
USENIX Association

Proceedings of the
Java™ Virtual Machine Research and

Technology Symposium
(JVM '01)

Monterey, California, USA
April 23–24, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Hot-Swapping between a Mark&Sweep and a Mark&Compact
Garbage Collector in a Generational Environment

Tony Printezis

Department of Computing Science, University of Glasgow,
17 Lilybank Gardens, Glasgow G12 8RZ, Scotland.

tony@dcs.gla.ac.uk

Abstract

This paper describes a novel method for dynamically
switching between a Mark&Compact (M&C) and a
Mark&Sweep (M&S) garbage collector in the genera-
tional memory system of a high performance Java vir-
tual machine. A M&C collector reclaims space by slid-
ing all live objects towards the beginning of the heap. A
M&S collector de-allocates garbage objects in-place. In
this paper, both algorithms are assumed to operate over
the old generation of a generational memory system and
on their own provide different trade-offs to the applica-
tion that uses them: faster old collections but with slower
young collections and the possibility of fragmentation
(M&S) or slower old collections but with faster young
collections and the guarantee to eliminate fragmentation
(M&C). We proposeHot-Swapping, a technique for dy-
namically switching between these two algorithms, to at-
tempt to achieve the “best of both worlds”. Its introduc-
tion to the memory system of the virtual machine imposed
minimal changes to the existing implementations of M&C
and M&S and virtually no extra performance overhead.
Experimental results, presented in the paper, show that
this hybrid scheme can either outperform both algorithms,
or is very close to the faster of the two (whether this is
M&S or M&C), while never being the slowest.

1 Introduction

Programming languages that rely on garbage collection
[14] for their memory management have existed since the
late 1950s. Even though the advantages of garbage collec-
tion (ease-of-development, program robustness, etc.) are
well-known and accepted, most software developers have
continued to rely on the traditional explicit memory man-
agement (malloc /free in C, new/delete in C++, etc.),
largely because of performance concerns. Recently, how-
ever, the wide acceptance of the Java programming lan-

guage [12] has encouraged developers to take advantage
of the benefits of garbage collection and has stirred further
interest in the area.

Generational garbage collection techniques [17, 25]
can address the performance concerns usually associated
with automatic memory management. They divide the
heap into spaces, referred to asgenerations, according to
object age. Since, for most programs, young objects are
more likely to be garbage than older ones, concentrating
collection activity on the young space increases through-
put, as more free space is reclaimed per collection cycle.
The young space is kept small to allow fast non-disruptive
collection times.

Objects that survive a given number of young collec-
tions are considered long-lived and arepromotedinto an
older generation. Even though older generations are large,
they are not of infinite size, therefore they will eventually
run out of space and require collection. Two well-known
and widely-used algorithms that can perform the collec-
tion are Mark&Sweep and Mark&Compact [14, 27]. The
former reclaims space by de-allocating it in-place and
keeping track of it in order to re-use it later. The latter
reclaims space by sliding (compacting) all live objects to-
wards the beginning of the space, thus creating a single
contiguous free chunk.

The two garbage collection algorithms described above
have different performance characteristics and each one
will perform best for specific loads. Mark&Compact
provides fast allocation to old space, hence providing
faster young collection times, and eliminatesfragmen-
tation [13]. Mark&Sweep provides faster old collec-
tion times, but can suffer from fragmentation and slower
young collection times.

This paper proposes a technique to dynamically switch
(hot-swap) between Mark&Compact and Mark&Sweep
in order to achieve the “best of both worlds”. This tech-
nique is simple to implement and imposes virtually no
performance overhead on the memory system. Experi-
mental results, presented in the paper, show that it can

either outperform both garbage collection algorithms on
their own, or be very close to the faster one (whichever
that is), while never being the slowest.

The idea of dynamically switching between differ-
ent garbage collection algorithms has been successfully
adopted before [7, 21, 16]. However, the novelty of the
technique proposed here lies in the fact that it uses two
collection algorithms that provide, in turn, faster old col-
lections/slower young collections and slower old collec-
tions/faster young collections and tries to find a winning
balance between them. As far as the author is aware, this
aspect of the work has not been explored before.

It must also be noted that this paper does not address in-
cremental garbage collection. Instead, it presents a tech-
nique that can improve the performance of batch jobs
(compilation, raytracing, etc.), whose main requirement
is throughput and not non-disruptive garbage collection
pauses.

A longer version of this paper, which contains more
graphs generated from the experimental results, is also
available as a technical report [18].

1.1 The Implementation Platform

The Sun Microsystems Laboratories Virtual Machine for
Research, henceforthResearchVM, which was used as the
implementation platform for all experiments presented in
this paper, is a high performance Java virtual machine de-
veloped by Sun Microsystems. This virtual machine has
been previously known as the “Exact VM”, and has been
incorporated into products; for example, the Java 2 SDK
(1.2.105) Production Release, for the Solaris operating
system. It employs an optimising just-in-time compiler
[10] and a fast object-synchronisation mechanism [3].

More relevantly, it features high-performanceexact
(i.e., non-conservative[8], also calledprecise) memory
management [2]. The memory system is separated from
the rest of the virtual machine by a well-definedGC Inter-
face[26]. This interface allows different garbage collec-
tors to be “plugged in” without requiring changes to the
rest of the system. A variety of collectors implementing
this interface have been built. Above the GC Interface, a
second layer called thegenerational frameworkfacilitates
the implementation of generational garbage collectors.

1.2 Terminology

Some terminology and abbreviations that will be used
throughout the paper are enumerated below.

❏ Mark&Sweep(M&S): a stop-the-world GC that re-
claims free space by de-allocating garbage objects
in-place [14].

❏ Mark&Compact(M&C): a stop-the-world GC that
reclaims space by sliding (compacting) live objects
towards the beginning of the heap, providing a single
contiguous area of free space [14].

❏ Hot-Swapping(H-S): the mechanism to dynamically
switch between a M&S and a M&C GC, described
in this paper.

❏ Young GC: a young generation GC in a generational
memory system [25, 14].

❏ Old GC: an old generation GC in a generational
memory system [25, 14].

1.3 Paper Overview

Section 2 provides the motivation behind this work by
comparing and analysing the M&C and M&S algorithms
and presenting the different trade-offs each of them pro-
vides. Section 3 outlines the Hot-Swapping mechanism,
which we propose in order to achieve the best balance be-
tween the two algorithms mentioned previously. Section 4
presents and analyses timing results from the experiments.
Section 5 covers the related work and section 6 concludes
the paper.

2 Motivation

During our work on a different project (theGenerational
Mostly-Concurrent GC, discussed elsewhere [19, 20]), we
needed to implement an in-place de-allocation mechanism
to be applied to the old generation of the memory system
of ResearchVM. However, we decided to first implement,
test, and optimise this mechanism in the context of a non-
concurrent stop-the-world M&S GC, for simplicity and
predictability reasons.

When we compared the performance of the M&S GC
and that of the default M&C GC (both of them were ap-
plied to the old generation of the system and shared the
same semispace-based young generation), we made the
following observations.

❏ M&S could decrease the maximum old GC pause
times by a factor of 2 or 3, compared with M&C.

❏ Unfortunately, and somehow surprisingly, M&S also
imposed a performance penalty of up to a factor of 2
onyoungGC pause times (;§2.1 and §2.2).

❏ M&S sometimes required a larger heap, compared
with M&C, in order to operate. This was mainly due
to fragmentation [28, 13].

Given the above, it is clear that an application which per-
forms a lot of frequent heavy-duty old GCs could bene-
fit from using M&S, whereas one that mainly performs
young GCs could benefit from using M&C, which also
has the advantage of eliminating fragmentation. The mo-
tivation for the work presented in this paper follows nat-
urally: whether it is possible to dynamically switch be-
tween a M&S and a M&C old GC and achieve beneficial
performance results by getting the “best of both worlds”.

It should be noted that the applications we have ob-
served do not seem to radically change their behaviour
during their execution. The hybrid scheme described here
is not proposed solely as a solution to detect and deal with
application behavioural changes, but also to benefit appli-
cations that have uniform behaviour.

The remainder of this section will compare the M&C
and M&S algorithms and will demonstrate how they af-
fect the performance of our generational memory system.
Section 2.1 covers object-allocation-related issues. Sec-
tion 2.2 overviews the young GC mechanism and sec-
tion 2.3 covers old GC issues. Then, section 2.4 presents
measurements to illustrate the performance differences
between the two algorithms.

2.1 Allocation Issues

As described in section 1.2, the main difference between
the M&S and M&C GCs is their allocation and de-
allocation policies.

During GC, M&S de-allocates garbage objects in-
place. It keeps track of where free space is located within
the heap and uses this information to satisfy future alloca-
tion requests.

The particular technique that we use to keep track of
free chunks in our implementation isfree lists, segregated
by size. We maintain separate free lists for free chunk
sizes up to 128 4-byte words, segregated free lists for sizes
up to 32K words, and a single large-free-chunk list for all
larger sizes. During each old GC cycle, the free lists are
re-created from scratch, rather than updated. Additionally,
all adjacent free chunks are coalesced into single bigger
ones.

It is worth pointing out that, according to Johnstone and
Wilson, the use of segregated free lists is one of the worst
allocation policies for generating fragmentation [13]. Our
decision to choose it had originally been based solely on
the grounds of simplicity. However, for the purposes of
the hybrid mechanism described and analysed in this pa-
per, fragmentation generated by M&S is not a major issue,
as M&C will eventually eliminate it. Hence, we did not
think that it was necessary to explore alternative allocation
policies.

Considering M&C, this GC slides all live objects to-

wards the beginning of the space, thus generating a single
contiguous free chunk. Allocation off this free chunk can
be very fast, using the well-known “bump a pointer and
check” technique. This is clearly faster than any alter-
native technique (in particular, allocation from free-lists)
and gives M&C an allocation performance advantage over
M&S.

We consider the two algorithms when applied to the
old generation of a generational memory system. In such
a system, most allocations to the old generation take place
in bursts during young GCs, as objects are evacuated from
the young generation1. This observation provides an op-
portunity to optimise the allocation operation of M&S in
the following manner: if a very large free chunk can be
discovered, then linear allocation can be performed inside
it, eliminating the need for look-ups on the free lists. This
optimisation is very effective early in an application’s ex-
ecution and allows M&S to allocate objects almost as ef-
ficiently as M&C. However, an appropriately large free
chunk is not always available, especially after a few old
GC cycles when the space starts to become fragmented,
and M&S typically has to eventually revert to allocating
directly from the free lists.

It is worth pointing out that, no matter how the old
generation is managed, the front-line allocator that all ap-
plications will use directly is a fast “bump a pointer and
check”, provided by the semispace-based young genera-
tion (see footnote 1 for an exception to this rule). So, an
old generation with a slower allocator (e.g. M&S) will not
affect the performance of most allocations.

To summarise, the speed of allocation to the old gener-
ation directly affects the performance of young GCs. As
M&C has an inherently faster allocation operation, it also
has the potential to support faster young GCs.

2.2 Young Generation GC Operation

Figure 2 illustrates the operation of young GCs over
M&C. Objects from the young generation are promoted
to the old generation using a Cheney-style copying tech-
nique [9]. Objects reachable from the old generation
are promoted first. Forwarding pointers are installed in
their old image in order to specify that an object has al-
ready been copied, to avoid copying it again if it is refer-
enced multiple times. Then, the reference fields of newly-
promoted objects are visited and, if they point to young
objects, those objects are promoted too. This process is
repeated until a given threshold of young objects has been
promoted (this is adjusted dynamically).

The allocation operation of M&C (;§2.1) guarantees

1The main exception to this rule is very large objects that do not fit
in the young generation and have to be allocated directly in the old one.
This, however, is relatively infrequent.

���
���
���

���
���
���

a a

Promoted
Old Object Image

In Young Generation

aa

Object Being
Live Object Garbage Object Free Chunk

Figure 1: Legend for figures 2, 3, 7, and 9.

d e f

e

a

b

f

c

B

A

d

c

fed

c

ba

b

a

a

C

ba c

b

Young Gen

Young Gen

Young Gen

Old Gen

Old Gen

Old Gen

Figure 2: Young GC Operation for M&C.

that all newly-promoted objects will be allocated linearly
into the old generation. This allows the above algorithm
to discover them and iterate over them (in order to poten-
tially promote more objects) very efficiently.

Figure 3 illustrates the operation of young GCs over
M&S. This is largely similar to the one corresponding
to M&C, with one important difference: M&S does not
guarantee that all newly-promoted objects will be allo-
cated linearly into the old generation. This makes scan-
ning them less efficient, compared with M&C.

The way we achieve this is to chain the old images of
newly-promoted objects into a linked list and iterate over
it when we need to iterate over promoted objects. The

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

a

f

e

f

d f

ed

cba

cb

B

d

A

C

ba

ba

e

c

a b c

Young Gen

Young Gen

Young Gen

Old Gen

Old Gen

Old Gen

Figure 3: Young GC Operation for M&S.

forwarding references from the old images of the objects
to the newly-allocated ones need to be installed anyway
(for the reasons described above), hence the only extra
expense is the construction of the list. In practice however
it turns out that this is not as efficient as the equivalent
operation of M&C.

To summarise, M&C not only provides faster allocation
to the old generation (;§2.1), it also has the potential
to allow faster object-promotion operations (e.g. iteration
over newly-promoted objects) during young GCs. These
two advantages that M&C has over M&S are, we believe,
the main causes of the faster young GC times that can be
achieved using M&C (timing results that demonstrate this

are included in sections 2.4 and 4).

2.3 Old Generation GC Issues

Even though M&C outperforms M&S in young GC times
(;§2.1 and §2.2), it performs worse in old GC times,
even up to 2–3 times slower than M&S. The main rea-
son for this is that the compacting phase of M&C (in our
implementation, a variation of theLisp 2 Algorithm, de-
scribed in Jones’ book [14]) needs to

❏ relocate objects, possibly causing excessive memory
copying, and

❏ patch reference fields to reflect the object relocations.

These two operations turn out to be more expensive than
M&S’s relatively simple operation of adding free chunks
to free lists. However, they can affect performance only if
a non-trivial percentage of garbage objects resides in the
heap. If there are no garbage objects, no live objects need
to be relocated and no reference fields need patching. In
practice, if the percentage of garbage objects is very low,
old GC times for M&S and M&C are very close. How-
ever, as this percentage increases, M&S starts outperform-
ing M&C.

Experimental results in section 4 reflect the claims
made in this section on old GC times.

2.4 Measurements

This section contains a concrete example to demonstrate
the claims on young and old GC times that have been pre-
sented so far. Figure 4 shows the behaviour of young GC
times for the large Javac benchmark (;§4.1), when using
M&C. Each point represents a single young GC, the x-
axis represents the start of the young GC (in seconds into
the benchmark), and the y-axis represents the duration of
the young GC (in milliseconds). Additionally, the two old
GCs that took place are indicated with vertical arrows.

The figure shows that the behaviour of the application
clearly affected the young GC times. It has in fact three
distinct phases: the first one up to 21 seconds into the
application (slower and more varied than the rest), the
second one between 21 and 50 secs (more consistent and
slightly faster than the rest, but with a few outliers), and
the third one after 50 seconds (the end of the first and sec-
ond phase is indicated in the figure).

Figure 5 shows the behaviour of young GC times for the
same benchmark, when using M&S. Its data points, again
representing single young GCs, are split into the following
four categories.

➀ 100% Linear: all the allocations to the old gener-
ation took place linearly to a single contiguous free
chunk.

➁ 90%–100% Linear: between 90% and 100% of al-
locations to the old generation took place linearly,
the rest were directly off the free lists. For the ones
that took place 100% linearly, no single contiguous
free chunk that was large enough could be found,
hence at least two non-contiguous ones were used.

➂ 0%–90% Linear : between 0% and 90% of alloca-
tions to the old generation took place linearly.

➃ 0% Linear : no allocations to the old generation took
place linearly and all of them were directly off the
free lists.

Looking at figure 5, and comparing it with figure 4, the
following observations can be made.

❏ It is clear that young GC times using M&S are gener-
ally slower compared with the young GC times over
M&C. This is most prominent during the first phase
of the benchmark (0–21 seconds).

❏ The majority of young GCs from category➀ took
place before the first old GC (as the heap had not
been fully used and a single contiguous free space
was still available). Subsequently, after free space
had been made available by the old GCs, contigu-
ous large free chunks had not been produced, hence
most young GCs did not fall into category➀. In-
terestingly, after each old GC, allocations still took
place mostly-linearly but to smaller and more than
one contiguous chunk (category➁). Then, when
these were exhausted, all allocations took place off
free lists (category➃). We believe that the above is
clear evidence of fragmentation being introduced in
the heap2.

❏ Figure 5, when compared with figure 4, shows some
evidence that the category➁ and➃ young GCs are
slightly slower than the ones of category➀ (their
data points seem to be higher).

Further, figure 6 shows the minimum, average, and max-
imum times for young and old GCs for the same bench-
mark. For the reasons described above, M&S does pro-
vide slower young GC times, compared with M&C. How-
ever, as seen on the same figure, it also provides much
faster old GC times3.

2Johnstone and Wilson claim that fragmentation only exists in a heap
when the free space is fragmentedand the free chunks are too small to
satisfy individual allocation requests [13]. In this paper, we will use a
slightly different definition of fragmentation:“the heap is fragmented
and no large enough free chunks are available to support linear allo-
cations during young GCs, even if free chunks are available to satisfy
non-linear allocations.”

3The figure is slightly misleading because, as it has already been
mentioned, only two old GCs took place. Still, this result follows the
general pattern we have observed with old GC times.

0

10

20

30

40

50

60

0 25 50 75 100 125 150 175 200

Y
ou

ng
 G

en
 G

C
 T

im
e

(m
s)

Young Gen GC Start (sec)

Old GC Old GC

Phase 1 End

Phase 2 End

Young GCs

Figure 4:Javacbenchmark with M&C — young GC trace.

0

10

20

30

40

50

60

0 25 50 75 100 125 150 175 200

Y
ou

ng
 G

en
 G

C
 T

im
e

(m
s)

Young Gen GC Start (sec)

Old GC Old GC

Young GCs / 100% Linear
Young GCs / 90%-100% Linear
Young GCs / 0%-90% Linear
Young GCs / 0% Linear

Figure 5:Javacbenchmark with M&S — young GC trace.

0 5 10 15 20 25 30 35 40

Young GC Times (ms)

 MC
 MS

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Old GC Times (sec)

 MC
 MS

Figure 6:Javacbenchmark, GC time distributions (min, avg, max).

From the above comparison, it would have been natu-
ral to conclude that M&S should perform better overall
as, after all, its old GCs are seconds faster than those of
M&C and its young GCs only a few milliseconds slower.
Still, the fact that around 2,270 young GCs took place,
compared with only 2 old GCs, amplified the slowness of
young GCs and did not make the faster old GCs as bene-
ficial as originally thought. It turns out that the total GC
time for M&S was only 0.03 seconds faster than that of
M&C.

We have observed this pattern (elapsed times being very
similar for both algorithms) in a variety of applications.
However, if an application performs mainly young GCs
and very few old GCs, it will benefit from M&C. Alter-
natively, if it relies on old GCs, it will benefit from M&S.
We have observed applications that fall into these two cat-
egories and measurements for some of them are presented
in section 4.

3 The Hot-Swapping Mechanism

Section 2 demonstrated the differences in performance
and trade-offs between M&S and M&C, when applied to
the old generation of a generational memory system. This
section presents a mechanism for dynamically switching
between M&S and M&C, in an attempt to achieve the
“best of both worlds”. This mechanism will be referred
to asHot-Swapping(H-S). Section 3.1 presents the re-
quirements that we imposed on H-S. Sections 3.2 and 3.3
describe how the the switch between M&C and M&S can
be performed efficiently. Then, section 3.4 outlines the
heuristic used to determine when to perform the switch
and section 3.5 concludes.

3.1 Requirements

The requirements that we imposed on the H-S mechanism
were the following.

➀ The switch between M&C and M&S should happen
efficiently, preferably in constant time.

➁ Apart from the mechanisms to switch between the
two algorithms and to determine whether to perform
the switch, no further performance penalty should be
imposed.

➂ Flexibility should be provided on when the switch
between M&C and M&S is allowed to be performed,
so that different heuristics can be easily adopted and
evaluated.

➃ Only minimal changes should be imposed on the im-
plementation of the existing M&C and M&S algo-
rithms.

3.2 Switching from M&C to M&S

The operation to switch from M&C to M&S is straight-
forward. M&C ensures that all the free space resides at
the end of the heap. When switching to M&S, it is only
necessary to add a single free chunk that spans all the free
space (this can be done in constant time). Having done
this, M&S can operate over the heap as it would normally
have done. Figure 7 illustrates this operation with a con-
crete example. First, a free chunk is added at the end of
the heap. Then, M&S operates as it would normally do,
finding a, c, andf to be garbage and replacing them with
free chunks.

3.3 Switching from M&S to M&C

Switching from M&S to M&C is slightly more compli-
cated. The reason for this is the presence of the free
chunks scattered around the heap, which M&C should not
be aware of. One way to deal with this, is to iterate over
all free chunks and transform them to unreferenced Java
objects (scalar arrays), which M&C will consider garbage
and reclaim. However, there might be a large number of
free chunks in the heap and these transformations might
prove to be a performance overhead.

To avoid having to apply the format changes during the
switch, we decided to change the format of free chunks
and “mask” them as garbage objects. Figure 8 illustrates
the format of scalar arrays in ResearchVM [26]. The ob-
ject header of an array contains three fields:(i) a pointer
to its NearClass4, (ii) a flags field that is mainly used by
the synchronisation mechanism [3], and(iii) a field con-
taining the length of the array.

Figure 10 illustrates the updated format of free chunks.
The first field of the free chunk header points to a
NearClass constructed for this purpose (essentially a copy
of the scalar array NearClass, but with a different ad-
dress). The second field is used for linking free chunks in
the free lists (;§2.1). The third field contains the length
of the free chunk. This format allows M&S to determine
whether an object is a free chunk or not (by comparing
its NearClass address to the well-known fake NearClass),
determine its length, and have access to a field that can be
used for linking purposes. Additionally, it allows M&C
to consider free chunks as garbage scalar arrays (note that
the GC does not use the flags field during its operation,

4A NearClassis a small data structure that contains GC-related in-
formation about instances of that class, mainly on object layout, type of
each field, type of entries (in the case of arrays), etc. All objects point to
their corresponding NearClasses and they, in turn, point to the full class
structure [26]. The NearClass structure was introduce in an attempt to
allow more efficient access to the information that the GC will need dur-
ing its operation by keeping it grouped together, hopefully causing less
secondary cache misses.

After M&S GC

Free Chunk
After Adding

���
���
���

���
���
���

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

c f

ca f

a edb

b

edb

ed

Figure 7: Switching from M&C to M&S.

contentslengthflags

object header

NearClass

Figure 8: Scalar array format in ResearchVM.

therefore M&C will not try to access the second field of
the object header).

Given the above format of free chunks, switching from
M&S to M&C is very efficient as no changes to the
heap are necessary: all free chunks will be considered
as garbage objects by M&C and their space will be re-
claimed. Figure 9 illustrates this operation. M&C oper-
ates directly over the heap and compacts live objectsa, c,
d, ande, reclaiming the space taken up by the two free
chunks and garbage objectb, providing a single contigu-
ous area of free space.

It is worth mentioning here that an alternative way to
perform the switch from M&S to M&C would have been
to modify M&C to be aware of free chunks. However, we
chose the approach outlined above purely on grounds of
simplicity, as it was less complicated to modify the format
of free chunks and leave M&C totally unchanged.

After M&C GC

��
��
��
��

��
��
��
��

No Transformation
Required

e

b

a dc

a ed

dca

c

b e

Figure 9: Switching from M&S to M&C.

chunk
next

contentslength

object header

fake NearClass

Figure 10: Free chunk “masked” as scalar array.

3.4 Heuristic

Sections 3.2 and 3.3 demonstrated how the switch be-
tween M&C and M&S is accomplished. However, an in-
teresting question is when to hot-swap between the two
GCs. The heuristic that we implemented is the following.

“Use M&C after expanding the heap to take
advantage of its fast allocation, otherwise use
M&S to take advantage of its fast old GC
times, unless linear allocation fails sufficiently,
in which case switch back to M&C once to elim-
inate fragmentation and move back to M&S.”

A more detailed explanation follows.

❏ At the beginning, and also immediately after a heap
expansion, a large free area is available at the end of
the heap, therefore we use the operation of M&C to

satisfy allocation requests to the old generation, as it
is the fastest.

❏ When an old GC is initiated, we use M&S (after
switching from M&C if necessary), as it provides
faster old GC times. Subsequently, we use the M&S
allocation mechanism to satisfy allocation requests
to the old generation.

❏ If less than 60% of young GCs since the last old GC
did not use full linear allocation (i.e. less than 60% of
young GCs were not in category➀,;§2.4), ensure
that the next old GC will switch from M&S to M&C,
because the heap is assumed to be fragmented and
M&C will eliminate this.

The above heuristic, even though it is simplistic, attempts
to take advantage of the best qualities of each GC. It also
efficient to implement, as only a flag needs to be set when
linear allocation fails and two counts need to be updated
once per young GC.

3.5 Summary

This section has presented a mechanism to efficiently hot-
swap between a M&S and a M&C GC. It satisfies the re-
quirements enumerated in section 3.1 because the switch
between the two algorithms can be performed in constant
time (requirement➀), no further restrictions (apart from
the ones already in place, e.g. all the threads must be
stopped [1]) are imposed on when the switch can take
place (requirement➂), and the only necessary change was
the alteration of the free chunk format, with the M&C
code being left completely unaltered (requirement➃).
Additionally, the GC Interface of ResearchVM uses vir-
tual calls to invoke most operations implemented by each
GC [26]. This allows us to, say, change the allocation
operation from that of M&C to that of M&S by simply
replacing the appropriate virtual call and imposing no fur-
ther performance penalty. This satisfies requirement➁.

4 Measurements

This section presents the timing results from the experi-
ments that were performed to compare the performance of
H-S to that of M&C and M&S on their own. Section 4.1
gives a brief description of the six benchmarks used and
section 4.2 presents and analyses the timing results.

All experiments were run on a lightly-loaded
Sun Ultra 80 workstation [22] with four 450MHz
UltraSPARC-II CPUs and 2GB of main memory running
the Solaris 7 operating system. All timing results reported
were obtained using thegethrtime Solaris call and are

the average of ten runs, after the worst time has been
removed.

4.1 The Benchmarks

The six benchmarks we used for our evaluation were the
following.

❏ GCBench5: A benchmark written to stress the allo-
cation and promotion operations of the Java system.
It creates a large long-lived tree and then spawns two
threads, which create smaller and shorter-lived trees.
This process is repeated five times.

❏ MarkTest : A benchmark written to evaluate opti-
misations applied to the marking phase of old GCs.
It allocates a very large object array and assigns re-
peatedly new objects to its entries in an attempt to
generate garbage. This process is repeated ten times.

❏ GCOld: A benchmark written to evaluate the per-
formance of incremental GCs. It creates disjoint tree
structures and performs operations on them, creating
short- and long-lived objects, while rendering some
others garbage. It is described in more detail else-
where [19, 20].

❏ JOS: It de-serialises a tree data structure from a
file using the standard Java Object Serialization
facilties [23], performs some updates to it, and re-
serialises it to a second file.

❏ DNA: An application that creates a suffix tree [24],
populates it with a DNA sequence, and performs
searches over it. The process is repeated for 5 dif-
ferent parts of a DNA sequence (that of merged
genomes of two kinds of yeast: saccharomyces
cervisæ and saccharomyces pombæ).

❏ Javac: A large Javac job that compiles all the stan-
dard classes of the Java 1.2.2 distribution. It reads
2,740.java files, containing 776,488 lines of code,
and generates 4,638.class files.

While the first four benchmarks are clearly synthetic, the
last two are actually “real” applications.

4.2 Results

Figure 11 plots the total GC times (i.e. the amount of time
the application was stopped for either a young or an old

5This benchmark was originally written by John Ellis, Pete Kovac,
and Hans Boehm. We have altered it so that it has a longer elapsed
time and uses more memory. Its original version is available from
http://www.hpl.hp.com/personal/Hans Boehm/gc/gc bench/ .

1

H
-S

0.97

M
&

C

1.07

M
&

S

GCBench

1

H
-S

1.24

M
&

C

0.96

M
&

S
MarkTest

1

H
-S

1.23

M
&

C

0.92

M
&

S

GCOld

1

H
-S

1.3

M
&

C

1.02

M
&

S

JOS

1

H
-S

1.04

M
&

C

1.05

M
&

S

DNA

1

H
-S

1.01

M
&

C

1

M
&

S

Javac

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
C

 T
im

e
(n

o
rm

al
is

ed
) Legend

Young GC

Old GC

Figure 11: Young/Old GC times, normalised with respect to H-S (less is better).

1

H
-S

0.98

M
&

C

1.05

M
&

S

GCBench

1

H
-S

1.16

M
&

C

0.97

M
&

S

MarkTest

1

H
-S

1.12

M
&

C

0.97

M
&

S

GCOld

1

H
-S

1.02
M

&
C

1.01

M
&

S

JOS

1

H
-S

1.03

M
&

C

1.03

M
&

S

DNA

1

H
-S

1

M
&

C

0.99

M
&

S

Javac

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
la

p
se

d
 T

im
e

(n
o

rm
al

is
ed

)

Legend

Young GC

Old GC

Application

Figure 12: Elapsed times, normalised with respect to H-S (less is better).

GC) for all benchmarks, normalised with respect to H-
S. The results show that, out of the three GC algorithms,
no one performed best in all cases. However, H-S does
appear to be the best choice as it performs best in three
cases (JOS, DNA, andJavac) or is closer to the faster
one, whether that is M&C (GCBench) or M&S (Mark-
TestandGCOld). It is interesting to note that, in the case
of the JOS andDNA benchmarks, H-S outperforms the
other two, even though M&C provides overall lower av-
erage young GC times and M&S lower average old GC
times.

Figure 12 plots the application elapsed times, nor-
malised with respect to H-S. This figure follows the pat-
tern of figure 11, however the difference between the three
GC algorithms is not as obvious; this is especially the
case for theJOS and Javac benchmarks for which the
GC times were a small fraction of the application elapsed
times (interestingly, these are the two benchmarks that

performed a lot of I/O).

It is important to note that, even though both H-S and
M&C could run theJOS benchmark with a 90MB old
generation, M&S failed to do so due to fragmentation-
related reasons (an allocation for a large 8MB array was
failing, even though there was at least twice as much space
free in the generation in total). Additionally, when execut-
ing theGCBenchbenchmark, M&S performed one more
old GC compared with H-S and M&C (see table 1), again
due to fragmentation-related reasons. These two points
are evidence to support that H-S can operate with the same
heap sizes to those of M&C, even if they cause fragmen-
tation problems to M&S.

Finally, it must be pointed out that, for a given bench-
mark, the difference in total GC times between two of the
GC algorithms matches closely, as expected, the differ-
ence in application elapsed times. The only exception
to this rule is theJavac benchmark. The reason behind

this is the excessive disk accesses that this benchmark
performs (reading.java files and writing.class files)
that caused the timing results to be slightly unpredictable
(even though the total GC times obtained from that bench-
mark seemed to be consistent).

All the timing results obtained from the six bench-
marks, when run with H-S, M&C, and M&S, are included
in appendix C (tables 1–6 — entries surrounded byjjs in-
dicate the best result out of the three algorithms).

5 Related Work

For a good introduction to garbage collection, the reader
is referred to two excellent publications which touch on
most of the techniques mentioned in this paper: Jones’
book [14] and Wilson’s survey [27]. On a related topic,
Wilson, Johnstone, and others survey different dynamic
allocators and discuss the problem of memory fragmenta-
tion [28, 13].

Generational garbage collection techniques were orig-
inally proposed by Lieberman and Hewitt [17], but Un-
gar reported the first implementation [25]. Appel has pro-
vided further analysis of their benefits [4, 5, 11].

Switching garbage collectors dynamically is not a new
idea and has already been explored in the past. There are
three notable efforts in this area.

Sansom proposeddual-mode garbage collectionthat
switches between a single-space compacting [15] and a
two-space copying [9] garbage collector. His motivation
was to achieve maximum performance but improve on
the high space requirements that the copying collector re-
quires.

Bartlett’s mostly-compacting garbage collector[6] is
targetted for a system with ambiguous garbage collection
roots. It allows live objects to be relocated, as long as
they are not ambiguously referenced. To improve perfor-
mance, a generational framework was added later [7]. The
motivation behind this work was purely to take advantage
of the benefits of compaction in an environment with am-
biguous roots.

Finally, Lang and Dupont proposed anincremental
incrementally-compacting garbage collector[16]. Ac-
cording to this algorithm, most free space is de-allocated
in-place during a collection phase, with a small region
of the heap being compacted using a two-space copying
collector. This is performed by piggy-backing a Cheney-
style copying operation [9] on the marking phase of the
collector. The region to be evacuated is chosen by split-
ting the heap into fixed size regions and cycling through
them. This scheme has similar motivation to ours (i.e.
uses both in-place de-allocation and compaction, the latter
to decrease fragmentation). However, it does require extra

memory to operate (one region must always be free in or-
der to evacuate live objects to) and it is not clear whether
always compacting a small region of the heap during each
collection is more beneficial than compacting the whole
heap when necessary (provided total pause time is not an
issue).

6 Conclusions and Future Work

This paper compares the performance and trade-offs of
two stop-the-world garbage collectors, Mark&Compact
and Mark&Sweep, when applied to the old space of a
generational memory system of a high-performance Java
virtual machine. It then proposes Hot-Swapping, a tech-
nique to dynamically switch between these two collectors
in order to benefit from the advantages of both algorithms.
Performance results, included in the paper, show that the
H-S technique can either outperform M&C and M&S, or
be slightly slower than the faster of the two, while never
being the slowest.

We are interested in further improving the Hot-
Swapping idea. We would like to determine what effect
on the performance of the H-S mechanism, if any, have
some of its parameters (young generation size, object-
promotion order, etc.). Further, the heuristic on when
to hot-swap (;§3.4) is currently very simplistic and we
would like to implement and evaluate alternatives.

Finally, the ability of our hybrid scheme to elimi-
nate fragmentation and improve young GC times seems
very attractive for ourmostly-concurrent generational GC
[19], which currently relies only on free-list-based allo-
cation and is sometimes affected by these two problems.
Hence, we would like to explore the possibility of incor-
porating a form of hot-swapping in such a concurrent en-
vironment.

A Acknowledgements

This work was supported by Sun Microsystems with fund-
ing through Sun’s External Research Program, that also
kindly donated the workstation used for the development
and evaluation of the ideas presented in this paper. The
author is grateful to the members of the Java Technology
Research Group at SunLabs East, especially Steve Heller,
Dave Detlefs, and Alex Garthwaite, for their support, con-
tributions, ideas, and all the food over the last few years!
The author would also like to thank Huw Evans, Rolf
Neugebauer, Andy King, Ole Agesen, Richard Jones, and
Malcolm Atkinson for their life-saving, last-minute, con-
structive feedback and Ela Hunt for providing theDNA
application.

B Trademarks

Sun, Sun Microsystems, Java, and Solaris are trademarks
or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. All SPARC trademarks
are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the United
States and other countries. Products bearing SPARC
trademarks are based upon an architecture developed by
Sun Microsystems, Inc.

References

[1] O. Agesen. GC Points in a Threaded Environment.
Technical Report TR-98-70, Sun Microsystems Lab-
oratories, Palo Alto, CA, December 1998.

[2] O. Agesen and D. Detlefs. Finding References in
Java Stacks. InProceedings of the OOPSLA’97
Workshop on Garbage Collection and Memory Man-
agement, Atlanta, GA, USA, October 1997.

[3] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel,
Y. S. Ramakrishna, and D. White. An Efficient
Meta-lock for Implementing Ubiquitous Synchro-
nization. InProceedings of OOPSLA’99, pages 207–
222, Denver, Colorado, USA, November 1999.

[4] A. W. Appel. Garbage Collection can be Faster than
Stack Allocation. Information Processing Letters,
25(4):275–279, January 1987.

[5] A. W. Appel. Simple Generational Garbage Collec-
tion and Stack Allocation.Software — Practice and
Experience, 19(2):171–183, March 1988.

[6] J. F. Bartlett. Compacting Garbage Collection with
Ambiguous Roots. Technical Report 88/2, Western
Research Laboratory, Digital Equipment Corpora-
tion, Palo Alto, CA, February 1988.

[7] J. F. Bartlett. Mostly-Copying Garbage Collec-
tion Picks up Generations and C++. Technical Re-
port TN-12, Western Research Laboratory, Digi-
tal Equipment Corporation, Palo Alto, CA, October
1989.

[8] H. Boehm and M. Weiser. Garbage Collection in an
Uncooperative Environment.Software — Practice
and Experience, pages 807–820, September 1988.

[9] C. J. Cheney. A Non-Recursive List Compacting Al-
gorithm. Communications of the ACM, 11(13):677–
678, November 1970.

[10] D. Detlefs and O. Agesen. Inlining of Virtual Meth-
ods. InProceedings of ECOOP’99, pages 258–278,
Lisbon, Portugal, June 1999.

[11] M. J. R. Goncalves and A. W. Appel. Cache Perfor-
mance of Fast-Allocating Programs. Technical Re-
port CS-TR-482-94, Princeton University, Decem-
ber 1994.

[12] J. Gosling, B. Joy, and G. Steele.The Java Language
Specification. Addison-Wesley, 1996.

[13] M. S. Johnstone and P. R. Wilson. The Memory
Fragmentation Problem: Solved? InProceedings of
the First International Symposium on Memory Man-
agement, volume 34(3) ofACM SIGPLAN Notices,
Vancouver, Canada, October 1998. ACM Press.

[14] R. E. Jones.Garbage Collection: Algorithms for Au-
tomatic Dynamic Memory Management. John Wiley
& Sons, Ltd, 1996. With a chapter on Distributed
Garbage Collection by R. Lins.

[15] H. B. M. Jonkers. A Fast Garbage Compaction Al-
gorithm. Information Processing Letters, 9(1):26–
30, July 1979.

[16] B. Lang and F. Dupont. Incremental Incrementally
Compacting Garbage Collection.ACM SIGPLAN
Notices, 22(7):253–263, July 1987.

[17] H. Lieberman and C. E. Hewitt. A Real-Time
Garbage Collector based on the Lifetimes of Ob-
jects. Communications of the ACM, 26(6):419–429,
1983.

[18] T. Printezis. Hot-Swapping between a Mark&Sweep
and a Mark&Compact Garbage Collector in a Gen-
erational Environment. Technical Report TR-2001-
78, Department of Computing Science, University
of Glasgow, Scotland, March 2001.

[19] T. Printezis and D. Detlefs. A Generational Mostly-
Concurrent Garbage Collector. InProceedings of the
2000 International Symposium on Memory Manage-
ment, pages 143–154, Minneapolis, MN, USA, Oc-
tober 2000. ACM Press.

[20] T. Printezis and D. Detlefs. A Generational Mostly-
Concurrent Garbage Collector. Technical Report
TR-2000-88, Sun Microsystems Laboratories, June
2000.

[21] P. Sansom. Combining Single-Space and Two-Space
Compacting Garbage Collectors. InFunctional Pro-
gramming, Glasgow 1991: Proceedings of the 1991
Workshop, Portree, UK, pages 312–323. Springer-
Verlag, 1992.

[22] Sun Microsystems Inc. Ultra 80 Workstation
Profile.
http://www.sun.com/desktop/products/Ultra80/
[November 5, 2000].

[23] Sun Microsystems Inc.Java Object Serialization
Specification — JDK 1.2, November 1998. Revi-
sion 1.43.

[24] E. Ukkonen. On-Line Construction of Suffix-Trees.
Algorithmica, 14(3):249–260, 1995.

[25] D. M. Ungar. Generation scavenging: A non-
disruptive high performance storage reclamation al-
gorithm. ACM SIGPLAN Notices, 19(5):157–167,
April 1984.

[26] D. White and A. Garthwaite. The GC Interface in the
EVM. Technical Report TR-98-67, Sun Microsys-
tems Laboratories, 1999.

[27] P. R. Wilson. Uniprocessor Garbage Collection
Techniques. InProceedings of the First Interna-
tional Workshop on Memory Management, number
637 in Lecture Notes in Computer Science, pages
1–42, St Malo, France, September 1992. Springer-
Verlag.

[28] P. R. Wilson, M. S. Johnstone, M. Neely, and
D. Boles. Dynamic Storage Allocation: A Sur-
vey and Critical Review. InProceedings of the
Second International Workshop on Memory Man-
agement, number 986 in Lecture Notes in Com-
puter Science, Kinross, Scotland, September 1995.
Springer-Verlag.

C Timing Results

GCBench H-S M&C M&S

Elapsed Time (sec) 42.92 j42.18j 45.08
Total GC Time (sec) 31.74 j30.94j 33.96
Young Gen Size (MB) 2 2 2
Old Gen Size (MB) 32 32 32
Young GC Avg (ms) 32.63 j30.27j 34.11
Young GC Max (ms) 198.1 j79.7j 197
Young GC Total (sec) 24.70 j22.92j 25.82
Old GC Avg (ms) j292.57j 333.11 324.94
Old GC Max (ms) j499.3j 965.1 587.9
Old GC Total (sec) j7.02j 7.99 8.12
M&Cs Performed 4 24 0
M&Ss Performed 20 0 25

Table 1:GCBenchresults.

MarkTest H-S M&C M&S

Elapsed Time (sec) 15.10 17.60 j14.58j

Total GC Time (sec) 10.70 13.17 j10.21j

Young Gen Size (MB) 2 2 2
Old Gen Size (MB) 32 32 32
Young GC Avg (ms) 56.00 j50.69j 57.41
Young GC Max (ms) 103.81 j69.54j 101.45
Young GC Total (sec) 6.32 j5.72j 6.48
Old GC Avg (ms) 397.37 676.27 j338.61j
Old GC Max (ms) 645.54 702.90 j345.18j
Old GC Total (sec) 4.37 7.43 j3.72j

M&Cs Performed 2 11 0
M&Ss Performed 9 0 11

Table 2:MarkTest results.

GCOld H-S M&C M&S

Elapsed Time (sec) 75.58 84.65 j72.54j

Total GC Time (sec) 38.78 47.84 j35.77j

Young Gen Size (MB) 2 2 2
Old Gen Size (MB) 350 350 350
Young GC Avg (ms) 15.09 j14.75j 16.22
Young GC Max (ms) 64.1 j41.9j 63.4
Young GC Total (sec) 19.5 j19.05j 20.95
Old GC Avg (ms) 6423 9588 j4937.7j
Old GC Max (ms) 9511.9 10727.7 j5162.2j
Old GC Total (sec) 19.26 28.76 j14.81j

M&Cs Performed 1 3 0
M&Ss Performed 2 0 3

Table 3:GCOld results.

JOS H-S M&C M&S

Elapsed Time (sec) j147.17j 149.03 147.70
Total GC Time (sec) j4.00j 5.21 4.08
Young Gen Size (MB) 2 2 2
Old Gen Size (MB) 110 110 110
Young GC Avg (ms) 24.40 j24.25j 25.10
Young GC Max (ms) 59.9 j59 j 63.8
Young GC Total (sec) 2.83 j2.81j 2.91
Old GC Avg (ms) 1169.8 2400.3 j1167.4j
Old GC Max (ms) 1169.8 2400.3 j1167.4j
Old GC Total (sec) 1.17 2.39 j1.16j

M&Cs Performed 0 1 0
M&Ss Performed 1 0 1

Table 4:JOS results.

DNA H-S M&C M&S

Elapsed Time (sec) j203.37j 208.32 209.45
Total GC Time (sec) j130.59j 135.88 136.5
Young Gen Size (MB) 2 2 2
Old Gen Size (MB) 400 400 400
Young GC Avg (ms) 226.39 j214.40j 238.29
Young GC Max (ms) 333 j308.4j 342.4
Young GC Total (sec) 112.29 j106.34j 118.19
Old GC Avg (ms) j6097.5j 9842.57 6099.77
Old GC Max (ms) 6448.2 9929.9 j6442.8j
Old GC Total (sec) j18.29j 29.52 18.3
M&Cs Performed 0 3 0
M&Ss Performed 3 0 3

Table 5:DNA results.

Javac H-S M&C M&S

Elapsed Time (sec) 224.63 j223.77j 224.20
Total GC Time (sec) 31.38 31.41 j31.38j

Young Gen Size (MB) 2 2 2
Old Gen Size (MB) 135 135 135
Young GC Avg (ms) 11.79 j11.12j 12.35
Young GC Max (ms) 38.3 j38.1j 38.8
Young GC Total (sec) 26.79 j25.24j 28.05
Old GC Avg (ms) 2282.4 3071.6 j1649.25j
Old GC Max (ms) 2824.8 3416.6 j1726.5j
Old GC Total (sec) 4.56 6.14 j3.29j

M&Cs Performed 1 2 0
M&Ss Performed 1 0 2

Table 6:Javacresults.

