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Abstract

Proxy caches for content on the Internet are high-
performance platforms with complex software services.
Because they understand application semantics, and
because they have a great deal of memory, they are the
natural place for new services that are tailored closely
to site or user preferences and requirements.  The
engineering aspects of caches and how they contribute
to a new network infrastructure for highly capable or
intelligent services are examined in this paper.

1. Introduction

From the beginning of the networking era, there have
been expectations of intelligent software as integral
part of applications.  The concept of distributed
software agents followed quickly on the heels computer
networking, as evidenced by the early work on actors
with distributed control [Hew77].  This work assumed
widespread, inexpensive methods for communication
and control, but no large-scale system emerged to meet
the hopes of the intelligent agent researchers.  Instead,
the Internet thrived on applications with simple point-
to-point semantic.  As the Internet entered its more
recent wildly successful phase, more thinking was
invested in having the network software itself perform
complex tasks.  Two extreme viewpoints in this space
have been intelligent agents and active networks.
However, in both cases, the infrastructural support for
the concepts has lagged far behind the thinking.  What
we have seen is the success of an Internet architecture
that presents simple end-to-end semantics but with an
implementation that has many more layers "in the
middle".  The thesis of this paper is that an emerging
middleware layer, implemented on edge devices,
provides the foundation for the addition of greater
capability to large-scale networks, and this is part of the
enablement of a new class of services.

2. Background and Overview of Proxy
Architectures

As the Internet evolved from a small research
experiment into a global communication infrastructure,
the uniform architecture began to separate into two
pieces: the high bandwidth core and the edge
organizations (collections of LANs).  Separate routing

protocols evolved for the two regimes, and some
differences in addressing and naming were smoothed
over by translating gateways.  Finally, security
concerns led to a fairly complete separation enforced
by firewalls.

The World-Wide Web brought about a revolution in the
Internet by making it easy and inexpensive to publish
and consume high-grade documents (visually pleasing,
organized, etc.).  Most Internet users came to believe
that the Internet and the WWW were synonymous.
Within a matter of a few years, the problem of scaling
the web became a critical matter.  To solve the
problems of reliability and latency, engineers have been
building a new infrastructure on the old frame.

The first important advances in the network were load
balancing for WWW servers and caching to reduce
latency in delivery.  The platforms that assist in the first
category are called "reverse proxies", and the platforms
in the second category are "proxies."  Both are critical
in avoiding Internet meltdowns.  For example, proxies
are an essential component in quality of service,
because the latency of Internet accesses depends on the
square of the number "hops" [Rob98].  Proxy caches
reduce the number of hops and thus contribute to
improved latency; they also reduce the congestion in
the core of the Internet and make other services run
faster.

It was natural to add proxy caches to firewalls or
security gateways, and this "platform sharing" has
contributed to widespread adoption of both forward and
reverse proxies.  This has also provided a way to unify
security services by collocating two different functions,
both having common security dependencies, in one
box.

The placement of such services at the point joining an
organization is also an architectural "chokepoint"
where engineering for high performance has a very
good payoff.  Competitions for high-speed cache
services have been intense and have bred a new class of
engineers who are expert in network stack scaling and
optimization.  Web caching workshops and competitive
bakeoffs have become part of the Internet engineering
landscape.



The second stage of development is going on today, as
a middleware layer of cooperating content repositories
and/or caches is deployed by content distribution
services.  In this phase, there is movement of content to
distribution sites, again, to reduce latency due to
network transmission times but also to reduce the
latency due to the load on the origin servers.

Caches can be the platform for adding intelligent
services to the network infrastructure.  As we will see,
they differ from switches and routers because they have
much more RAM and disk space.  Because so much
storage is available on very fast, inexpensive machines,
there are opportunities for adding much more in the
way of application level services, invoked both
explicitly and implicitly, and for keeping the state
information that the services require.

The backing store for caching systems presents
opportunities for optimization that are novel with
respect to traditional network file systems such as NFS
or AFS.   The problem might be presented as “caching
all the way down”, because the disk system is primarily
for holding the working set of the cache, and the
consistency requirements for backing store are much
relaxed from those of a file system.  This flexibility
offers more opportunities for minimizing disk access
time by careful selection of cylinder groups and at the
same time imposes fewer “housekeeping”
requirements.  One might consider the backing store to
be similar to a file system that has frequent deletes with
no processing cost for the deletion.

There are research areas open in the management of
disk backing stores, keeping multiple copies of objects,
coping with dynamic content, tighter synchronization
with origin servers, and moving to a hybrid system that
supports network file systems with efficient caching
store.

3. Smart Middleware Boxes

3.1. Performance Management

Web caching applications are probably the most
stressful environment for Internet protocols.  Almost
any performance anomaly will be magnified in such an
environment, and engineers who understand the details
of a successful networking implementation are being
honed in greater numbers than ever before.  To meet
the demands of holding the working set of web data,
the configuration of  a caching server or proxy uses
anywhere from 256M to 4G bytes of RAM and from a
gigabyte to nearly a terabtye of disk storage.

The point of caching is, of course, primarily to reduce
latency.  The Internet suffers from great variations in
latency because it does not reserve resources in
advance of communication.  The latency variation can
be two or more orders of magnitude in common cases
Kal[99], though particular point-to-point connections
may show almost no variation for weeks at a time.  The
caches serve to minimize the latency and its variation,
leading to a much more predictable service model.

Web caches that are placed near the end user (the
browser) are frequently configured as "forward
proxies", and they typically have very large working
sets (millions of objects) in order to achieve a cache hit
rate of over 50%.  The latency variation can become
much smaller when the cache is near the user, because
the number of buffering points between the user and
the data is probably only 2 or 3 (e.g., a router and a
proxy cache).

Caches can also reduce latency by distributing the load
from the original content site to the high performance
cache.  This offloading of network communication and
object retrieval leaves the original content servers free
to perform non-cacheable computations in support of
their web service; the computations are usually hidden
in scripts that are privy to confidential information
and/or large databases.  Caches that reduce latency by
offloading the content have working sets which are are
typically much smaller than the ones for forward
proxies.  In fact, at times all of the site's content fits
into RAM on its reverse proxy; in contrast, a forward
proxy may have trouble fitting the index for its disk-
cached content into the same amount of memory.

Web caching systems have the latitude to implement
efficient networking systems in ways that are difficult
for general purpose operating systems.  For a server
machine to handle 10K connections and delivery of up
to a 10^10 objects per hour is a difficult task for most
network stacks.  Such systems must have very fast TCP
message dispatching, space for large amounts of
connection state (the TCB's), and efficient handling of
storage for network data.  Work in the research
community over the last decade has repeatedly
demonstrated methods that help meet the goals; the use
of polling in preference to interrupts [Min93], “no
copy” I/O for network data, and the ability to
communicate with applications without copying or re-
encoding data [Dru93]. Because web caching systems
do not have the burden of supporting general purpose
processing as in standard operating systems, they can
make use of the research results for very high
throughput.  Web caching systems today can handle a
sustained rate of up to 2400 requests/second, which far
exceeds the rates considered maximal 10 years ago.



Name lookups, for the Domain Name System (DNS),
can be a major bottleneck for high performance boxes,
and most of these systems maintain huge caches of
name-to-IP-address mappings, in effect caching much
of the root server information and many common
hostnames (because www.xxxzzzy.com is the usual
form of a name presented for resolution).  A cache of
20K domain names usually results in a 99% hit rate for
web proxy systems; the number of instructions for a
DNS lookup is little more than the time to hash the
name and do the lookup.  Cache misses are infrequent,
occurring only once every few seconds, and this keeps
UDP connections down to a very few. A 20K cache
could be usefully configured to serve all DNS lookup
needs for an entire organization.

3.2 Expanded functionality

The middleware layer of web caching boxes is rapidly
expanding.  As web caching appliances become more
pervasive, more uses get loaded onto them.  Thus, we
see the next stage of the Internet architecture
revolution: the movement of a service infrastructure
into the network.

Some services already exist in the net.  These include
many kinds of web-based mail services, homepage
hosting, file storage, messaging.  However, for the most
part, these are not distributed services, and they
represent small points or islands of service, themselves
separated by firewalls.  Web caches, on the other hand,
sit in the infrastructure itself, and their services apply to
the applications riding above them.

New services that are emerging through this
middleware are centered on web functions.  We note
several areas where current research and products are
centered: object-specific functionality, user-specific
functionality, and authentication and access control
services.

3.2.1 Name Translation and Content Transcoding
Intelligence

There has been no simple way to have content available
from multiple sites in the Internet.  Replication
strategies, meant to reduce latency and to distribute
server load, often founder on single points of
provisioning (such as DNS servers).  This is rapidly
changing, and users now find that loading a web page
from one location can mysteriously turn into loading a
page from any of a number of servers seemingly
unrelated to the target.

One way of doing this involves translating the content,
turning an embedded name (URL) into a new name,
perhaps by changing the hostname, based on the user’s
location, current conditions, or other factors.  In
essence, multiple path routing results from URL
translation.

The ability to select a new server location and to
translate the embedded names very rapidly is a level of
intelligence not normally associated with applications.
The devices that do this have streamlined ability to
parse HTTP and HTML, to do text substitution, and to
deliver the results to the network interface with
minimal overhead.  This is an edge service that requires
some understanding of the application language, and it
turns protocol layering concepts on their heads.

Novell’s approach to web proxies uses translation for
two applications.  One is to assist in load balancing and
another is to secure the transmission of confidential
data.  In each case, the translation is done by pattern
matching on URL’s.

A different mechanism retains state between object
name references, establishing a user-specific mapping
with a short lifetime.  For example, an image and the
site with information about the image might be linked
implicitly.  When the user browser requests the image,
a computation at the web cache, acting as a proxy,
determines the image and its related site.  This makes
the content of the page itself a function of the proxy,
and this is an especially rich service model.

A more complex processing model, for services that are
very computationally expensive or only available on
non-proxy platforms, uses nearby processors that are in
the same administrative domain as the proxy.  These
might be thought of as “lollipop” processors, because
the processing flow, normally straight through the
proxy between the client and server, now takes a tour
sideways.

Figure 1: Example data flow, auxiliary processing
using ICAP

The proposed protocol between the proxy (“px”) and
the auxiliary processor (“au”) is built on HTTP and is
known as the Internet Content Adaptation Protocol –
ICAP [ICAP00].
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Examples of complex services that might be performed
by an auxiliary processor include: having HTML text
converted to different human languages, audio content
transcoded to achieve a service level based on current
resource availability (network quality of service),
negotiation with advertisers for micropayments for
accepting advertising and offering demographics,
access to service information that is proprietary to the
owner of the auxiliary processor box, personalization of
web pages, hosting user processes for directed
personalization, management of “persona” information
based on user policy and profiles, analysis of access
patterns to remote or local web servers (correlation,
clustering, neural network creation), access to trusted
financial services, high assurance security services, etc.

3.2.2 Object Policy

If, by abuse of language, we consider URL's to be
object names, we can say that edge devices are
delivering a form of object intelligence by analyzing
object names and mapping them to attributes.  These
attributes may be simple, such as content ratings based
on external evaluations, or quite complicated, such as
automatically generated content classification based on
word or image analysis, cluster analysis based on
access patterns by other users, etc.

Architecturally, the ability to map names to attributes
and evaluators is an important advance in the capability
of edge devices.  It entails maintenance of state,
caching, and parsing of names at a chokepoint between
the end consumers and their network access.  The
mechanics that allow this are a general solution for
several classes of problems, and can be the foundation
for performing such functions as selecting the image
resolution to be used for low-bandwidth or low-power
devices in the future.

Access control based on content rating is a
discretionary policy generally set at a forward proxy by
users or on their behalf by the proxy administrator in
accordance with a site policy.  Content rating services
typically depend on a very large list of URL's and a
vector of their attributes.  By building a state machine
that is the compilation of the strings, a proxy can very
quickly match URL requests against the rating and the
content-based policy for the user and/or the site.

The performance cost of the policy check is quite
small; the number of instructions executed is
approximately equal to the number of bytes in the URL
name.  The main performance penalty comes from the
amount of space used by the state machine; that
memory is not available for caching of content, and this
leads to the biggest performance penalty in terms of

content delivery.  When the policy database occupies
10% of the memory, observed performance on web
benchmarks decreases by about 5%, even if the
database lookups are not executed.  If the lookups are
executed, they only use about 5% of the total machine
cycles.

The efficiency of a cache depends on the available
memory.  For a forward proxy, the ratio of disk to
RAM can be as high as 10K to 1. The index for the disk
cache can use nearly as much memory as the objects
cached in RAM, in extreme cases.  The RAM
requirements for classification of hundreds of
thousands of URLs is a noticeable fraction of the
memory, and this mandates that any auxiliary data
associated with URL sets be represented as compactly
as possible.  It is possible to maintain auxiliary data for
hundreds of thousands URLs that are non-resident in
the cache and to access the data quickly when making a
decision about whether or not to fetch a page, what
quality of service to use for its transfer, or what origin
server to use for its retrieval.

The dependence of performance on memory
demonstrates a point of importance for intelligent edge
devices: in general, proxy caches are not CPU limited,
running idle as much as 90% of the time in normal
operation. This leaves a lot of cycles for running
computational tasks on the caching system itself.

 3.2.3 Identity and Security

Edge devices are the injection point for basing access
control decisions on Internet-wide identities and for
management of identity information.  Most large
organizations have fine-grained management of access
control internally, but only the coarsest management of
objects presented externally.  A common policy for
many organizations is that the only bi-directional
information flow is through SMTP, and the only HTTP
access is for information that is cleared for public
access.  In the latter case, the information goes onto a
web server that is primarily "read only".

The SSL3 protocol [Fre96] is the de facto standard for
secure connections for web browsers today, but while it
is sufficient for encrypting TCP connections, there are
few systems that integrate it into authorization or
access control. By clever use of the HTTP protocol, it
is possible for edge devices to interpose access control
mechanisms based on SSL privacy and authentication.

Reverse proxies, sitting near the authoritative sources
for content, are natural enforcement point for access
control at the granularity of a web page.  They can



present an access policy for the outside world that is a
consistent extension of the internal controls, without
changing any of the legacy software for the origin site.
The reverse proxy can implement identity services,
authentication services, and access control enforcement
on behalf of the origin server organization, using SSL
as the common security protocol.

Consider an organization with a public web server that
wants to enforce a simple security model: information
on its server www.myorg.com is public (no
authentication), while information on
www.internal.myorg.com is accessible to any user
authenticated by the network authority for myorg.com.
Novell’s reverse proxy solution to implementing this
policy allows the administrator of the reverse proxy to
enter the control rules as initial configuration schema
for the proxy, to specify a certificate for authenticating
the server to the clients, and to designate an
authentication server for trusted communication.

When the reverse proxy receives a request for an item
in www.myorg.com, it fetches the object from the
origin server if need be (communication between the
proxy and the origin server is trusted) and delivers the
page to the requestor.  If the client request is for an
object in www.internal.myorg.com, perhaps
‘/plan1.html’, then it redirects the client to use https as
the access protocol.  The client browser will comply
with an SSL encrypted connection to the reverse proxy,
and the proxy will redirect the client to an
authentication server, and that server may either use
SSL mutual authentication to establish an authenticated
identity or it may redirect the client through a longer
login dialogue.  At the end of the dialogue, the reverse
proxy will receive an indication from the authentication
server that the login was either successful or
unsuccessful.  In the former case, it will deliver the
originally requested object to the client over their SSL
connection; the latter case it will respond to the client
with an error message.

The use of SSL requires no changes to either the client
or server and illustrates how a new service is easily
built on a proxy cache foundation.  Obviously, more
complicated and finer-granularity access control
policies are easily added as the requirements of the
organization evolve.

If authentication intelligent edge devices are the
directors of the authentication process, they must have
the intelligence to deal with identity information.  This
is an attractive notion, because a trustworthy platform
in the network avoids the many problems associated
with maintaining security information on end-user
machines or bound to particular organizations. Internet

users are beginning to desire an Internet persona that is
under their own control, even when their employment
or Internet service provider changes.

An even more open model would allow the objects to
have access control lists with pairs consisting of the
distinguished name and certifying authority of
authorized users. This allows organizations to extend
their fine-grained control methods to the growing class
of Internet users with credentials backed by public
keys.  While it may be difficult to retrofit legacy
operating systems with such controls, proxies that have
been extended to understand identity, authentication,
and access controls can easily enforce access rules that
are extended far beyond the legacy model.

 4. Next stage: the Intelligent Infrastructure

Adding more intelligent services to the network edges
is a key part of creating new network services and of
scaling the performance requirements to encompass
global services.  We will continue to see more software
added to edge devices in the future.  Routers, switches,
proxy services, and other edge dwellers will creep
“outwards” towards application services.  The way to
keep the network healthy during this transition is to
work towards an architectural model that supports
programming at the network edges.

Edge devices today are specialized creatures stepping
gingerly towards open standards, common application
interfaces, and extensibility.   The edge world can take
a giant step forward by defining some common
execution environments and library services for
unifying the services.    A programmability model
could take a two or three step approach by
implementing a series of execution environments that
have engineered tradeoffs of expressibility vs. ease of
use vs. security.

The first tier programming language would define a
language based on the keywords or tags and a set of
transformation rules based on regular expression
replacement operations.  API’s for common protocols
such HTTP, HTML, SNMP, RTP, etc. would be
available as an open standard.  These rules would be
dynamically loadable and compilable on receipt.

The second tier of languages would be bounded time
execution languages with variables and assignments
and conditionals, each with a security policy enforced
by a policy engine in the execution environment.
These languages would also be dynamically loadable
and amenable to just-in-time (JIT) compilation.



The third tier languages would be general purpose and
dynamically loadable; Java is a good candidate for a
third-tier language.   Third tier languages present
security challenges, but their expressive power is a
compelling force, and operating systems with effective
process isolation mechanisms will be able to run them
at the network edges with minimal risk.

With a programmable network edge, application
semantics that operate on network data “flows” are
possible, and they can assure consistent semantics for
applications even when the applications are resident in
the edge infrastructure, rather than at a central site.

The next challenge is to move from explicit
programming of the network edge to programming that
flows transparently to the points in the network that can
most effectively execute the application.

The original concept of the Internet’s end-to-end
semantics for data transport and complex semantics for
applications, is yielding to a richer model that allows
edge devices to play a part in routing, caching, and
executing application semantics.  This is an evolving
model, moving through a logical series of steps towards
more complicated distributed execution models.

The client-server model, based on RPC [Whi76], has
been a very successful way to build network services.
The stateless semantics simplify the design of the
client, and HTTP in large part relies on an RPC model.
HTTP proxies are able to execute the semantics
“parasitically”, i.e., in the case of transparent proxies,
they are not the intended (“addressed”) parties to a
transaction, but they can fulfill it nonetheless.  Proxies
have difficulty participating in connections where the
server generates responses by executing local code with
semantics that are unavailable to the proxy (e.g. cgi-bin
scripts) or where client runs code from the server (e.g.
“applets”).  Active networks [Ten98], use an execution
model that bases transport services on code that is
executed through the infrastructure.  Proxy platforms
can enable a happy medium in which applications are
either written with explicit proxy code that moves some
of the application functionality onto proxy platforms
(“proxylets” [Cro00]), or else the applications use
servlets or applets with well-understood semantics that
can be parasitically executed by the proxies.  Both
forward and reverse proxies can participate, based
perhaps on the available of environmental information.

The logical extension of the distributed execution
model may support mobile code, mobile agents, or
other “untethered” applications that are not feasible
today.  The platforms for running these may resemble
proxy platforms but they will have access to a broader

range of standard semantics, directories, verifiable
credentials, and most likely a computing base that
supports higher assurances of trust than today’s
machines.

A third stage of evolution that an intelligent
infrastructure enables is third-party services that exist
for the purpose of linking other services together on
behalf of users.  Today consumers can invoke shopping
agents that attempt to maximize the value of
information to the user, but the agents must execute in
adversarial environments where their goals are
thwarted.  An intelligent service infrastructure will
enable user agents to negotiate in good faith with
brokering services in order to get a broad spectrum of
information with higher value.  These services will
meet and execute “in the network”.

Engineering the next generation of network services
will necessitate an intelligent infrastructure.
Challenges exist in security, extensible service models,
and interoperation in new areas such as the integration
of telephony and Internet services with wireless
handheld devices, the next generation of Internet video
services, collaborative document management, and the
instant messaging services hovering in our future.  In
order to make these services scalable at the same pace
that we have seen the Internet and WWW services
flourish, a programmable distributed service
infrastructure is an obvious architectural requirement.

The infrastructure itself may likely yield a revolution
much like we have seen in web services.  This is likely
to be a software agent infrastructure, with "safe
enclaves" existing in the communications infrastructure
itself. With this, users will be able to launch their
software shopping agents into the network for
untethered operation and trustworthy results.

5. Conclusions

Web caching and proxying  systems are developing the
platforms for an important new class of application
accelerators and enhancers at the network perimeter.
While the core of the network can be dedicated to
moving bits over increasingly “fatter” pipes for more
and more multimedia data, the need to dynamically
manage information for individuals and businesses is
driving the edge devices to a rich services model.  This
is ushering in a new notion of what constitutes the
essential services of a global internet, of who engineers
it and how, and it blurs the line between application
and communications infrastructure.  This trend is likely
to continue, and it illustrates the mechanisms that will



continue transforming the Internet through the next few
decades.
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