
Proceedings of the Special Workshop on Intelligence at the Network Edge
San Francisco, California, USA, March 20, 2000

I N T E G R A T I N G A C T I V E N E T W O R K I N G A N D C O M M E R C I A L
 G R A D E R O U T I N G P L A T F O R M S

R. Jaeger, S. Bhattacharjee, J.K. Hollingsworth, R. Duncan, T. Lavian, and F. Travostino

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Integrating Active Networking and
Commercial-Grade Routing Platforms

R. Jaeger1,2, S. Bhattacharjee1, J. K. Hollingsworth1, R. Duncan2, T. Lavian2, F. Travostino2
1University of Maryland, College Park, MD 20742

2Nortel Networks, 4401 Great America Parkway, Santa Clara, CA 95052
{rfj,bobby,hollings}@cs.umd.edu {rduncan,tlavian,travos}@nortelnetworks.com

Abstract
Current network nodes enable connectivity between
end-systems by supporting a static and well-defined
set of protocols. The forwarding service provided by
these network nodes is fixed, simple, and
increasingly being implemented in hardware. Active
network nodes, on the other hand, enable the
unattended, dynamic instantiation of custom
programs into the network node, allowing for the
introduction of new protocols and services at
runtime. Current prototype implementations of
active network nodes achieve this flexibility by
injecting a significant amount of software into the
forwarding path.

This paper describes an Active Network platform
that is ideally suited for integration into modern,
commercial-grade network nodes, such as router
and switches with silicon-based forwarding paths.
This Active Network platform supports the dynamic
introduction of application services that can alter
packet processing; it comprises the Oplet Runtime
Environment (ORE) and the Java Forwarding
(JFWD) API. The ORE is the substrate that provides
for the secure downloading, installation, and safe
execution of network services. The JFWD API is a
uniform, platform-independent portal through which
software services can control the forwarding path of
heterogeneous network nodes. We describe how
existing active networking environments can be
ported onto this Active Network platform and
present performance results for dynamically loaded
network services on the Accelar Gigabit Ethernet
Routing Switch product.

Index terms-- Active Networks, distributed applications,
networking protocols, NodeOS, ORE, Programmable
Networks, JFWD

1. INTRODUCTION

Traditional network nodes (e.g. routers on the
Internet) enable end-system connectivity and sharing
of network resources by supporting a static and well-
defined set of protocols. The “virtual machine”
defines the service provided by the network to
transient traffic at each router; the customization of

this machine is strictly limited to the configuration
hooks that were envisioned at design time. The trend
in commercial-grade routers and switches has been to
implement ever more functionality of this virtual
machine in hardware; hardware implementations
have, in turn, enabled ever faster realizations of
network nodes. However, the gain in raw performance
due to hardware implementations isalmost by
necessitypaired with a loss of customization options
supported by the router on the data path. As more of
the router’s virtual machine is frozen in silicon, less
are the opportunities to introduce new services inside
the network.

1.1 Flexible Forwarding: Active Networks

Active Networks (AN) blurs the dichotomy between
transient data packets and strictly node-resident
software. Unlike traditional networks, AN enable the
introduction of network services “on-the-fly”. For
instance, AN support per-flow customization of the
services provided by a network node, according to the
various notions of flow being used. The tenet of active
networking is as follows: the utility of the service
rendered by the network to individual applications is
maximized if applications themselves are given the
opportunity to define this service. In their most
elaborate form, AN introduce a Turing-complete
virtual machine at each router. Network users inject a
“program” along with their data into the network.
This program defines exactly how the network should
process a user's data. Depending on the definition of
user and the granularity of customization supported by
the network interface, the network service in an active
network may even be customized on a per-packet
basis.

Obviously, such a broad definition of services
supported by the network make the implementations of
active network nodes difficult. Depending on the user-
network interface, the active network
implementationalmost by necessityhas to
incorporate a substantial software component into the

data path [16].1 Implementations of traditional and
active networks must confront the age-old tradeoff
between performance and flexibility. In this paper, we
explore one point in the performance-flexibility space:
we describe an implementation of active network
techniques on a commercial routing platform.

1.2 Active networking applied to commercial
hardware

This work captures the experiences and lessons-learned
while porting our AN platform to the Nortel Networks
Accelar Gigabit Routing-Switch. The primary goal of
our work is to build a working platform for
implementing programmable services on a
commercial-grade, best-of-breed router. In doing so,
we have tried to (a) preserve the router hardware fast-
path for data packets, and (b) leverage existing active
networking research as much as possible.

Obviously, (a) implies that certain computations that
require data plane flexibility are not possible in our
implementation. A paramount goal of our work is to
identify sets of computations that become possible as
additional functionality is placed into hardware. As
part of our work, we also identify the broad “classes” of
computations that are excluded by our implementation.

To support goal (b), we have implemented a layer over
which existing active network implementations can be
ported. In active networking parlance, this work does
not introduce a new AN execution environment (EE).
Rather, we present a Java-based run-time environment
(the Oplet Run-time Environment) for security and
service management over which existing EEs can be
deployed and executed as network services. There is
an important point of departure in our approach
compared to the current work in the active network
NodeOS community: we do not simply trust (even)
Java-based EEs to conform to the resource limit
policies set by the node provider. Instead, the ORE
checks and enforces these limits on a per-EE basis at
run-time. Further, the ORE can, as a matter of node
policy, revoke resources and privileges granted to an
EE during its execution. We have ported the ANTS EE
to run within the ORE on the Accelar router. Our
implementation architecture could allow porting the
entire DARPA NodeOS interface onto our platform
and support both Java-based and “native” EEs.

1 In cases of both traditional and active networks, it
may be possible to provide fast and customizable
forwarding by incorporating hardware that is both
programmable over a relatively fine time-scale and is
able to forward packets at line-speeds (e.g. fast and
programmable FPGAs).

1.3 Roadmap

In Section 2 we provide a brief overview of the
DARPA active network architecture, followed by a
description of the internal architecture of the Accelar
router. We discuss the issues that must be resolved
before the DARPA AN architecture can be realized on
a commercial-grade, hardware-intensive routing
platform and describe our mapping of the DARPA AN
architecture to the Nortel Networks Accelar Gigabit
Routing-Switch. In Section 3 we describe how we
realize selected portions of the AN architecture on the
Accelar, provide details of each component of our
implementation, and describe the interfaces supported
by each layer. In Section 4 we present a set of
performance results from our implementation. In
Section 5 we present related work and compare our
implementation with existing work both in an
architectural context and with respect to supported in-
network computations. We present conclusions in
Section 6.

2 BACKGROUND

In this section, we provide a quick synopsis of the
DARPA active networking architecture and of the
internal architecture of the Accelar platform.

2.1 DARPA Active Network Architecture

Figure 1 shows the node architecture for active
networks developed by the DARPA active network
research community [1].

Figure 1: DARPA Active Network Architecture.

The DARPA active network architecture defines a
framework through which APIs are exposed to
applications by the active network node. The
architecture must entertain more than one type of API;
the so-called Execution Environments (EEs) have the
mission to realize the various, specific APIs. The type
of APIs and the number of EEs are not necessarily

0

2 0

4 0

6 0

8 0

1 0 0

0 1 2 3 4 5 6 7 8 9 1 0

S e c o n d s

M
bp

s

L ow P r io rity
H ig h P rior ity

S ta r t
2 n d F lo w

C h a n g e
P r io r ity

E n d
2 n d F lo w

known a priori. This implies that the architecture must
define the “virtual machine” supported by network
nodes in the network, and the extensibility paradigms
associated with such a virtual machine.

EEs can implement a wide range of APIs that exploit
different points in the trade-off between performance
and flexibility, e.g. IPv4 can be considered a high
performance EE that does not provide much flexibility
while the ANTS [16] is an EE that provides a Java
virtual machine at each node and sacrifices some
performance for enhanced flexibility. By supporting
multiple EEs, the architecture allows the user of the
network to make an application-specific choice in this
spectrum between performance and flexibility.

The native computation, communication, and storage
resources at an active node are controlled by a Node
Operating System (Node OS). The node OS provides
an interface that exposes the resources available at the
active node and mediates access to these resources.
The node OS demultiplexes incoming packets to
specific EE(s); EEs specify the subset of packets that
must be handed-off to them. The node OS also
provides support for common objects such as routing
tables that are likely to be shared across EEs.

2.2 Nortel Accelar Router

The Nortel Networks Accelar family of L3 Routing
Switches employs a distributed ASIC-based
(Application Specific Integrated Circuit) forwarding
architecture with a 5.6-256 Gbps per second backplane.
Each ASIC is responsible for four physical 10/100
Ethernet ports or a single gigabit port. The switches
scale up to 384 10/100 ports or 96 Gigabit ports (or
some combination of the above). There are up to eight
hardware-forwarding queues per port corresponding to
normal and high priority packets. The hardware is
controlled using the VxWorks real-time OS.

 Figure 2: Architecture of the Accelar Router

Native applications monitor and control the ASIC
hardware via a switch-specific API. This API provides
access to hardware instrumentation variables to give
native applications a one-to-one mapping to hardware
functions. For example, the switch hardware provides
functionality to set certain bits on an IP packet header
that match a specific filter. This functionality is driven
through a switch-specific API. Through this API,
native applications can install packet filters that can
inspect and modify packet headers at wire-speed.

3 IMPLEMENTATION

In this section, we describe how we realize selected
portions of the AN architecture on the Accelar
platform. In order to transform the Accelar routing
switch to be a programmable network service platform,
we implemented a run-time environment over which
existing active network EEs can be executed. In
general, this would require the implementation of the
active network NodeOS API over the Accelar
embedded real-time OS. However, the AN NodeOS
API [2] was still evolving when we started our work
and most EEs are implemented either within a
JVM[16, 17] or over legacy OS interfaces. Thus, the
path we chose was not to port/implement the NodeOS
API and to limit support to Java-based EEs. There are
two required steps in order for Java-based EEs to
execute on the Accelar: (1) a JVM must be ported to
the Accelar, and (2) a Java-compatible interface must
be provided to the low-level hardware. Figure 2
shows a schematic diagram of the different components
of our approach.

The embedded Java VM required by step (1) is a fairly
well understood engineering task. JVMs can easily be
ported to run as one of VxWorks’ “tasks”. The service
degradation due to a single (possibly malfunctioning or
malicious) JVM task on VxWorks is constrained. This
is because the JVM runs as just another task in the
real-time VxWorks O/S with a fixed and upper-
bounded processor share and priority.

Step (2) required us to define a Java API to access low-
level forwarding paths like the ones found on the
Accelar. As forwarding paths can be heterogeneous—
e.g., they can be implemented in software, ASICs, or
network processors, and can have vastly different
feature sets—it was crucial to come up with a
forwarding API of wide applicability—i.e., not a point
solution for the Accelar. The details of the resulting
Java Forwarding API (JFWD) are captured in Section
3.3.

CPU

Wire Speed

Forwarding
Processor

Forwarding

Rules

Statistics
&Monitors

Forwarding
Processor

Forwarding

Rules

Statistics
&Monitors

Forwarding
Processor

Forwarding

Rules

Statistics
&Monitors

Control
 Plane

. . .

Though not technically a necessity, we added separate
layer between the JVM and the EE. This layer the
Oplet Runtime Environment (ORE)provides security
and management services that may eventually be
subsumed by the AN NodeOS and was deemed to be a
necessity for the commercial viability of the activated
routers. As mentioned before, the ORE enables a
stricter intra-node trust infrastructure allowing for
different per-node resource allocation policies without
cooperation from EE writers. Thus, ORE provides
mechanisms for nodes to enforce per-EE resource
limits without having to trust the EE. A nice corollary
is that the ORE allows multiple EEs (or multiple
instantiations of the same EE) to be spawned within a
single Accelar with different privileges. In the next
section, we present details of the ORE and JFWD API.

3.1 ORE: The Oplet Run-time Environment

The ORE is a platform for secure downloading,
installation, and safe execution of Java code (called
services) within a JVM. A service is a monolithic
piece of code that implements specific functionality. A
service may depend on other services in order to
execute. In order to securely download and impose
policy, we introduce the notion of “Oplet”. Oplets are
self-contained downloadable units that embody a non-
empty set of services. Along with the service code, an
Oplet specifies service attributes, authentication
information, and resource requirements. Note that
Oplets can encapsulate a service that depends on some
other service; in these cases, Oplets also contain
dependency information. In general, the ORE must
resolve and download the transitive closure of Oplet
dependencies before executing a single service.

The ORE provides mechanisms to download Oplets,
resolve dependencies, manage the Oplet lifecycle, and
maintain a registry of active services. The ORE uses a
public-key infrastructure to download “trusted” Oplets.
In brief, the security infrastructure provides
authentication, integrity, and non-repudiation
guarantees on downloaded Oplets. Due to space
restrictions, we will not elaborate more on the secure
downloading, execution, or resource management
features of Oplets.

3.2 Oplet Execution Safety

The ORE must provide safe execution and impose
resource limits. As far as possible, the ORE uses the
mechanisms provided by the Java language (type
safety) and the standard JVM (bytecode verification,
sandbox, security manager) to provide execution safety.

The ORE controls allocation of system resources by
intercepting allocation calls from the service code to
the JVM.

To protect itself from denial of service attacks,
deadlocks, and unstable states, the ORE implements
mechanisms for thread safety and revocation. The ORE
controls thread creation by requiring Oplets to request
new threads from the ORE. The ORE determines
whether to grant the request based upon a node policy
that takes into account current thread usage, and the
credentials of the requesting Oplet. Once a thread is
allocated, however, the current implementation of the
ORE has no mechanism in place to account for or limit
the consumption of computing resources. In its most
general form, the ORE must address denial of service
caused by a misbehaving service unduly consuming
CPU resources. To handle these issues, the ORE needs
JVM support for CPU accounting [14].

Sharing threads between Oplets presents two main
problems: (a) deadlock caused by a callee not returning
and (b) caller Oplet killing the shared thread while it
is executing in a callee Oplet's critical section. The
ORE protects itself from the first problem by never
interacting directly with any Oplet that it loads.
Instead it creates a trusted proxy which the ORE uses
to delegate its commands to the untrusted Oplet. The
proxy uses a separate thread to call a method on the
untrusted Oplet and sets a timeout for returning from
the call; if the thread call does not return after a
conservatively set timeout, a fail-stop situation is
assumed and the thread is killed. The second problem
is handled by the ORE by revoking Oplet's ability to
manipulate a thread's running status.

The ORE uses object revocation to control access to its
own resources. If the ORE determines that a specific
service is no longer permitted to use a resource
reference, the reference can be revoked. For example,
a service may carry a “handle” to a data structure
exported by another Oplet that no longer exists. The
ORE can detect these cases and revoke access to “stale”
objects. However, for absolute protection, non-
standard support is required from the JVM
implementation. Significant modification would
include the ability to perform accounting for both CPU
and memory consumption and support for per-thread
heap allocation and garbage collection [14].

The ORE is currently under active development. At
present, it supports secure downloading of services,
resolves service dependencies, and allows access to
native router functionality through the JFWD API.
However, the current ORE version is still vulnerable

to several flavors of denial-of-service attacks. These
include spurious triggering of the Java garbage
collector, memory fragmentation attacks, and stalling
finalization of objects[14]. Several memory related
safety hazards confronting the ORE will be resolved as
JVMs support multiple heaps, revocation and copy
semantics of the JKernel [8].

3.3 JFWD: The Java Forwarding API

The JFWD API specifies a platform-independent
interface for Java applications to control a virtual
forwarding path of commercial-grade strength. The
platform-independent nature of JFWD rests upon a) an
extensible behavioral model of the forwarding path,
and b) an extensible data model of control data (e.g.,
routing tables) that need to be fed into a forwarding
path to affect its behavior. To port JFWD to any given
platform, an engineer has to contrast the features of the
target forwarding path with the ones modeled in the
JFWD API specification, and then proceed to either
pruning JFWD classes that are not applicable to the
target forwarding path, or sub-classing existing JFWD
classes to cope with platform-specific forwarding
idiosyncrasies. Subsequent ports of the JFWD
contribute feedback and new classes back into the
JFWD API specification and its models, and this way
the JFWD API evolves towards new forwarding
technologies.

A selected set of JFWD classes has been ported to the
Accelar. The implementation of these JFWD classes is
highly platform dependent; on the Accelar, the JFWD
classes turn out to be a wrapper around the hardware
instrumentation interface. In the rest of this section,
we highlight the main mechanisms that are provided
by the JFWD API on the Accelar switch.

Among other things, the JFWD API can be used to
instruct the forwarding path to alter packet processing
through the installation of hardware filters. The
hardware filters execute “actions” specified by a filter
policy. On the Accelar, the filter can be based on
combinations of fields in the MAC, IP, and transport
headers. The policy can define where the matching
packets are delivered and can also be used to alter the
packet content. Packet delivery options include
discarding matching packets (or conversely,
forwarding matching packets if the default behavior
was to drop them) and diverting matching packets to
the control plane. Diverting packets to the control
plane allows applications, such as AN EEs to process
packets. Additionally, packets can be “carbon copied”
to the control plane or to a mirrored interface. Packets
may also be identified as being part of high priority

flows; these packets can be placed in a static hardware
high priority queue.

The filter policy can also cause packet and header
content to be selectively altered (e.g. the Type of
Service bits on matching packets can be set). The
existing hardware is capable of re-computing IP header
checksum information at line speeds even if the IP
header has to be altered.

3.4 Network services supported by the JFWD
and the ORE

In this section, we explore the set of possible and
precluded computations on the platform defined by
ORE and JFWD API. Note that the ORE does not, a-
priori, exclude any computation; instead, it enforces
node policy that may cause certain (e.g. processor-
intensive) computations to not be started or terminated
during execution. Computations are, instead,
constrained by the JFWD API since this API defines
those capabilities that are exported by the hardware
and can be used to build network services.

Thus, some computations, e.g. certain video
transcoding techniques that must process every packet,
cannot efficiently be implemented in our system
regardless of node policy. Not all precluded
computations involve data transformation; certain
network based anycasting/routing schemes in which a
program must be executed to find the outgoing switch
port cannot be supported either. The reason is that
you are putting inherently slow computations into the
forwarding process which is not sustainable at high
data rates.

In general, all control-plane only computations, e.g.
installing new routing tables or parsing a new ICMP
message type, can be rather easily accommodated by
the ORE/JFWD API. An important ability enabled by
the JFWD API is to selectively route (or copy) packets
to the control plane as we will see, this does
significantly enlarge the set of services that can be
implemented on the Accelar. In the rest of this section,
we identify a specific set (non exhaustive) of services
that can be implemented using the current version of
the JFWD API.

• Filtering firewall - One simple application would
be a firewall that allows or denies packets to
traverse on specified interfaces depending on
whether the packet's header matches a given bit
mask.

• Application-specific firewall - It is relatively
straightforward to extend the filtering firewall
implement certain application-specific firewalls.
For example, an FTP gateway that dynamically
changes the firewall rules to allow ftp-data
connections to a ``trusted'' host can be
implemented. Security functions like stopping
TCP segments with no (or all) bits set can also be
dynamically programmed on the Accelar. Almost
all modern routers allow for a filtering firewall
and application-specific firewall functionality. On
the Accelar ORE/JFWD platform, it is imperative
to note that these services can now be added,
modified, and deleted dynamically, on demand,
and without human intervention. The next three
services are example of features that, in general,
are not yet available in most commercial routers.

• Dynamic RTP flow identification - RTP over
UDP flows are identified by an ephemeral UDP
port number. In general, some host chooses this
port number and it is not well known. We have
implemented several mechanisms to identify RTP
flows traversing the Accelar. Using the JFWD
API, control protocol (SIP/RTSP/H.323) messages
can be intercepted and parsed for RTP port
numbers. We are currently implementing a more
dynamic solution that samples packets on specified
interfaces and uses probabilistic techniques to
identify/mark RTP flows.

• DiffServ: Classifier, Marker - The Accelar can
be turned into a DiffServ[6] Classifier by suitably
programming its hardware filters. Further, the
hardware (and in turn, the JFWD API) provides
mechanisms to change, at line-speed, selected bits
in the IP header. This ability can be used to
implement parts of DiffServ ingress/egress marker
capabilities on the Accelar. A subtle benefit of
this solution is that new firmware or hardware
does not have to be shipped each time a new
DiffServ scheme/PHB becomes popular. Instead,
using existing ORE service instantiation
mechanisms, only the service-specific logic has to
be uploaded onto the router. This can be
accomplished on-line, without interrupting
existing flows or services.

• PGM-like Reliable multicast - The packet
filtering capabilities of the Accelar allows certain
packets to be copied on for inspection by the
service code. This mechanism can be used to
divert (negative) acknowledgements from
multicast sessions to the control plane. The
service code can, much like the PGM reliable

multicast scheme, send one copy of the NAK
upstream and suppress duplicate NAKs. Unlike
PGM, modulo resource constrains, it is possible to
implement reliable multicast services that keep a
small packet cache and immediately re-transmit a
lost segment. Other services, such as multicast
ancestor discovery, can also be efficiently
implemented by providing the service code
interfaces to the routing table.

We conclude this section with a “wish-list” of a set of
functions that, if implemented in hardware and
exported by the JFWD API, would enable a new breed
of network services. This wish-list is not meant to
pinpoint shortcomings of the particular commercial
platform that we have used and that is quite good at
delivering the services that a traditional customer basis
demands. To the contrary, the wish-list represents a
constructive hint to those engineering teams
endeavoring on new projects explicitly aimed to
programmable, active network nodes.

 There are two types of functions that are required:
functions that are “better” substitutes for existing
functionality, and functions that are not available, in
any form, in the existing implementations.

There are two main elements in the first class of
functionalities with marginal improvement. The first
one is the replacement of static priority output
scheduler with a better scheduling algorithm (e.g.
weighted fair queuing). This would enable RSVP[5]
functionality to be implemented as a service. The
second one is the ability to discard frames with a given
probability function. To implement RED[7] and its
variants, a primitive of this kind needs to be added to
the discard/divert/forward/copy semantics of
permissible actions upon hardware filter match.

We conclude this section with two useful functions that
do not exist, in any form, in the Accelar hardware.

• Token Bucket - The Accelar hardware could be
augmented to provide support for a set number of
token buckets, each with a configurable buffer and
draining at a specified rate. Obviously, DiffServ
shapers and assorted RSVP policy can be
implemented using this mechanism.

• Queue Exposure and manipulation - The Accelar
hardware/JFWD API does not provide any
mechanisms for services to get a “sample” or
snapshot of the set of currently queued packets.
Application-specific congestion control
functionality [9] can be implemented using an

interface that allows services to periodically check
if packets of a certain type (i.e. matching a
specified ALF header) from a given flow are
queued on an output port. An extension to the
queue exposure interface allows services to delete
(in the general case, transform) packets that are
already queued. The queue exposure and
manipulation techniques have been applied to
significantly improve end-to-end quality of media
streams [4, 9].

4 EXPERIMENTAL RESULTS

In this section, we describe a simple experiment on the
Accelar platform. The experimental topology is shown
in Figure 3. The hardware used in the experiment
included a Accelar 1100B Routing Switch configured
with 16 10/100 Mbps port and a 5.6Gbps backplane.
The three hosts ran GNU/Linux (kernel version 2.2.5)
over 233 Pentium II processors.

Sourc
2tc_sen
d

Sourc
tc_sen

d()

Accle
1100
Routi
Swit
h

100 Mbps

Source
2 100 Mbps

Destination
1. tcp_recv()
2. tcp_recv()

()
_ ()

Source
tcp_send() Acclear

1100B
Routing
Switch

tcp_send()

Figure 3: Experimental Setup.

During the experiment, we sent two TCP flows from
the two sources to the single destination. In Figure 4
we show the results from a sample run of our
experiment: the x-axis corresponds to absolute time at
the receiver with respect to a clock that started when
the first packet is received; the y-axis corresponds to
measured bandwidth in application-space at the
receiver averaged over 48 1200 byte segments. Note
that for our purposes, the received clocks are
synchronized as each process samples current time
from the same hardware clock using the Unix
gettimeofday library call. Once the second flow
starts (at time 1.3 seconds), the source TCPs contend
for bandwidth on the output link and stabilize their
data rate at about 47 Mbps each. We then use an
downloaded ORE service (at time 3.8 seconds) to
dynamically increase the priority of the second flow.
In this case, the service does not implement dynamic
flow detection, instead it just uses a fixed source
address based filter to discriminate packets from each

of the sources. As expected, the received bandwidth on
the second (high priority) flow increases and stabilizes
at about 70 Mbps. On our testbed, this is the
maximum end-to-end bandwidth attainable without
any contention. After the second flow ends (at time 7.7
seconds), the low-priority TCP flow can increase its
rate and increases its rate up to the expected 70 Mbps.

Figure 4: Experimental Results for Dynamic
Assignment of Priority to Flows.

4.1 Discussion

In isolation, the experiment and the results described
above do not qualify as new behaviors. The novelty,
however, is derived from the fact that the priority
assignment code was installed dynamically on a
commercial-grade router capable of stably supporting a
large workgroup. In this section, we discuss an
immediate application of this functionality that we are
using in our own research facilities.

An immediate benefit of on-line identification of flows
and dynamic adjustment of packet priority is to support
cluster computing. In cluster systems such as
Condor[11], NOW[3], Stealth[10], and Linger-
Longer[15] workstations are used to run jobs when the
computer's primary user is not using their computers.
To make these systems usable, the software that runs
guest jobs on user's workstations goes to great lengths
to ensure that the guest process does not interfere with
the primary user. However, until now there has been
no clean way to isolate guest use of a workstation from
network traffic generated by normal users.

By using active networking at the local area network
switch, we can dynamically identify the flows
associated with guest jobs. Although these jobs
typically have a set of well-known ports, they also can
use other network services. To help identify these

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

Seconds
M

bp
s

Low Priority
High Priority

Start
2nd Flow

Change
Priority

End
2nd Flow

flows, the cluster scheduler software, can inform the
switch when a particular node has started to run a
guest process. For some clusters such as Condor and
NOW, a node in a cluster is either running guest
processes or local process and switches between them
on a time-scale measured in minutes. For these types
of systems, a simple filter to re-prioritize all traffic
from the host running a guest process can be installed
by the cluster scheduler. However, system such as
Stealth and Linger-Longer allow fine-grain sharing of
processors between guest and local processes. To
accommodate these systems, the filter needs to be able
to identify whether traffic associated from a node is due
to a guest process or a local process. To do this a more
complete dynamic flow detection one that can now
be implemented on the Accelar is required.

5 RELATED WORK

The only other commercial AN platform we know of is
from 3Comm[18]. We are not aware other integrated
active networking platform implementations on
commercial-grade hardware. The active networking
work on the Washington University Switch Kit
employs locally connected machines as active
processors2. The Tempest [13] provides a customizable
control plane for ATM networks. The basic ideas of
high-performance active networking by decoupling the
forwarding path from a programmable control plane
was introduced, in a software implementation, in the
Control-on-Demand (CoD) [9] platform co-developed
at AT&T Labs. In this section, we compare our
approach to CoD, and discuss how existing active
networking research fits within our framework.

The Control-on-Demand platform was developed and
implemented over IPv6 as an extension to the Linux
kernel [9]3. Data packets were kept in the kernel in
per-flow queues while active control could be applied
to the data packets by dynamically loaded “per-flow
controllers” that executed in user space. The per-flow
controllers affected the data path using the CoD API.
A meta-controller loaded each per-flow controller
using a signaling protocol. CoD was developed to be
specifically mapped onto hardware platforms and its
relationship to our work is clear. Services on the
Accelar map to per-flow controllers in CoD; the JFWD
API on the Accelar maps to the CoD API; the ORE
functionality on the Accelar is not completely
replicated in CoD, though the meta-controller does
provide a subset of the ORE functionality. As CoD
was implemented in software; it provides all of the

2 See http://www.ccrc.wustl.edu/gigabitkits/kits.html
3 Control on Demand was co-developed by S.
Bhattacharjee

JFWD functionality, and also provides the queue
exposure and manipulation facilities on our hardware
wish list.

Active networking NodeOS's can potentially be
implemented over VxWorks on the Acclear. There is
one fundamental problem: the AN NodeOS
architecture allows for all packets on specific channels
to be delivered to the EE for further processing this
would negate the benefits of the hardware forwarding
path available in the Accelar. However, the Accelar
provides a perfect platform for implementing fast cut-
through paths. The Bowman NodeOS[12] is a
particularly good fit as it is specifically supports cut-
through paths and is designed as a layer above a host
OS that provides low-level hardware access. Thus,
Bowman can directly be ported on to the Accelar using
VxWorks as its host OS.

For other Node OS efforts, the VxWorks platform
already implements much of the required functionality
such as memory management. However, it is not
obvious if some of the abstractions supported by these
systems (e.g. the path abstraction in Scout) can directly
be mapped on to the Accelar hardware features.

Java-based EEs can directly be ported on to the ORE.
Once a functional AN Node OS has been ported to run
over VxWorks, other “native” EEs such as CANEs can
be implemented on the Accelar.

6 CONCLUSIONS

We presented a summary of the challenges of bringing
Active Networking ideas to current high performance
hardware-based routers and switches. In addition, we
showed that while it is not currently feasible to support
active packets for every packet at line speed on these
systems (nor any system), it is possible to exploit
existing hardware filtering mechanisms to allow a
variety of scenarios that require active functionality on
routers. To demonstrate the feasibility of our
approach, we presented results from an initial
implementation of Active Networking support on the
Nortel Accelar. This example showed that it is
possible for existing hardware to be able to support
active networking environments such as ANTS. Also,
we have described how the programmable features of
existing ASIC-based hardware forwarding engines can
be used as a building block for extensible networks
services.

7 REFERENCES

1. "Architectural Framework for Active
Networks Version 0.9," . August 31,
1999,.Active Networks Working Group.

2. "NodeOS Interface Specification," . June 15,
1999,.AN Node OS Working Group.

3. R. H. Arpaci, A. C. Dusseau, A. M. Vahdat,
L. T. Liu, T. E. Anderson, and D. A.
Patterson, "The Interaction of Parallel and
Sequential Workloads on a Network of
Workstations," SIGMETRICS. May 1995,
Ottawa, pp. 267-278.

4. S. Bhattacharjee, Active Networks:
Architectures, Composition, and
Applications,Ph.D., Computer Science
Department Georgia Institute of
Technology,1999.

5. R. Braden, L. Zhang, S. Berson, S. Herzog,
and S. Jamin., Resource ReSerVation
Protocol (RSVP), RFC 2205, , September
1997.

6. D. Black, S. Blake, M. Carlson, E. Davies, Z.
Wang, and W. Weiss, An Architecture for
Differentiated Services, RFC2475, , Dec.
1998.

7. S. Floyd and V. Jacobson, "Random Early
Detection Gateways for Congestion
Avoidance," IEEE/ACM Transactions on
Networking, 1(4), 1993, pp. 397-413.

8. C. Hawblitzel, C. Chang, G. Czajkowski, D.
Hu, and T. v. Eicken, "Implementing Multiple
Protection Domains in Java," USENIX
Technical Conference Proceedings. June
1998.

9. G. Hja'lmtysson and S. Bhattacharjee,
"Control on Demand: An efficient approach
to router programmability," . April 1999.

10. P. Kruger and R. Chawla, "The Stealth
Distributed Scheduler," ICDCS. 1991, pp.
336-343.

11. M. Litzkow, M. Livny, and M. Mutka,
"Condor - A Hunter of Idle Workstations,"
International Conference on Distributed
Computing Systems. June 1988, pp. 104-111.

12. S. Merugu, S. Bhattacharjee, E. Zegura, and
K. Calvert, "Bowman: A Node OS for Active
Networks," to appear INFOCOM'2000.

13. J. E. v. d. Merwe, S. Rooney, M. Leslie, and
S. A. Crosby, "The Tempest - A Practical
Framework for Network Programmability,"
IEEE Network, 12(3), 1998.

14. P.Bernadat, D. Lambright, and F. Travostino,
"Towards a Resource-safe Java for Service-
Guarantees in Uncooperative Environments,"
IEEE Symposium on Programming Languages
for Real-time Industrial Applications
(PLRTIA). Dec. 98, Madrid, Spain.

15. K. D. Ryu and J. K. Hollingsworth, "Linger
Longer: Fine-Grain Cycle Stealing for
Networks of Workstations," SC'98. Nov. 1998,
Orlando, ACM Press.

16. D. Wetherall and e. al., "ANTS: A Toolkit for
Building and Dynamically Deploying
Network Protocols," OPENARACH'98. 1998.

17. Y. Yemini and S. da Silva, “Towards
Programmable Networks,” in IFIP/IEEE
International Workshop on Distributed
Systems: Operations and Management,
L’Aquila, Italy, October, 1996

18. D. Nessett, “Commercial use of Active
Networking,” OpenSIG Workshop, University
of Toronto, October 5-6, 1998

