
OpenJIT 2: The Design and Implementation of Application
Framework for JIT Compilers

[Extended Abstract]

Fuyuhiko Maruyama
Tokyo Institute of Technology

Tokyo, Japan

Satoshi Matsuoka
�

Hirotaka Ogawa
Naoya Maruyama

Tokyo Institute of Technology
Tokyo, Japan

Kouya Shimura
Fujitsu Laboratories
Kanagawa, Japan

ABSTRACT
We are currently working on a new architecture for Java
JIT compilers to allow coexistence of multiple, customized
JIT compilers in a single Java VM simultaneously without
prohibitive space or programming costs, called OpenJIT2.
The project builds on the success of OpenJIT1, the �rst
open-ended JIT compiler for Java written in Java. Not only
that our new architecture subsumes the so-called `bi-level'
or `tri-level' JIT compilers of today, but allows application,
environment, or user-speci�c JIT compilers to coexist and
invoked at appropriate moments as decided by the runtime.
The compiler fragment modules can either be built-in or
even dynamically downloaded from the network on demand
to tailor the compiler for speci�c needs. We believe such cus-
tomization allows the best performance to be squeezed out of
applications in a way not possible with generic optimization
strategies. OpenJIT2 will also be publically distributed for
free and supported just as was with OpenJIT1 to serve as ap-
plication framework for general compiler research by others,
having a very clean and customizable object-oriented frame-
work structure as opposed to OpenJIT1. We also hope that
it will serve as commercial quality replacement JIT compiler
for various platforms.

1. INTRODUCTION
Java is now one of the de facto language system run-

ning everywhere, from small PDAs to large servers. This
is primarily realized by the so called `write-once, run every-
where' portability characteristics of Java. However, there is
no guarantee that the same program will runs at its opti-
mal level everywhere; that is to say Java only realizes plat-
form portability but but not performance portability. We
believe that technologies to implement performance porta-
bility will be very much in demand as Java proliferates
to even wider range of execution platforms, such as High-
Performance Computing as well as micro-embedded devices
with very low power-to-performance budget.
Modern Java VMs employ Just-In-Time(JIT) compiler to

speedup execution of Java programs. The only di�erence
between JIT compilers and ordinary static compilers is that

�Also with Japan Science and Technology Corporation

JIT compiler compiles parts of program during execution
instead of before execution as is with ordinary static com-
pilers. In general, longer compilation time produces better
native codes, but there always exists tradeo�s between the
compilation time and the quality of resulting code|long
compilation time that doesn't bene�t overall execution time
is not well justi�ed, especially for JIT compilers where the
execution time naturally includes the compilation time.
To solve this problem, most modern sophisticated Java

VMs employ the so-called adaptive compilation with n-level
compilers (n=2,3 typically) with runtime selection techniques
to compile only hotspot methods with more expensive com-
pilers (i.e., compilers that produce more eÆcient code at
the expense of longer compilation time) only when bene�t
would be foreseen. Such compilers are typically completely
separate, or only share parts of the code base, and not tai-
lorable from within Java. Moreover, adaptive compilation
only attempts to `recover' performance that would have been
achieved with full static compilation in the �rst place, and
does not usually exploit the run-time values or application
or environment-speci�c knowledge that the users may oth-
erwise have in the optimization process. It has been shown
that such aggressive compilation strategies speed-up execu-
tion of programs in a manner not achievable with general
optimization techniques.
OpenJIT2, which is a brand new JIT compiler in Java, at-

tempts to tackle the above problems. In fact OpenJIT2 al-
lows coexistence of multiple compilers in a clean, straightfor-
ward fashion, subsuming the multi-level compilation schemes.
We allow easy customization of the compiler itself so that
aggressive compiler strategies can be built in speci�cally tai-
lored to the needs of the application, or even downloaded
from the network as compilet modules. The core parts of
OpenJIT2 is already complete, and we expect it to be �n-
ished by 2Q 2001. The internal structure is quite di�erent
from our OpenJIT1[2], which was also written in Java but
was built rather monolithically for various reasons.

2. OVERVIEW OF OPENJIT 2
OpenJIT2 is a JIT compiler for Java based on the con-

struction technique of so-called `Open Compilers', i.e., a
technique to incorporate various self-descriptive modules for
language customization and optimization based on compu-
tational reection ideas. To apply the open compiler tech-
nique to a Java JIT compiler, OpenJIT2 is almost entirely

Java Virtual Machine

OpenJIT Java VM Interface

JIT Interface

MethodBlock

CodeGenerator

OpenJIT Runtime Library

Heap

OpenJIT Compiler(baseline/Compilet)

Compiled Code

MethodInformation

Figure 1: Overview of OpenJIT 2 system

written in Java as was with OpenJIT1[2], our previous work.
With OpenJIT1 we showed that we could construct com-
mercial quality Java JIT compiler in Java itself without sig-
ni�cant run-time performance or storage penalty. However,
from an software architectural point of view, it was con-
structed rather monolithically and as such its ability to in-
corporate self-descriptive modules were poor at best. Even
though the later versions allowed the entire JIT compiler to
be downloaded as standard Java class�les from the network,
it was diÆcult to program and download small, customized
compiler modules because of the monolithic (i.e., not very
Object-Oriented) architecture. In fact, all external projects
that utilized OpenJIT as a basis of JIT compiler research we
know of patched the methods directly, rather than extending
the compiler using object-oriented techniques.

2.1 Architecture
To facilitate the advantage of open compiler technique,

OpenJIT2 is completely re-designed and implemented from
scratch so that it is not only a JIT compiler but also an
application framework for JIT compiler. The framework is
similar in spirit to SUIF 2[3], cmcc[1], and the RTL sys-
tem[4], in that it is a design that allows users to write extra
compiler modules using object-oriented di�erential program-
ming, rather than patching the method code themselves.
This by all means brings on the full bene�ts of OO, since
new modules need only to contain its unique aspects and
common parts of JIT compilers are automatically shared
with all compiler modules by OO feature of Java. The chal-
lenge then is how to de�ne the framework API so that such
customization is possible and easy with JIT compilers.
Figure 1 shows the overview of the entire Java system with

OpenJIT2. OpenJIT2 itself consists of two major parts: the
main part is the JIT compiler framework and its instantia-
tions as multiple coexisting compilers written in Java (repre-
sented as ovals in �gure 1) and the other is the native library
for communication between the JIT compiler and Java VM
(`OpenJIT Java VM Interface' in �gure 1), and between the
compiled code and Java VM (`OpenJIT Runtime Library'
in �gure 1). In this system, each instantiated compiler is a
set of Java object which serves as a compiler for (at least)
only one method, and as to which set of compiler objects
to be employed for compilation of a particular method is
selected by the `OpenJIT Java VM Interface' based on the
method's attribute within the Java class�le. If the attribute
of a method speci�es a particular compiler, OpenJIT2 sys-
tem will use the speci�ed compiler, which consists of a set

Compiler
 driver

Bytecode
 Parser

Control Flow
 Analyzer

 RTL
Generator

 SSA
Converter

JVM Insns
Control Flow
 Graph

JVM Insns RTLs

Control Flow
 Graph

Optimizer

SSA Back
Converter

 Register
Allocator

RTLs (SSA)

Control Flow
 Graph

RTLs (SSA)

Control Flow
 Graph

RTLs

Control Flow
 Graph

Native code
 Generator

RTLs

Control Flow
 Graph

Flow of Control

Flow of Internal Representation

Flow of RAW data Java
Virtual Machine

m
ethod’s bytecodes

native code

Figure 2: OpenJIT 2 baseline compiler

of `Compilet' objects, to compile the method. Otherwise,
the default `baseline' compiler will be selected. The base-
line compiler is actually a set of n-level compilers as seen in
other JVM systems as we have described, but they are all
instantiations from a common compiler framework sharing
the objects in the infrastructure for clean compact repre-
sentations. From the OpenJIT Java VM Interface's point
of view, the baseline compilers and the compilets are merely
JIT compilers, each of which are tailored to compile a partic-
ular method, selected at runtime by some runtime selection
strategies.

2.2 Design and Implementation
The baseline compiler and compilets are constructed us-

ing OpenJIT2 framework and class library. As opposed to
OpenJIT1 whose internal structure was quite simple as a
compiler, OpenJIT2 facilitates sophisticated compiler mod-
ules seen in modern optimizing compilers, so that a variety of
analysis, program transformation, and optimization strate-
gies can be implemented easily using standard di�erential
programming. The framework is constructed in a hierarchi-
cal manner, where the baseline compiler (BaselineCompiler
class) is the highest abstraction of OpenJIT2 framework con-
sisting of several components of typical compilers such as
the (bytecode) parser, optimizer and the code generator, all
being constructed from lower-level OpenJIT2 class library.
Figure 2 shows the structure of baseline compiler (we omit
the details here for brevity); here the BaselineCompiler

class corresponds to the `compiler driver', but Compilets
can also be constructed in the same manner. For exam-
ple, it is very easy to construct a compilet which applies
only selected optimizations during compilation of a speci�c
method, and it is also not diÆcult to add new optimization
not performed by baseline compiler, using the features of
lower level classes that gives full access to not only manipu-
late the intermediate code but also serving as templates to
plug in various analysis and transformation methods. Al-
though the latter is only true only when it uses the same
internal representation (IR) of the baseline compiler control
ow graph containing RTLs in each node, SSA representa-
tion, etc). However, the IR of OpenJIT2 is general enough to
perform all textbook optimizations in an easy manner, and
moreover, we have carefully designed the classes so that IRs
can be extended and used throughout the framework (for
example, using appropriate factory methods so that there
are no internal dependencies to a particular IR class.)

3. CURRENT STATUS
At this time (March 1, 2001), the implementation of Open-

JIT2 is about 80% complete, and we expect to be �nish the
�rst version for a release in 2Q, 2001. In fact, most parts
of framework have already been designed and implemented,
and the remaining parts are merely the register allocator
and code generator, plus bug �xes. We have released the
current source as a preview to a very limited number of col-
laborators so that they can familiarize themselves with the
structure and the IRs used in OpenJIT2.
We have also preliminarily measured the compilation speed

of current implementation using a debug driver that simu-
late parts of Java VM and OpenJIT Java VM Interface: it
reads a class�le and invokes the baseline compiler to com-
pile methods (without register allocation or code genera-
tion). Measurements are performed on RedHat Linux 6.2,
Pentium III 500MHz, with 384MB memory.
Results we have obtained so far show that our baseline

compiler compiles about 3 bytecodes/msec using an inter-
preter, 8 bytecodes/msec using the OpenJIT1, and 12 byte-
codes/msec using Sun HotSpot VM. OpenJIT2 baseline com-
piler is entirely written in Java, so its compilation speed
corresponds to the eÆciency of its execution engine, i.e., ini-
tially OpenJIT2 compiles methods slowly by using interpre-
tation and the compilation speed gradually becomes faster
as compiler self-compiles. From our experiences with Open-
JIT1, most parts of JIT compiler should be self-compiled
on �rst encounter for optimal speed, so it is reasonable to
consider that the typical compilation speed is at least as fast
as the OpenJIT1, and perhaps match or even better than
HotSpot by employing Compilet techniques. This is reason-
able speed as an optimizing compiler compared with IBM's
jitc (10bytecodes/msec) and Jalape~no's optimizing compiler
(3-5 bytecodes/msec). We have also found that SSA-based
code manipulation is quite expensive, and as such for a fast
baseline compiler we can turn SSA o� at the cost of higher-
level optimization.

4. FUTURE WORKS
We are now working hard to complete the implementa-

tion of OpenJIT2. Once implementation is complete, we can
evaluate the runtime performance of the OpenJIT2 system.
Adding more optimizer modules are also planned, includ-
ing OO-speci�c optimizations. Another important work is
to add sophisticated adaptive compilation technique to the
Java VM Interface, especially on how to e�ectively select
from multitudes of compilers that coexist.

5. CONCLUSIONS
We have briey overviewed our new framework architec-

ture for JIT compiler that allows multiple coexisting JIT
compilers that allows �ne-grained, customized compilation
of di�erent parts of program. The design and implementa-
tion of OpenJIT2 is rather di�erent from the modern JIT
compilers that monolithically try to provide `quick and ef-
fective' optimizations, but more akin to frameworks for opti-
mizing static compilers. Thanks to its object-oriented frame
design we hope that many people will �nd uses for Open-
JIT2 for numerous interesting projects using JITs and dy-
namic compilation, pushing the state-of-the-art of language
implementation technologies as a whole.

6. REFERENCES
[1] Ali-Reza Adl-Tabatabai, Thomas Gross, and Guei-Yuan

Lueh. Code Reuse in an Optimizing Compiler. In
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), pages 51{68, October 1996.

[2] Hirotaka Ogawa, Kouya Shimura, Satoshi Matsuoka,
Fuyuhiko Maruyama, Yukihiko Sohda, and Yasunori
Kimura. OpenJIT: An Open-Ended, Reective JIT
Compiler Framework for Java. In European Conference
on Object-Oriented Programming (ECOOP), pages
362{387, June 2000.

[3] Holger Kienle and Urs H�olzle. Introduction to the SUIF
2.0 Compiler System. Technical Report TRCS97-22,
UCSB, December 1997.

[4] Ralph E. Johnson, Carl McConnell, and J. Michael
Lake. The RTL System: A Framework for Code
Optimization. In Proceedings of the International
Workshop on Code Generation, pages 255{274, 1991.

