive, that use templates to replace each
bytecode with a �xed sequence of native code in-
structions (early versions of Ka�e[5] did this), to
the very sophisticated that perform register alloca-
tion, instruction scheduling and other scalar opti-
mizations (e.g. [8, 23, 29, 32]).

JITs face two major problems. First, they strive
to generate good code in very little time, as com-
pile time is lost to the running application. Second,
the code of compiled method resides in memory;
this augments the pressure on the memory manager
and garbage collector. Recent virtual machines try
to overcome these problems. The main trend is to
use dynamic strategies to �nd hot execution paths,
and only optimize these areas (e.g. [4, 10, 16]).
HotSpot[4], for example, is a mixed interpreter and
compiler environment. It only compiles and op-
timizes hot spots. Jalapeno[10, 11], on the other
hand, always compiles methods (naively at �rst),

2There exist static compilers that directly compile Java
programs to machine code (e.g. [2, 3, 7]). The constraints
of static and dynamic environments are quite di�erent. Our
research focuses on dynamic Java execution environments.



then uses adaptive online feedback to recompile and
optimize hot methods. These techniques are par-
ticularly suited to virtual machines executing long
running programs in server environments. The op-
timizer can be relatively slow and consist of a fully
edged optimizing compiler using intermediate rep-
resentations and performing costly aggressive opti-
mizations, as compile time will be amortized on the
overall running time.

Our research complements these approaches by ex-
ploring opportunities for making the virtual ma-
chine execute eÆciently. Rather than looking at
�ne grain techniques, like register allocation and
instruction scheduling, we address the fundamen-
tal problem of data layout in a dynamic Java envi-
ronment. While Java shares many properties with
other object-oriented languages, the set of runtime
constraints enforced by the veri�er and the basic
services provided for each object (hash code, lock-
ing) are unique. This leads us to revisit traditional
data structures used in object-oriented runtime en-
vironments, and adapt them to fully take advantage
of the properties of the Java runtime environment.

As a testbed for evaluating our proposed data struc-
tures and algorithms, we are designing and imple-
menting SableVM, a standards conforming open-
source virtual machine. Written in the C program-
ming language, and depending on the POSIX appli-
cation programming interface (API), it is meant as
a small and portable interpreter3. It can be used as
an experimental framework for extending the byte-
code language. It can also be used as an eÆcient
virtual machine for embedded systems, or as a pro-
�ling interpreter in a hybrid interpreter/just-in-time
optimizing-compiler environment.

The remaining part of this document is structured
as follows. Section 2, we state the contributions
of this paper. In section 3, we give an overview
of the SableVM framework. In section 4, we de-
scribe SableVM's threaded interpreter. In section
5, we introduce our classi�cation of virtual machine
memory. In section 6, we introduce our new layouts
for object instances and virtual tables, and our im-
proved thin locks. In section 7, we discuss our pro-
posed experiments. Finally, in section 8, we present
our conclusions.

3SableVM depends on the open-source GNU Classpath[1]
class library for providing standard library services.

2 Contribution

The speci�c contributions of this paper are as fol-
lows.

� Introduction of a bidirectional object instance
layout that groups reference �elds sequen-
tially, enabling simpler and faster garbage col-
lection tracing.

� Introduction of a sparse interface virtual ta-
ble layout that enables constant time interface
method lookup in presence of dynamic load-
ing.

� Improvement of the bimodal �eld thin lock
algorithm[13, 26] to eliminate busy-wait, with-
out overhead in the object instance layout.

� Categorization of virtual machine memory
into separate conceptual areas exhibiting dif-
ferent management needs.

3 Framework Overview

As shown in Figure 1, the SableVM experimental
framework is a virtual machine composed of �ve
main components: interpreter, memory manager,
veri�er, class loader, and native interface. In ad-
dition, the virtual machine implements various ser-
vices required by the class library (e.g.: synchro-
nization and threads).

SableVM is entirely4 written in portable C. Thus,
its source code is readable and simple to modify.
This makes an ideal framework for testing new high-
level implementation features or bytecode language
extensions. For example, adding a new arithmetic
bytecode instruction entails making a minor modi�-
cation to the class loader, adding a few rules to the
veri�er, and �nally adding the related interpreter
code. This is pretty easy to do in SableVM, as
compared to a virtual machine written in assembly
language, or a virtual machine with an embedded
compiler (e.g. JIT).

The current implementation of SableVM targets the
Linux operating System on Intel x86 processors. It

4Exceptions: We assume a POSIX system library, we use
label as values (see Figure 2(b)), and there is a single line of
assembly code (compare-and-swap).
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Figure 1: The SableVM experimental framework

uses the GNU libc implementation of POSIX thre-
ads to provide preemptive operating system level
threads.

4 Threaded Interpreter

SableVM's interpreter is a threaded interpreter.
Pure bytecode interpreters su�er from expensive
dispatch costs: on every iteration, the dispatch loop
fetches the next bytecode, looks up the associated
implementation address in a table (explicitly, or
through a switch statement), then transfers the con-
trol to that address. Direct threading[20] reduces
this overhead: in the executable code stream, each
bytecode is replaced by the address of its associ-
ated implementation. In addition, each bytecode
implementation ends with the code required to dis-
patch the next opcode. This is illustrated in �gure
2. This technique eliminates the table lookup and
the central dispatch loop (thus eliminating a branch
instruction to the head of the loop). As these opera-
tions are expensive on modern processors, this tech-
nique has been shown to be quite e�ective[20, 27].

Method bodies are translated to threaded code on
their �rst invocation. We take advantage of this
translation to do some optimizations. For exam-
ple, we precompute absolute branch destinations,
we translate overloaded bytecodes like the
GET FIELD instruction to separate implementation
addresses (GET FIELD INT, GET FIELD FLOAT, ...),
and we inline constant pool references to direct

operand values.

This one pass translation is much simpler than the
translation done by even the most naive just-in-
time compiler, as each bytecode maps to an address,
not a variable sized implementation. However, un-
like a JIT, the threaded interpreter still pays the
cost of an instruction dispatch for each bytecode.
Piumarta[27] has shown a technique to eliminate
this overhead within a basic block using selective in-
lining in a portable manner, at the cost of additional
memory5. SableVM implements this technique op-
tionally through a compile-time ag, as it might not
be appropriate for systems with little memory.

5 Memory Management

Memory management is a central issue in the design
of SableVM. Most of the high-level performance en-
hancements introduced in this research are related
to memory management.

In this section, we classify the memory of the Java
virtual machine according to the control on its man-
agement, and its allocation and release behavior.
We de�ne four categories (system, shared, thread
speci�c, and class loader speci�c), and discuss how
SableVM takes advantage of them.

5On some processors, this technique requires one line of
assembly code to synchronize the instruction and data caches.



/* code */

char code[] = {
ICONST_2, ICONST_2,
ICONST_1, IADD, ...

}
char *pc = code;

/* dispatch loop */

while(true) {
switch(*pc++) {
case ICONST_1: *++sp = 1; break;
case ICONST_2: *++sp = 2; break;
case IADD:

sp[-1] += *sp; --sp; break;
...

}}

/* code */

void *code[] = {
&&ICONST_2, &&ICONST_2,
&&ICONST_1, &&IADD, ...

}
void **pc = code;

/* implementations */

goto **(pc++);

ICONST_1: *++sp = 1; goto **(pc++);
ICONST_2: *++sp = 2; goto **(pc++);
IADD:
sp[-1] += *sp; --sp; goto **(pc++);

...

(a) Pure bytecode interpreter (b) Threaded Interpreter

Figure 2: Pure and threaded interpreters

5.1 System Memory

System memory is the portion of memory on which
we, as C developers, have essentially no direct con-
trol. It consists of the memory used to store exe-
cutable machine code, native C stacks, the C heap
(malloc() and free()), dynamically linked native
libraries, and any other uncontrollable memory.

5.2 Shared Memory

Shared memory is managed by the virtual machine
and potentially allocated and modi�ed by many
threads executing methods of various class loaders.

This memory consists primarily of the Java heap
(which is garbage collected), and global JNI refer-
ences. The allocation and release behavior of such
memory is highly application dependent, with no
general allocation or release pattern.

5.3 Thread Speci�c Memory

Thread speci�c memory is also managed by the vir-
tual machine, but it is allocated speci�cally for in-
ternal management of each Java thread.

This memory consists primarily of Java stacks, JNI
local reference frames for each stack, and internal
structures storing thread speci�c data like stack in-
formation, JNI virtual table, and exception status.

This memory exhibits precise allocation and release
patterns. Thread speci�c structures have a life time
similar to their related thread. So, this memory
can be allocated and freed (or recycled) at the time
of respective creation and death of the underlying
thread. Also, stacks have a regular pattern: they
grow and shrink on one side only. This property is
shared by JNI local reference frames.

5.4 Class Loader Speci�c Memory

Class loader speci�c memory is managed by the vir-
tual machine and is allocated for internal manage-
ment of each class loader.

This memory consists primarily of the internal data
structures used to store class loader, class, and
method data structures. This includes method bod-
ies in their various forms like bytecode, direct
threaded code, inlined threaded code, and poten-
tially compiled code (in the presence of a JIT). It
also includes normal and interface virtual tables.

This memory exhibits precise allocation and release
patterns. This memory is allocated at class load-
ing time, and at various preparation, veri�cation,
and resolution execution points. This memory dif-
fers signi�cantly from stacks and the shared garbage
collected heap in that once it is allocated, it must
stay at a �xed location, and it is unlikely to be re-
leased soon. The Java virtual machine speci�cation
allows for potential unloading of all classes of a class
loader as a group, if no direct or indirect references
to the class loader, its classes, and theirs instances



remain. In such a case, and if a virtual machine sup-
ports class unloading, all memory used by a class
loader and its classes can be released at once.

5.5 SableVM Implementation

In SableVM, thread speci�c memory is managed in-
dependently from shared memory. SableVM allo-
cates thread structures on thread creation but does
not release them at thread death. Instead, it man-
ages a free list to recycle this memory on future
thread creation.

Java stacks are growing structures; a memory block
is allocated at thread creation, and if later the stack
proves too small, the memory block is expanded,
possibly moving it to another location to keep the
stack contiguous and avoid fragmentation.

SableVM also manages class loader speci�c mem-
ory independently from other memory. Each class
loader has it own memory manager that allocates
memory (from the system) in relatively big chunks,
then redistributes this memory is smaller fragments.
This has many advantages.

It allows the allocation of many small memory blocks
without the usual memory space overhead, as
malloc() would use additional memory space to
store the size of each allocated block in prevision
of future free() calls. In the class loader speci�c
memory category, smaller fragments will only be re-
turned to the system as a group (in case of class
unloading), so we need not keep track of individual
fragment sizes.

As a corollary, class unloading is more eÆcient us-
ing a dedicated memory manager than using regular
malloc() and free() calls, as there is no need to
incrementally aggregate small memory segments, as
would happen with a sequence of free() calls.

Using dedicated memory managers allows class pars-
ing and decoding in one pass without memory over-
head, by allocating many small memory blocks. This
is usually not feasible, as it is not possible to esti-
mate the memory requirement for storing internal
class information before the end of the �rst pass.

Finally, and importantly, a dedicated memory man-
ager allows for irregular memory management strate-
gies: it is possible to return sub-areas of an allocated

block to the memory manager, if these sub-areas are
known not to be used. We take advantage of this
to improve the representation of interface method
lookup tables6.

6 Performance Enhancements

In this section, we introduce new layouts for object
instances and interface virtual tables, as well as im-
provements to the thin lock algorithm, leading to
high-level performance enhancements in the areas
of garbage collection, interface method invocation,
and synchronization.

We say high-level enhancements, because these tech-
niques are applicable to any Java virtual machine,
independently from its form: interpreter, just-in-
time compiler, adaptive online feedback based sys-
tems, etc.

6.1 Bidirectional Object Layout

In this subsection, we propose a new object layout
that optimizes the placement of reference �elds to
allow eÆcient gc tracing.

The Java heap is by de�nition a garbage collected
area. A Java programmer has no control on the
deallocation of an object. Garbage collectors can
be divided into two major classes: tracing and non-
tracing collectors. Non-tracing collectors (mainly
reference counting) cannot reclaim cyclic data struc-
tures, are a poor �t for concurrent programming
models, and have a high reference count mainte-
nance overhead. For this reason, Java virtual ma-
chine designers usually opt for a tracing collector.

There exist many tracing collectors[22]. The sim-
plest models are mark-and-sweep, copying, and
mark-compact. The common point to all tracing
collectors (including advanced generational, conser-
vative and incremental techniques) is that they must
trace a subset of the heap, starting from a root set,
looking for reachable objects. Tracing is often one of
the most expensive steps of garbage collection[22].
For every root, the garbage collector (gc) looks up
the type of the object to �nd the o�set of its ref-
erence �elds, then it recursively visits the objects
referenced by these �elds.

6See section 6.2.



To provide eÆcient �eld access, it is desirable to
place �elds at a constant o�set from the object
header, regardless of inheritance. This is easily
achieved in Java as instance �elds can only be de-
clared in classes (not in interfaces), and classes are
restricted to single inheritance. Fields are laid out
consecutively after the object header, starting with
super class �elds then subclass �elds, as shown in
Figure 3(a). When tracing such an object, the
garbage collector must access the object's class in-
formation to discover the o�set of its reference �elds,
then access the superclass information to obtain the
o�set of its reference �elds, and so on. As this pro-
cess must be repeated for each traced object, it is
quite expensive.

There are three improvements that are usually ap-
plied to this naive representation. Firstly, reference
�elds are grouped together in the layout of each
class. Secondly, each class stores an array of o�-
sets and counts of reference �elds for itself and all
its super classes. Thirdly, a one word bit array is
used in the virtual table to represent the layout of
reference �elds in small objects (each bit being set
if the object instance word, at the same index, is a
reference). This is shown in Figure 3(b). For big
objects, the number of memory accesses needed to
trace an object is n + 3 + (2 � arraysize), where n

is the number of references. Two nested loops (and
loop variables) are required: one to traverse the ar-
ray, and one for each array element (accessing the
related number of references). For smaller objects,
the gc needs to access the virtual table to retrieve
the bit �eld word, then it needs to perform a set of
shift and mask operations to �nd the o�set of ref-
erence �elds. Overall, using this layout, tracing an
object is a relatively complex operation.

Tracing reference �elds could be much simpler if
they were simply grouped consecutively. The dif-
�culty is to group them while keeping the constant

o�set property in presence of inheritance.

We introduce a bidirectional object instance layout

that groups reference �elds while maintaining the
constant o�set property. The left part of Figure
4 illustrates this new layout. In the bidirectional
object instance layout, the instance starting point is
possibly a reference �eld. The instance grows both
ways from the object header, which is located in the
middle of the instance. References are placed before
the header, and other �elds are placed after it. The
right part of Figure 4 illustrates the layout of array
instances. Array element are placed in front or after

the array instance header, depending on whether the
element type is a reference or a non-reference type,
respectively.

The object header contains two words (three for ar-
rays). The �rst is a lock word and the second is a
virtual table pointer. We use a few low-order bits
of the lockword encode the following information:

� We set the last (lowest order) bit to one, to
di�erentiate the lock word from the preceding
reference �elds (which are pointers to aligned
objects, thus have their last bit set to zero).

� We use another bit to encode whether the in-
stance is an object or an array.

� If it is an array, we use 4 bits to encode its
element type (boolean, byte, short, char, int,
long, oat, double, or reference).

� If it is an object, we use a few bits to encode
(1) the number of references and (2) the num-
ber of non-reference �eld words of the object,
(or special overow values, if the object is too
big).

We also use two words of the virtual table (see Fig-
ure 5) to encode the number of reference and non-
reference �eld words of the object if the object is
too big to encode this information in the header.

At this point, we must distinguish the two ways in
which an object instance can be reached by a trac-
ing collector. The �rst way is through an object
reference that points to the object header (which
is in the middle of the object). The second way is
through its starting point, in the sweep phase of a
mark-and-sweep gc, or in the tospace scanning of
a copying gc. In both cases, our bidirectional lay-
out allows the implementation of simple and elegant
tracing algorithms.

In the �rst case, the gc accesses the lock word to get
the number of references n (one shift, one mask).
If n is the overow value (big object), then n is re-
trieved from the virtual table. Finally, the gc simply
traces n references in front of the object header.

In the second case, the object instance is reached
from its starting point in memory, which might be
either a reference �eld or the object header (if there
are no reference �elds in this instance). At this
point, the gc must �nd out whether the initial word
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is a reference or a lock word. But, this is easy to
�nd. The gc needs simply check the state of the last
bit of the word. If it is one, then the word is a lock
word. If it is zero, then the word is a reference.

So, for example, a copying collector, while scan-
ning the tospace needs only read words consecu-
tively, checking the last bit. When set to zero, the
discovered reference is traced, when set to 1, the
number of non-reference �eld words (encoded in the
lock word itself, or in the virtual table on overow) is
used to �nd the starting point of the next instance.

In summary, using our bidirectional layout, a gc
only accesses the following memory locations while
tracing: reference �elds and lock word, for all in-
stances (objects and arrays), and at most three ad-
ditional accesses for objects with many �elds (vir-
tual table pointer and two words in the virtual table
itself).

While our work on bidirectional objects for group-
ing references is new, we mention some previous re-
lated work. The idea of using a bidirectional ob-
ject layout (without grouping references) has been
investigated[25, 28] as a mean to provide eÆcient
access to instance data and dispatch information
in languages supporting multiple inheritance (most
speci�cally C++). In [14], Bartlett proposed a
garbage collector which required grouping pointers
at the head of structures; this was not achieved us-
ing bidirectional structs.

6.2 Sparse Interface Virtual Tables

In this subsection, we present a virtual table lay-
out that eliminates the overhead of interface method
lookup over normal virtual method lookup.

This enhancement addresses a problem raised by
multiple inheritance of interfaces in Java. The vir-
tual machine instruction set contains an invokein-

terface instruction, used to invoke interface meth-
ods. A common technique to implement this in-
struction is to prepare multiple virtual tables for
each class: a main virtual table used for normal
virtual method invocation, and one additional vir-
tual table for each interface directly or indirectly
implemented by the class[5]. Each method declared
in an interface is given an index within its virtual
table. After preparation, each invokeinterface has
two arguments: an interface number, and a method

index. On execution, the invokeinterface instruc-
tion operates its method lookup in two steps. It
�rst lookups up the appropriate virtual table (using
linear, binary, or hashed search), then it retrieves
the method pointer in a single operation from the
virtual table entry located at the given method in-
dex. This interface lookup procedure has the follow-
ing overhead over normal virtual method lookup: it
needs to do a search to �nd the appropriate virtual
table. It would be possible to implement a constant
time lookup using compact encoding[31], but unfor-
tunately, dynamic class loading requires updating
this information dynamically, which is diÆcult to
do in a multi-threaded Java environment. Our ap-
proach is simple, and does not require dynamic re-
computation of tables or code rewrite.

The idea of maintaining multiple virtual tables in
case of multiple inheritance is reminiscent of C++
implementations[19]. But, Java's multiple inheri-
tance has a major semantic di�erence: it only ap-
plies to interfaces which may only declare method
signatures without providing an implementation.
Furthermore, if a Java class implements two distinct
interfaces which declare the same method signature,
this class satis�es both interfaces by providing a sin-
gle implementation of this method. C++ allows the
inheritance of distinct implementations of the same
method signature.

We take advantage of this important di�erence to re-
think the appropriate data structure needed for eÆ-
cient interface method lookup. Our ideas originate
from previous work on eÆcient method lookup in
dynamically typed OO languages using of selector-
indexed dispatch tables[12, 18, 30]. We assign a glob-
ally unique increasing index7 to each method signa-
ture declared in an interface. A method signature
declared in multiple interfaces has a single index.
When the virtual table of a class is created, we also
create an interface virtual table that grows down
from the normal virtual table. This interface vir-
tual table has a size equal to the highest index of all
methods declared in the direct and indirect super
interfaces of the class. For every declared super in-
terface method, the entry at its index is �lled with
the address of its implementation. Interface invo-
cation is then encoded with the invokeinterface in-
struction, and a single interface method index. The
execution of invokeinterface can then proceed at the
exact same cost as an invokevirtual.

7In reality, we use a decreasing index, starting at at -1, to
allow direct indexing in the interface virtual table.



The interface virtual table is a sparse array of
method pointers. As more interfaces are loaded,
with many interface method signatures, the amount
of free space in interface virtual tables grows. The
traditional approach has been to use table compres-
sion techniques to reduce the amount of free space.
However, these techniques are poorly adapted to
concurrent and dynamic class loading environments
like the Java virtual machine, as they require dy-
namic recompilation.

Our approach di�ers. Instead of compressing inter-
face virtual tables, we simply return the free space
in them to the related class loader memory man-
ager (see section 5.4). This memory is then used
to store all kinds of other class loader related data
structures. In other words, we simply recycle the
free space of sparse interface virtual tables within a
class loader. The layout of interface virtual tables
is illustrated in Figure 5.

As interface usage in most Java programs range
from very low to moderate, we could argue that it
is unlikely that the free space returned by interface
virtual tables will grow faster than the rate at which
it is recycled. However, in order to handle patholog-
ical cases, we also provide a very simple technique,
which incurs no runtime overhead, to limit the max-
imal growth of interface virtual tables. To limit this
growth to N entries, we stop allocating new inter-
face method indices as soon as index N is given.
Then, new interface method signatures are encoded
using traditional techniques. The trick to make this
work is to encode interface calls di�erently, based
on whether the invoked method signature has been
assigned an index or not. The traditional technique
used to handle overow can safely ignore all inter-
face methods which have already been assigned an
index.

6.3 Improved Thin Locks

Our �nal enhancement improves upon Onodera's bi-
modal �eld locking algorithm[26], a modi�ed ver-
sion of Bacon's thin lock algorithm[13], but without
busy-wait transition from light to heavy mode.

Bacon's thin lock algorithm can be summarized as
follows. Each object instance has a one lock word
in its header8. To acquire the lock of an object, a

8Only 24 bits of that word are used for locking on 32 bit
systems. 8 bits remain free for other uses.

thread uses the compare-and-swap atomic operation
to compare the current lock value to zero, and re-
place it with its thread identi�er. If the lock value
isn't zero, this means that either the lock is already
inated, in which case a normal locking procedure is
applied, or the lock is thin and is already acquired
by some thread. In the latter case, if the owning
thread is the current one, a nesting count (in the
lock word) is increased. If the owning thread is not
the current one, then there is contention, and Ba-
con's version of the algorithm busy-waits, spinning
until it acquires the lock. When it is �nally ac-
quired, it is inated. Unlocking non-inated locks
is simple. On each unlock operation, the nesting
count is decreased. When it reaches 0, the lock byte
is replaced by zero, releasing the lock.

The advantages of this algorithm are that a single
atomic operation is needed to acquire a thin lock
in absence of contention, and more importantly, no
atomic operation is required to unlock an object9.

Onodera eliminates the busy wait in case of con-
tention on a thin lock, using a single additional bit
in each object instance. The role of this contention
bit is to indicate that some other thread is waiting to
acquire the current thin lock. Onodera's algorithm
di�ers from the previous algorithm at two points.
First, when a thread fails to acquire a thin lock (be-
cause of contention), it acquires a fat monitor for
the object, sets the contention bit, checks that the
thin lock was not released, then puts itself in a wait-
ing state. Second, when a thin lock is released (e.g.
lock word is replaced by zero), the releasing thread
checks the contention bit. If it is set, it inates the
lock, and noti�es all waiting threads10.

The overhead of Onodera's algorithm over Bacon's
is the contention bit test on unlocking, a fairly sim-
ple non-atomic operation, and the one bit per ob-
ject. This bit has the following restriction: it must
not reside in the lock word. This is a problem. It
is important to keep the per object space overhead
as low as possible, as Java programs tend allocate
many small objects. It is now common practice to
use 2 word headers in object instances; one word for
the virtual pointer, and the second for the lock and
other information. The contention bit cannot reside
in either of these two words (putting it in the virtual
table pointer word would add execution overhead to

9Unlike Agesen's recent meta-lock algorithm[9] which re-
quires an atomic operation for unlocking objects.

10This is a simpli�ed description. Please refer to the orig-
inal paper[26] for details.
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Figure 5: Virtual table layout

method invocation, �eld access, and any other op-
eration dereferencing this pointer). As objects need
to be aligned on a word multiple (for the atomic op-
eration to work), this one bit overhead might well
translate into a whole word overhead for small ob-
jects. Also, it is likely that the placement of this bit
will be highly type dependent, which complicates
the unlocking test.

Our solution to this problem is to put the con-

tention bit in the thread structure, instead of in
the object instance. This simple modi�cation has
the advantage of eliminating the per object over-
head while maintaining the key properties of the
algorithm, namely, fast thin lock acquisition with
a single atomic operation, fast thin lock unlocking
without atomic operations, and no busy-wait in case
of contention.

We modify Onodera's algorithm as follows. In
SableVM, each thread has a related data structure

containing various information, like stack informa-
tion and exception status. In this structure, we add
the contention bit, a contention lock11, and a linked
list of (waiting thread, object) tuples. Then we
modify the lock and unlock operation as described
in the following two subsections.

6.3.1 Modi�cations to the lock operation

The lock operation is only modi�ed in the case of
contention on a thin lock.

When a thread xt fails to acquire a thin lock on ob-
ject zo due to contention (because thread yt already
owns the thin lock), then (1) thread xt acquires the
contention lock of the owning thread (yt), and (2)
sets the contention bit of thread yt, then (3) checks
that the lock of object zo is still thin and owned by

11The contention lock is a simple non-recursive mutex.



thread yt. If the check fails, (4a) the contention bit
is restored to its initial value, the contention lock is
released and the lock operation is repeated. If the
check succeeds, (4b) the tuple (xt, zo) is added to
the linked list of thread yt, then thread xt is put
in the waiting state (temporarily releasing the con-
tention lock of thread yt, while it sleeps). Later,
when thread xt wakes up (because it was signaled),
it releases the re-acquired contention lock and re-
peats the lock operation.

6.3.2 Modi�cations to the unlock operation

The unlock operation is modi�ed to check the con-
tention bit of the currently executing thread. This
check is only done when a lock is actually released
(as locks are recursive), after releasing the lock.

When the lock of object bo is released by thread yt,
and if the contention bit of thread yt is set, then (1)
thread yt acquires its own contention lock, and (2)
iterates over all the elements of its tuple linked list.
For each tuple (xt, zo), if (z0 = bo), thread xt is
simply signaled. If (zo 6= bo), the lock of object zo is
inated12 (if it is thin), then thread xt is signaled.
Finally, (3) thread yt empties its tuple linked list,
clears its contention bit, and releases its contention
lock.

7 Experimentation

We are conducting the following experiments, to
evaluate the various memory management and per-
formance enhancement strategies.

� Implementation of both standard and bidirec-
tional instance layout, and comparison of the
tracing speed of SableVM's copying collector
on both layouts.

� Measure the memory overhead of sparse inter-

face method lookup tables in application bench-
marks. Test, using micro benchmarks,
SableVM's behavior in presence of pathologi-
cal cases.

12Notice that thread yt necessarily owns the lock of object
zo, as a only one lock (on object bo) has been released by
thread yt since it last cleared its contention bit and emptied
its tuple list.

� Measure the size of class loader memory frag-

ments returned to the memory manager for
recycling. Measure how much of this memory
gets e�ectively reused. Explore the possibility
of not managing these fragments if the storage
they require is insigni�cant.

� Evaluate relative speed of SableVM compared
to the speed of other Java virtual machines
running on Linux, using a set of standard
benchmarks, and some micro benchmarks.

The results of these experiments can be found on
the following web site [6].

8 Conclusion and Future Work

In this paper, we have presented SableVM, a frame-
work for testing high-level performance
enhancements and extensions to the Java virtual
machine. SableVM is written in portable C with
minimal system dependecies.

The main goal of the SableVM project was the de-
sign and implementation of an open-source virtual
machine suitable for research which is easy to mod-
ify, can simply handle language and bytecode exten-
sions, and also provides a testbed for various imple-
mentation strategies.

Particularly, we have introduced in this paper new
high-level techniques usable by any Java virtual ma-
chine (including JITs, and hybrid systems) to sup-
port eÆcient execution of Java bytecode.

More speci�cally, we have introduce a bidirectional
object layout that groups reference �elds, and we
showed how this layout makes tracing objects and
arrays simple and eÆcient.

We also introduced a sparse interface virtual table
layout adapted to the dynamic class loading facility
of Java, which reduces the cost of an invokeinter-
face instruction to that of an invokevirtual. We also
demonstrated that the sparse representation need
not waste memory, because unused holes in the in-
terface table could be recycled and used by the class
loader memory manager.

Our last performance enhancement technique was
an improvement on thin locks. We introduced a
simple algorithm and related data structures that



eliminate busy-wait in case of contention on a thin
lock. This strategy incurs no space overhead on ob-
ject instances.

Other groups have expressed an interest in adding
other components to the VM, including a JIT com-
piler. We encourage such collaboration. The
SableVM source is publicly-available at:
http://www.sablevm.org/.
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