USENIX Association

Proceedings of the
Java™ Virtual Machine Research and
Technology Symposium
JVM '01)

Monterey, California, USA
April 23-24, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office @usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Parallel Garbage Collection for Shared Memory Multiprocessors

Christine H. Flood
Sun Microsystems Laboratories
Christine.Flood@sun.com

Nir Shavit
Tel-Aviv University

shanir@tau.ac.il

Abstract

We present a multiprocessor “stop-the-world”
garbage collection framework that provides multi-
ple forms of load balancing. Our parallel collectors
use this framework to balance the work of root scan-
ning, using static overpartitioning, and also to bal-
ance the work of tracing the object graph, using a
form of dynamic load balancing called work steal-
ing. We describe two collectors written using this
framework: pSemispaces, a parallel semispace col-
lector, and pMarkcompact, a parallel markcompact
collector.

1 Introduction

The Java™ programming language is increas-
ingly used for large, memory-intensive, multi-
threaded applications run on shared-memory multi-
processors. Most Java virtual machines (JVMTMs)
employ “stop-the-world” garbage collection (GC) al-
gorithms that first halt the running threads and then
perform the GC. If we have more than one processor
available, it makes sense to employ them all in the
GC process. This paper describes the paralleliza-
tion of two sequential GC algorithms to allow them
to take advantage of all available processors.

The Java Technology Research Group at Sun
Microsystems Laboratories’ has developed a JVM
that includes a GC interface [12] to support mul-
tiple GC algorithms, thus enabling comparison of
various GC strategies in a high performance vir-
tual machine. This paper describes our augmen-
tation of this interface with a parallel infrastruc-
ture to support multiple parallel GC strategies.

1

www.sun.com/research/jtech

David Detlefs
Sun Microsystems Laboratories
David.Detlefs@sun.com

Xiaolan Zhang
Harvard University
cxzhang@eecs.harvard.edu

We use this infrastructure to parallelize two well-
known collection schemes: a two-space copying al-
gorithm (semispaces) and a mark-sweep algorithm
with sliding compaction (markcompact). The result-
ing algorithms have outperformed their highly-tuned
product-quality sequential counterparts on multi-
Processors.

In parallelizing sequential GC algorithms, one has
to tackle two key issues: load balancing of all parts
of the algorithm and re-engineering of any inherently
sequential elements.

In both algorithms, the key to load balancing is to
correctly and efficiently partition the task of tracing
the object graph. This task unfortunately does not
lend itself to static partitioning. Our approach, de-
scribed in the following sections, is to combine static
partitioning with dynamic load balancing based on
work stealing. We show that this combination of
static and dynamic methods leads to effective paral-
lelization of both the semispaces and markcompact
collectors. It is our belief that the effectiveness of our
dynamic partitioning is the result of a finely-tuned
lock-free work-stealing algorithm based on Arora et
al. [1] whose low overhead allows us to balance our
work at the individual object level.

In both algorithms there are parts that are not
easily parallelizable. In the semispaces algorithm
these included: installing forwarding pointers, allo-
cating in parallel, and scanning the card table for
references from the old generation. Though the in-
stallation of forwarding pointers is not parallelized,
it is performed in a lock-free manner. We make
allocation less of a sequential bottleneck by glob-
ally allocating local buffers from which objects may
be allocated without synchronization. Scanning the
card table requires a novel partitioning scheme to
achieve good load balancing. In markcompact the

main inherently sequential part is the compaction
phase, which involves copying all objects to one end
of the heap. Here we statically partition the old
generation heap into n partitions, compacting even
partitions in one direction and odd partitions in the
other direction, thus avoiding synchronization and
optimizing the size of the free areas.

1.1 A short description of previous work

Endo et al. [11] describe a parallel stop-the-world
GC algorithm using work stealing. Their algorithm
depends on threads with work copying some work
to auxiliary queues, where the work is available for
stealing. Threads without work look for an auxil-
iary queue with work, lock the queue, and steal half
of the queue’s elements. Our work extends theirs
by using a lower-overhead work-stealing mechanism,
and by addressing the harder problem of paralleliz-
ing relocating collectors, not just a non-relocating
mark-sweep algorithm.

Halstead [6] describes a multiprocessor GC for
Multilisp. Each processor has its own local heap,
and they use lock bits for moving and updating for-
warding pointers. Load balancing is done statically
rather than dynamically.

Many collectors operate concurrently with muta-
tor activity [9, 4, 5, 8]. This kind of concurrency is
orthogonal to the style of parallel collection we de-
scribe in this paper. A collector might combine both:
some concurrent collectors have stop-world phases
that might be performed in parallel, and collectors
with concurrent GC threads might use several such
threads working in parallel to cope with high aggre-
gate garbage-creation rates in multi-threaded pro-
grams.

Steensgaard [10] explores a clever method for par-
tially parallelizing collection. Compile-time analysis
identifies allocation sites that allocate objects that
never escape the allocating thread (are never acces-
sible to other threads.) Such objects are allocated
in a thread-local heap, which can be collected inde-
pendently of other threads. This technique avoids
the synchronization issues that general parallel col-
lection must address, but requires extensive and ex-
pensive static analysis, and only a subset of objects
may be collected thread-locally.

1.2 Overview

Section 2 presents basic parallel programming
techniques. Section 3 presents our parallel GC in-
frastructure, which applies these techniques to the
garbage collection problem. Sections 4 and 5 de-
scribe two parallel algorithms we implemented us-

ing this infrastructure: pSemispaces and pMarkcom-
pact. Section 6 presents results for three bench-
marks. Section 7 presents conclusions.

2 Parallel Programming Basics

If we had a predetermined amount of work to do
and were able to partition it perfectly across all avail-
able processors, we would achieve perfect parallelism
and finish the collection in the least possible amount
of time. Some tasks can be partitioned in this way;
we call them statically partitionable. Other tasks are
difficult to divide into subtasks of predictable size.
For example, tracing the graph of a program’s live
data is difficult to subdivide a priori, because it de-
pends on the shape of the object graph. Many tasks
fall somewhere in between: we are able to partition
them statically into roughly, but not exactly, equiva-
lent subtasks. We overpartition such tasks. That is,
we break the tasks into more subtasks than we have
threads, and then each thread dynamically claims
one subtask at a time.

There are two motivations for overpartitioning.
First, the number of processors available to the GC
process is unpredictable due to load on the machine
from other processes. If a task were divided into ex-
actly n subtasks on an n-processor machine, and one
of the processors were unavailable, then one proces-
sor would have to complete two subtasks, thereby
doubling the time for the computation. With over-
partitioning, this extra subtask would be divided
into several smaller subtasks that may be distributed
across the active processors. Second, when we only
have a rough estimate of how much work each sub-
task represents, assigning just one task to each pro-
cessor risks one of those tasks being significantly
larger than the others. Overpartitioning both de-
creases this risk by making smaller subtasks, and
enables processors that have finished smaller sub-
tasks to take on additional work.

Some tasks are not even approximately statically
partionable. These tasks require some form of dy-
namic load balancing. Work stealing [2] is a highly
effective load balancing technique in such situations.
In this approach, each thread works on its own tasks
until it runs out of work, and then takes the initia-
tive to steal work from one of the other processors.

2.1 A short explanation of lock-free
work-stealing queues

Arora et al. present a non-blocking implementa-
tion of a double-ended queue data structure tailored

to support work stealing with minimal synchroniza-
tion. Each thread has its own work queue of tasks.
There are three fundamental operations: PushBot-
tom pushes an element onto the bottom of the queue,
PopBottom pops an element from the bottom of the
queue, and PopTop pops an element from the top
of the queue. PushBottom and PopBottom are lo-
cal operations that usually require no synchroniza-
tion. PopTop is used for stealing from other threads’
queues.

A parallel algorithm using work stealing starts
with available tasks distributed among the work
queues. Each thread uses PopBottom to claim tasks
from its local queue. Execution of this task may re-
veal new subtasks, which are then added to the local
queue using PushBottom. When a thread runs out
of work it uses PopTop to steal a task from some
other thread’s work queue. Synchronization is re-
quired only when stealing an element from another
queue or when claiming the last element from the
local queue.

We modified the algorithm of Arora et al. in sev-
eral ways. We added a termination detection pro-
tocol to ensure that all work is complete before any
thread terminates. We also added support for fixed
size queues in the form of an overflow detection and
handling mechanism.

3 Parallel GC Infrastructure
3.1 Balancing root scanning

Garbage collection computes the transitive clo-
sure of objects reachable from a set of root pointers.
In our JVM, the root set consists of class statics,
thread stacks, etc. We overpartition these roots into
groups, and the GC threads compete dynamically
to claim root groups. Even if the static partition-
ing succeeds in balancing root scanning, starting off
with balanced groups is not sufficient. Some roots
may lead to large data structures, while others may
lead to single objects.

3.2 Balancing traversal of live data

We solve this problem by using work stealing to
dynamically balance the load. The tasks are refer-
ences to objects to be scanned, i.e., examined for
pointers to other objects.? A scanning GC thread

2For large objects, especially large arrays of references, it
might be advantageous to consider the object as comprised of
several chunks, and subdivide the object-scanning task into
the separate tasks of scanning each chunk. We have not im-
plemented this extension.

acquires an object reference either from its local
queue or by stealing from another thread’s queue,
and pushes any outgoing references found in the ob-
ject onto its local queue. The termination detection
protocol is used to determine the completion of the
transitive closure.

Consider the behaviour of this algorithm on a
large linked data structure, say a binary tree. One
thread will scan a root pointer referencing the top-
level node of the tree, push both child nodes onto
its work queue, and then pop one of the child nodes
for processing. The other child node is now available
for stealing. In this way, for a sufficiently large tree,
the load will be dynamically balanced.

3.3 Termination detection

The termination protocol is based on a status
word containing one bit for each thread participating
in the GC. All threads start off marked active. As
long as a thread has local work, gets work from the
overflow lists (see section 3.4), or succeeds in stealing
work, its bit in the status word remains on. Once it
is unable to find work it sets its status bit to off and
loops, checking to see if all the status bits are off. If
s0, then all threads have offerred to terminate, so the
algorithm is complete. If not, the thread peeks at
other threads’ queues, attempting to find one with
work to steal. If it finds a thread with work to steal,
the thief sets its status bit to active and tries to steal
the work. If it succeeds, it goes back to processing.
If it fails, it sets its status bit back to inactive and
resumes the loop.

Our colleague Peter Kessler has suggested replac-
ing the status word with an integer indicating the
number of active threads. To offer termination, a
thread would decrement this count with an atomic
instruction; if the count goes to zero, all threads
have terminated. When an inactive thread becomes
active, it would increment the count, again with an
atomic instruction. This avoids the parallelism lim-
itation imposed by the bit-width of a word, but we
have not yet implemented this proposal.

3.4 Handling overflow in GC work-
stealing queues

In order to avoid allocation during GC we allo-
cate fixed-size work-stealing queues at startup time
and use them for all GC’s. This required modifi-
cations to the work-stealing code to check for over-
flow, and a mechanism for handling overflow grace-
fully by offloading some items to a global overflow
set. Threads without work look to the overflow set
for work before resorting to stealing. We wished to

OverflowClasses ClassA ClassB ClassC
\—4‘—'
Next — Next — Next
Work Work | Work
Object
Al

17
OijT.

A2

Figure 1: Overflow sets

be able to handle overflow without any additional
storage space and also to avoid “thrashing” of ob-
jects between the overflow set and the work-stealing
queues.

We modified PushBottom to check for possible
overflow before adding an element. If adding an ele-
ment would cause the queue to overflow, we pop all
elements in the bottom half of the queue and add
them to the overflow set.

The overflow set mechanism, due to our colleague
Ole Agesen, exploits a class pointer header word
present in all objects in our implementation. As
shown in Figure 1, for each class X, we link all in-
stances of X in the overflow set together in a linked
list whose head is contained in the class structure for
X. Each object’s class pointer is overwritten with the
“next” pointer of the list. This does not destroy in-
formation, since all objects in a given class’s list are
instances of that class. All classes with instances in
the overflow set are linked into another list. This
mechanism represents the overflow set with only a
small per class storage overhead.

By draining only the bottom half of a queue on
overflow and filling no more than the top half of the
queue when retrieving work from the overflow set, we
ensure that no object will be placed in the overflow
set more than once, thus avoiding “thrashing.”

4 Parallel Semispaces

Semispaces (a.k.a. “copying”) collection divides
the heap equally into two regions: from-space and
to-space. Objects are allocated in from-space until
it fills up, then a GC is triggered. Reachable ob-
jects are copied into a contiguous area of to-space,
leaving the remaining space free for allocation. As
the GC traces the transitive closure, it copies each
object when it is first encountered, leaving a for-

warding pointer in the from-space copy of the object
to indicate its new address in to-space. Subsequent
references to this object are updated with the for-
warding pointer.

In the elegant style of Cheney [7], a copy pointer
tracks the next free address, and a scan pointer
tracks the next object to be scanned. The GC scans
the object indicated by the scan pointer; it examines
references in the object, copying any referenced ob-
ject still in from-space to to-space, updating the copy
pointer. The scan pointer is then updated to point
to the next object. Collection is complete when the
scan pointer reaches the copy pointer, at which point
we swap to-space and from-space, and resume the
program.

Our pSemispaces algorithm parallelizes this se-
quential algorithm. We depend on the infrastruc-
ture to properly distribute the process of scanning
the roots. Rather than using Cheney’s copy and
scan pointers to represent the set of objects to be
scanned, we use explicit work-stealing queues.

With a parallel copying collector, many threads
allocate objects in to-space at the same time. One
approach to managing this concurrency would be for
each thread to increment the copy pointer atomically
for each object it copies, using some hardware op-
eration such as fetch-and-add or compare-and-swap
(CAS) [3]. However, our experiments indicate that
this results in too much contention. The alternative
we adopted was to have each thread use such atomic
allocation only to allocate relatively large regions
called local allocation buffers (LABs). A thread can
then do local allocations within this buffer with no
synchronization. A thread can also deallocate its
most recent allocation, which is useful in paralleliz-
ing the insertion of the forwarding pointer, as we ex-
plain below. LABs should be large enough to reduce
contention on the copy pointer, yet small enough to
avoid excessive fragmentation. Note that the po-
tential fragmentation introduced by LABs makes it
possible that to-space may not hold all of the objects
copied from from-space. However, this is a concern
only when the heap is very nearly full.

Collection must preserve the shape of the object
graph. If several threads are simultaneously process-
ing references to the same uncopied object in from-
space, only one may succeed in copying the object.
The others must observe that the object has been
copied and update their references according to the
forwarding pointer installed by the copying thread.
We accomplish this by having each thread specula-
tively allocate space for the object in its LAB, and
then use a CAS to update the from-space object’s
forwarding pointer to point to the speculative new

address. If the CAS succeeds, the thread proceeds
to copy the object. If the CAS fails, the CAS returns
the updated forwarding pointer.?> The thread uses
this value to update its reference, and then locally
retracts its speculative allocation.

The semispaces algorithm is often used in
youngest generations of generational collectors [7,
13]. A generational collector has two or more gen-
erations; objects are usually allocated in younger,
smaller generations, and promoted to older gener-
ations if they survive long enough. The hope is
that youngest-generation collections are significantly
faster than collections of the entire heap, and likely
to reclaim sufficient space to continue computa-
tion. However, multi-threaded programs running
on multiprocessors will have larger aggregate alloca-
tion rates than single-threaded programs, and will
therefore fill a young generation of a given size more
quickly, increasing collection frequency. It is there-
fore attractive to increase the size of the youngest
generation to reduce collection frequency with multi-
threaded programs, and to use parallelism to keep
pause times low and throughput high.

Two further issues must be addressed when us-
ing the pSemispaces algorithm in the youngest gen-
eration of a generational collector. First, collector
threads will allocate both in to-space and in the
older generation (for promotion). Both forms of al-
location must be parallelized; old-generation promo-
tion therefore uses the same LAB-based allocation
technique as to-space allocation. Second, when per-
forming a youngest-generation collection, we treat
all older generation objects as roots. We cannot
traverse the entire heap to find youngest-generation
references, or else youngest-generation collection will
be as costly as collection of the entire heap. There-
fore, generational systems, including ours, often keep
track of such old-to-young references using a card
table, an array whose entries correspond to subdivi-
sions of the heap called cards. When mutator code
updates a reference field, it also “dirties” the corre-
sponding card table entry. The youngest-generation
collector scans the card table to find these dirty en-
tries, which are the ones whose corresponding cards
might contain old-to-young references.*

For large heaps, scanning the card table may take
a long time and therefore should be partitioned
across threads. At first we partitioned this work in
the most straightforward way: dividing the card ta-
ble into consecutive contiguous blocks, which were

3In CAS implementations of which we are aware.

4When a card contains old-to-young references after a col-
lection, the collector leaves the corresponding card table entry
dirty.

Figure 2: Parallel Compaction

claimed by the GC threads. Unfortunately this
didn’t work well on some applications, because some
blocks were very dense, while others were sparse;
for example, large arrays of references caused dense
blocks. Scanning the dense blocks was dominating
the cost of the GC. To address this problem we in-
stead overpartitioned the card table into N strides,
each of which is a set of cards separated by intervals
of N cards. Thus cards {0, N,2N, ...} comprise one
stride, cards {1, N+1,2N+1, ...} comprise the next,
and so on. This causes dense areas to be partitioned
across tasks. As usual, threads compete to claim
strides.

5 Parallel markcompact

Our old generation uses a markcompact collector.
The original sequential markcompact collector con-
sists of four major phases:

e The marking phase, which identifies and marks
live objects.

e The forwarding-pointer installation phase,
which computes the new addresses live objects
will have after compaction and stores these ad-
dresses as forwarding pointers in the objects’
headers.

e The reference redirection phase, which updates
references in live objects to the new addresses
of the objects they reference.

e The compaction phase, which copies live objects
to their new compacted addresses.

Our pMarkcompact algorithm parallelizes this
single-threaded algorithm, by parallelizing each of
the phases. The parallelization of the first three
phases is relatively straightforward, but the final
compaction phase presented difficulties. The orig-
inal sequential compaction phase compacted all live
data to the low end of the heap. In the parallel case,
it was difficult to ensure that one thread did not
overwrite object data that another thread had yet

to copy. Our solution to this problem is to break
the heap into n regions, where n is the number of
GC threads. Each thread claims a region and slides
live objects in its own region only. (Section 5.2 dis-
cusses the criteria that influence the selection of re-
gion boundaries.) The direction to which objects
are moved alternates for odd and even numbered re-
gions. Figure 2 shows an example of a heap with 4
regions and 2 free areas after compaction. In gen-
eral, a heap with n regions has L”THJ contiguous free
areas. For practical purposes, a small number of suf-
ficiently large contiguous free areas allows allocation
as efficiently as a single free area.

The following subsections describes each parallel
phase in detail.

5.1 Parallel marking

Similar to pSemispaces, the parallel marking
phase employs the parallel GC infrastructure to stat-
ically partition the root set and to dynamically bal-
ance further marking work through work stealing.
Each thread keeps a work queue of objects to be
scanned for pointers to other objects. When a thread
runs out of objects, it attempts to steal an object
from the work queue of another thread. Unlike
pSemispaces, which requires synchronization on the
installation of forwarding pointers, marking is idem-
potent and therefore requires no synchronization.®

5.2 Parallel forwarding-pointer installa-
tion

At this point, all live objects have been marked.
The next phase corresponds to the “sweep” phase of
a mark-sweep collector, and also has the side-effect
of computing the distribution of live data, which will
guide the partitioning of the heap into the regions
discussed above. First, we overpartition the heap
into m wunits of (roughly) equal size. (We ensure
that unit boundaries are object-aligned, which leads
to the approximation above.) The value of m is typ-
ically 4n, where n is the number of GC threads. The
GC threads compete to claim units; for each unit,
the thread traverses the objects, counting the num-
ber of bytes of live data in the unit, and coalescing
contiguous regions of dead objects into single blocks
traversable in constant time.

When all units are processed, we know the ex-
act amount of live data in each unit, and can parti-
tion the heap into regions with approximately equal

5Note that this lack of synchronization also depends on
having the mark bits present in the object; if an external
marking array were used then one word might contain several
marks, which would necessitate synchronization.

amounts of live data. The partition is such that each
region contains one or more of the units created in
the previous pass, i.e. regions are unit-aligned. Re-
gions are the partitions used to solve the compaction
problem; they are the heap divisions in Figure 2.
The region that contains an object dictates the di-
rection in which it will be copied. Since we know
how much live data is in each unit in a region, it is
straightforward to calculate the new address of the
first live object in a particular unit, by summing the
live data of the previous units in the region (in the
appropriate compaction order for the region). Thus,
forwarding pointer installation can use the unit par-
titioning already established. GC threads dynami-
cally claim units and install forwarding pointers in
all live objects within the unit.

5.3 DParallel reference redirection

Redirecting object references requires scanning
roots, objects in the current generation, and ob-
jects in other generations for references to objects
in the current generation. The forwarding pointers
inserted by the previous phase are used to update
these references. We rely on the parallel GC infras-
tructure to balance the work of scanning the roots.
Currently, the scanning of the young generation is
treated as a single task; in the future, this might be
further partitioned. Within the old generation we
reuse the previous unit partitioning.

5.4 Parallel compaction

The last phase is parallel compaction. As dis-
cussed previously, we use the larger-grained region
partitioning in this phase. There is a trade-off here
between parallelism, which favors more, smaller par-
titions, and allocation efficiency, which favors fewer,
larger partitions (and thus, fewer, larger free areas
at the end of compaction.) We currently favor al-
location efficiency, by making the region partition
an exact partition (as opposed to an overpartition.)
This design choice will be investigated further in the
future.

6 Results
6.1 Benchmarks

We present results for three benchmarks. GCOIld
is a synthetic program which can be used to present
a variety of loads to a garbage collector, includ-
ing large heaps requiring significant old-generation

collections. SpecJBB is a scalability benchmark
inspired by TPC-C which emulates a 3-tier sys-
tem with emphasis on the middle tier. Javac is a
compiler that translates Java programming language
source code to Java class files.

The GCOId application allocates an array, each
element of which points to the root of a binary tree
about a megabyte in size. An initial phase allocates
these data structures; then the program does some
number of steps, maintaining a steady-state heap
size. Each step allocates some number of bytes of
short-lived data that will die in a young-generation
collection, and some number of bytes of nodes in
a long-lived tree structure that replaces some pre-
viously existing tree, making it garbage. Each step
further simulates some amount of mutator computa-
tion by several iterations of an busy-work loop. Fi-
nally, since pointer-mutation rate can be an impor-
tant factor in the performance of generational col-
lection, each step modifies some number of pointers
(in a manner that preserves the amount of reach-
able data). Command-line parameters control the
amount of live data in the steady state, the number
of steps in the run, the number of bytes of short-
lived and long-lived data allocated in each step, the
amount of simulated work per step, and the num-
ber of pointers modified in a step. We ran GCOIld
with 300MB of live data, allocating three bytes of
short-lived data for every byte of long-lived data.

SpecJBB is a “throughput-based” benchmark: it
measures the amount of work accomplished in a fixed
amount of time, rather than the amount of time re-
quired to accomplish a fixed amount of work. To
create runs that can be compared to determine par-
allel speedup for GC, we run with a fixed number (8)
of “warehouses” (i.e., mutator threads), and consid-
ered only the first 500 collections of each run. We
believe the mutator behavior between these collec-
tions is sufficiently similar to make these runs com-
parable.

Each graph is annotated with heap configuration
parameters used for the runs. A heap configuration
specifies the sizes of the young and old generations
(which are fixed in all our experiments.) For exam-
ple, 16m:600m indicates a young generation of 16 MB
and an old generation size of 600 MB. The number
of young- and old-generation collections is similar
across all runs, including the sequential run, since
allocation behavior is largely unaffected by collec-

tion algorithm. (We discuss an exception below.)

The runs were performed on a Sun Enterprise™

3500 server, with 8 336 MHz UltraSPARC™ pro-
cessors sharing 2 Gbyte of memory. The collector
we ran was a generational collector with a parallel

semispaces young generation and a parallel mark-
compact old generation.

6.2 Scalability

Figure 3 presents our results in terms of scalability
graphs. The x-axis is the number of processors. The
y-axis shows speedup relative to the performance of
the parallel collector run on one processor. We also
show the curve for linear speedup and the perfor-
mance of the sequential form of each GC algorithm.
Speedups for the young generation and old gener-
ation are shown on separate graphs; speedups are
calculated on the basis of total time for collections
of the given type.

Table 1 gives the average and total GC times for
the sequential runs and the parallel runs with one
and eight processors.

seq | par(l) | par(8)

GCOld

young avg (ms) 216 298 53

young total (s) | 211.35 | 290.83 | 53.27

old avg (ms) 13920 19498 3632

old total (s) 876.98 | 1228.42 | 221.58
SpecJBB

young avg (ms) 204 255 54

young total (s) 99.59 | 124.29 | 26.69

old avg (ms) 1880 3315 761

old total (s) 26.32 46.41 | 10.66
Javac

young avg (ms) 33 40 10

young total (s) 2.26 2.69 .66

old avg (ms) 421 524 160

old total (s) 1.68 2.09 .96

Table 1: Average and total collection times

6.3 Discussion

We outperform the sequential algorithm using
only two processors in most cases. The only case
where we required 3 processors was in pMarkcom-
pact for SpecJBB. Our hypothesis is that this
is due to an optimization present in the sequen-
tial markcompact collector which we have not yet
adapted to the parallel version. This dense pre-
fix optimization avoids copying large blocks of data
when there is only a small amount of free area to
be reclaimed. In many applications this optimiza-
tion eliminates a significant fraction of markcompact
copying costs. We hope to adapt this technique to
realize similar savings in the parallel version.

We achieve speedup factors on 8 processors of
between 4 and 5.5, with the exception of the old-
generation collections of Javac. One reason for this
is that that there were 6 old-generation collections
in the 8-processor run, but only 4 in the 1-processor
and sequential runs. We believe that this increase
is caused by fragmentation introduced by parallel
LAB allocation during young-generation collection,
and thus is an inherent cost of parallel collection.
Note, however, that Javac has by far the smallest
heaps of the benchmark runs. In larger problem sizes
this effect is much less significant.

In the parallel mark-compact collector, we can
measure the scalability of the individual phases sepa-
rately. It turns out that all phases scale about as well
as overall collection. For example, in SpecJBB, the
overall 8-processor old-generation speedup is 4.351,
and the speedups of the individual phases range from
3.7, for installing forwarding pointers and redirect-
ing references, to 5.0 for sweeping. So no particular
phase stands out as a clear scalability bottleneck.
Still, clearly further work is needed to attempt to
increase scalability (or explain the factors that in-
hibit it).

7 Conclusions

After exploring parallel techniques, and imple-
menting two parallel collectors, we believe that there
is great potential for improving both pause times and
throughput using parallelism.

Large multi-threaded applications are being writ-
ten in garbage-collected languages. These applica-
tions require heaps in the gigabyte range and be-
yond. Sequential GC algorithms will become an
ever-greater scaling bottlneck. If systems intended
to support such applications stop all threads for
garbage collection, they must use parallel techniques
to avoid this bottleneck.

8 Trademarks

Sun, Sun Microsystems, Sun Enterprise, JVM,
and Java are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States
and other countries. All SPARC trademarks are
used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the
United States and other countries. Products bearing
SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

References

[1] Nimar S. Arora; Robert D. Blumofe; and
C. Greg Plaxton. Thread scheduling for mul-
tiprogrammed multiprocessors. Proceedings of
the Tenth Annual ACM Symposium on Parallel
Algorithms and Architectures, 1998.

[2] Robert D. Blumofe and Charles E. Leiser-
son. Scheduling multithreaded computations by
work stealing. JACM, 46(5):720-748, 1999.

[3] The SPARC Architecture Manual Version 9,
Sun Microsystems, Inc.

[4] Edsger W. Dijkstra, Leslie Lamport, A. J. Mar-
tin, C. S. Scholten, and E. F. M.Steffens. On-
the-fly garbage collection: An exercise in co-
operation. CACM, 21(11):966-975, November
1988.

[6] Damien Doligez and Georges Gonthier.
Portable unobtrusive garbage collection for
multiprocessor systems. In Proceedings of
the 1994 ACM Conference on Principles of
Programming Languages, pages 70-80, 1994.

[6] Robert H. Halstead. Implementation of Multi-
lisp: Lisp on a multiprocessor. In 1984 ACM
Symposium on LISP and Functional Program-
ming, pages 9-17, New York, NY, 1984. ACM.

[7] Richard Jones and Rafael Lins. Garbage Collec-
tion Algorithms for Automatic Dynamic Mem-
ory Management. John Wiley and Sons, 1996.

[8] John R. Ellis; Kai Li; and Andrew W. Ap-
pel. Real-time Concurrent Collection on Stock
Multiprocessors. Technical Report 25, Digital
Equipment Corporation Systems Research Cen-
ter, February 1988.

[9] G. L. Jr. Steele. Multiprocessing compactify-
ing garbage collection. CACM, 18(9):495-508,
September 1975.

[10] Bjarne Steensgaard. Thread-specific heaps for
multi-threaded programs. ACM SIGPLAN No-
tices, 36(1):18-24, January 2001.

[11] Toshio Endo; Kenjiro Taura; and Akinori
Yonezawa. A scalable mark-sweep garbage col-
lector on large-scale shared-memory machines.
Proceedings of High Performance Networking
and Computing (SC97), 1997.

[12] Derek White and Alex Garthwaite. The GC
interface in the EVM. Technical Report TR-
98-67, Sun Microsystems Laboratories, 1998.

[13] Paul R. Wilson. Uniprocessor garbage collec-
tion techniques. International Workshop on
Memory Management, Springer-Verlag Lecture
Notes in Computer Science, 1992.

o]
|

[«

1

IN

1

1

Speedup factor

N

GCOIld(16m:600m)

5.458
—— linear speedup
—=— pSemispaces
—— semispaces

o]
|

1

[«2)

IN

1

1

Speedup factor

N

2 4 6 8
number of processors

Speedup factor

5.543

—— linear speedup
—— pMarkcompact
—— markcompact

2 4 6 8
number of processors

SpecJBB(16m:300m)

4655 o linear Speedup
—=— pSemispaces
—— semispaces

o]
|

1

[«2)

IN

1

1

Speedup factor

N

2 4 6 8
number of processors

Javac(4m:12m)

24051 Iinear_speedup
—=— pSemispaces
—— semispaces

2 4 6 8
number of processors

Speedup factor

4.351 ——linear speedup
—— pMarkcompact
—— markcompact

A

Speedup factor

2 4 6 8
number of processors

—— linear speedup

—— pMarkcompact

—— markcompact
2.179

2 4 6 8
number of processors

Figure 3: Speedup graphs

