Proceedings of th&pecial Workshop on Intelligence at the Network Edge

San Francisco, California, USA, March 20, 2000

INTEGRATING ACTIVENETWORKING AND COMMERCIAL
GRADE ROUTING PLATFORMS

R. Jaeger, S. Bhattacharjee, J.K. Hollingsworth, R. Duncan, T. Lavian, and F. Travostino

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWWittp://www.usenix.orgRights to individual papers remain with the author or the author's employer. Permission is

granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Integrating Active Networking and
Commercial-Grade Routing Platforms

R. Jaeg€er’, S. BhattacharjéeJ. K. Hollingsworth, R. Duncafy T. Laviarf, F. Travostind
'University of Maryland, College Park, MD 20742
*Nortel Networks, 4401 Great America Parkway, Santa Clara, CA 95052

{rfj,bobby,hollings}@cs.umd.edu {rduncan,tlavian,travos}@nortelnetworks.com

Abstract
Current network nodes enable connectiogtween
endsystems by supporting a static andllvdefined
set of protocols. The forwarding service provided by
these network nodes is fixed, simple, and
increasingly being implemented in hardware. Active
network nodes, on the other hand, enable the
unattended, dynamic instantiation of custom
programs into the netork node, allowingfor the
introduction of new protocols and services at
runtime. Current prototype implementations of
active network nodes achievihis flexibility by
injecting a significant amount of software into the
forwarding path.

This paper describes an Actinetwork platform
that is ideally suited for integration intmodern,
commercial-grade network nodes, such as router
and switches with silicon-based forwarding paths.
This ActiveNetwork platform supports the dynamic
introduction of application services that can alter
packet processing; it comprises the Oplet Runtime
Environment (ORE)and the Java Forwarding
(JFWD) API. The ORE is the substrate that provides
for the secure downloadinginstallation, and safe
execution of network services. TBIEWD API is a
uniform, platform-independent portal througtich
software services can control the forwarding path of
heterogeneous network nodes. We describe how
existing active networking environments can be
ported onto this ActiveNetwork platform and
present performance resultsr dynamicallyloaded
network services on the Accelar Gigabit Ethernet
Routing Switch product.

Index terms- Active Networks, distributed applications,
networking protocols, NodeOS, ORE, Programmable
Networks, JFWD

1.

Traditional network nodes (e.g. routers on the
Internet) enableend-system connectivitgnd sharing
of network resources by supporting a stati well-
defined set of protocols. The “virtual machine”
defines the service provided bythe network to

INTRODUCTION

this machine isstrictly limited to the configuration
hooksthat were envisioned at desigime. The trend

in commercial-grade routeend switcheshasbeen to
implement ever more functionality othis virtual
machine in hardware; hardware implementations
have, in turn, enabled ever fasterealizations of
network nodes. However, the gain in raw performance
due to hardware implementationsOialmost by
necessityl paired with aloss of customization options
supported by the router on the datth. Asmore of
the router’s virtual machine iBozenin silicon, less
are the opportunities to introduoew services inside
the network.

1.1 Flexible Forwarding: Active Networks

Active Networks (AN) blursthe dichotomy between
transient datapackets and strictly node-resident
software. Unliketraditional networks, AN enable the
introduction of network services “on-the-fly”. For
instance, AN supporper-flow customization of the
services provided by a network node, according to the
various notions of flow being usedhe tenet ofctive
networking is asfollows: the utility of the service
rendered by the network to individual applications is
maximized if applications themselvese given the
opportunity to definethis service. Intheir most
elaborate form, AN introduce a Turing-complete
virtual machine at each routeNetwork users inject a
“program” along with their data into theetwork.
This programdefines exactly howhe network should
process a usertiata. Depending on the definition of
userand the granularity afustomization supported by
the network interface, the netwaoskrvice in an active
network may even be customized on a per-packet
basis.

Obviously, such a broad definition ofservices
supported by the network make the implementations of
active network nodes difficult. Depending on the user-
network interface, the active network
implementatiof] almost by necessityl has to

transient traffic at each router: the customization of iNcorporate a substantial software comporiett the

data path[16].' Implementations of traditional and
active networks must confrorthe age-old tradeoff
between performancandflexibility. In this paper, we
explore one point inhe perfomance-flexibility space:

1.3 Roadmap

In Section 2 we provide a brief overview of the
DARPA active networkarchitecture,followed by a

we describe an implementation of active networkgescription of the internal architecture of thecelar

techniques on a commercial routing platform.

1.2 Active networking applied to commercial

hardware

router. We discusthe issuesthat must beresolved
beforethe DARPA AN architecture can be realized on
a commercial-grade, hardware-intensive routing
platformanddescribe our mpping of theDARPA AN

This work captures the experiences and lessons-learnedchitecture to the NortdNetworks Accelar Gigabit

while porting our AN platform to the Nort®&letworks

Routing-Switch. In Section 3 we describe how we

Accelar Gigabit Routing-Switch. The primary goal of realize selected portions tife AN architecture on the

our work is to build a working platform for
implementing programmable services on a
commercial-grade, best-of-breeduter. In doing so,

we have tried to (a) presertiee router hardwaréast-
pathfor data packetsand (b) leverage existing active
networking research as much as possible.

Obviously, (a) impliesthat certaincomputationsthat
require data plandéexibility are notpossible in our
implementation. A paramount goal of owork is to
identify sets of computationthat become possible as

Accelar, provide details of each component of our
implementation, andescribethe interfacesupported
by each layer. In Section 4 we present a set of

performance results from our implementation. In
Section 5 we present related woakd compare our
implementation with existing work both in an

architectural context and witlkespect to supported in-
network computations. We present conclusions in
Section 6.

2 BACKGROUND

additional functionality is placed into hardware. As |, ihis section. we provide a quick synopsis of the
part of our work, we also identify the broad “classes” ofy A\Rpa active networking architectureand of the

computations that are excluded by our implementation

To support goal (b), we have implemented a layer
which existing active network implementatiocan be
ported. In active networking parlandajs work does
not introduce anew AN execution environmerEE).
Rather, we present Java-basedun-time environment
(the Oplet Run-time Environmenfpr security and

internal architecture of the Accelar platform.

2.1 DARPA Active Network Architecture

Figure 1 showsthe node architecturdor active
networks developed byhe DARPA active network
research community [1].

servicemanagemenbver which existing EEs can be
deployedand executed as network service3here is
an important point of departure in our approad
compared to the currentork in the active network
NodeOS community: we do not simptyust (even)
Java-basedEEs to conform tothe resource limit
policies set bythe node provider. Instead, the ORE
checksand enforces thesémits on a per-EE basis at
run-time. Further, th©RE can, as a matter afode
policy, revoke resourceand privileges granted to an
EE during its execution. We have ported the ANTS H

100 1
Start Change

2n(d Flow Priority
80 4

End
2nd Flow

Mbps
e
3

40 oy

20 A -

10
—————— Low Priority
High Priority

Seconds

to run within the ORE onthe Accelar router. Our
implementation architecture could alloporting the
entire DARPA NodeOSinterface onto our platform
and support both Java-based and “native” EEs.

YIn cases of bothraditional andactive networks, it
may be possible to provide fasind customizable
forwarding by incorporating hardwarthat is both
programmable over a relatively fine time-scaled is

Figure 1: DARPA Active Network Architecture.

The DARPA active networkarchitecture defines a
framework through which APIs are exposed to
applications by the active network node. The
architecture must entertain mdireanone type of API;
the so-calledExecution EnvironmentéEES) have the
mission to realize the variouspecific APIs.The type

able to forward packets at line-speeds (e.g. fast angf APIs and the number of EEs are noécessarily

programmable FPGAS).

known a priori. This implieshat thearchitecture must Native applications monitoand control the ASIC
define the *“virtual machine” supported bgetwork hardware via a switch-specific APThis API provides
nodes inthe network,and theextensibility paradigms access tchardware instrumentation variables dive
associated with such a virtual machine. native applications a one-to-oneapping to hardware
functions. For example, the switch hardwprevides
EEs can implement wide range ofAPlIs that exploit ~ functionality to set certain bits on an IP packet header
different points in thdrade-off between performance that match apecificfilter. This functionality is driven
and flexibility, e.g. IPv4 can beconsidered ahigh through aswitch-specific APl. Through this API,
performance EEhatdoes not providenuchflexibility native applications can install packet filtefsat can
while the ANTS [16] is an EEhat provides a Java inspect and modify packet headers at wire-speed.
virtual machine at each nodend sacrifices some
performance for enhanced flexibility. By supporting3 IMPLEMENTATION

multiple EEs, the architecturaliows the user of the |, s section, we describe how wealize selected
network to make an appllcatlon-spemflc_ c_h_0|cethrs portions of the AN architecture on théccelar
spectrum between performance and flexibility. platform. In order to transform the Accelar routing

. , L switch to be a programmable network service platform,
The native computa_tlon, communicaticand storage we implemented a run-time environmemter which
resources at an active nodes controlled by aNode existing active network EEsan beexecuted. In

Operating SystertNode OS). The node OSprovides gonarg| thiswould require the implementation of the
an interfacehat exposeghe resources available at the 5 ve network NodeOS APl ovethe Accelar

active nodeand mediates access to these resources,mpeddedeal-time OS. However, the AN NodeOS
The node OS demultiplexes incomingackets 0 apj 2] wasstill evolving when we started owvork
specific EE(s); EEsspecify the subset of packetthat gnq most EEs are implemented either within a
must be handed-off tohém. Thenode OS also 3,m16, 17] orover legacy OS interfaceghus, the
provides suppo_rt forcommon objectsuch as routing path wechose wasiot to port/implement thélodeOS
tables that are likely to be shared across EEs. API and to limitsupport to Java-bas&Es. There are
two required steps in order for Java-badeHs to
2.2 Nortel Accelar Router execute orthe Accelar: (1) alVM must be ported to
The Nortel Networks Accelar family of L3 Routing the Accelar,and (2) a Java-compatible interface must
Switches employs a distributed ASIC-based be provided tathe low-level hardware. Figure 2
(Application Specific Integrated Circuit) forwarding shows a schematic diagram of the different components
architecture with a 5.6-256 Gbps per second backplanef our approach.
Each ASIC isresponsible for four physical 10/100
Ethernet ports or a single gigabit port. Téwitches The embedded Java VM required by step (1) is a fairly
scale up to 384 10/100 ports or 96 Gigabit ports (ofwvell understoodengineering task.JVMs caneasily be
some combination of the above). There are up to eighgorted torun asone of VxWorks’ “tasks”. The service
hardware-forwarding queuger port corresponding to degradation due to a singjgossiblymalfunctioning or
normal and high priity packets. The hardware is malicious) JVM task on VxWorks is constrained. This
controlled using the VxWorks real-time OS. is becausdghe JVM runs asjust another task in the
real-time VxWorks O/S with a fixedand upper-

Control L.
Dlane bounded processor share and priority.
CPU Step (2) required us to define a Java API to adcess

level forwarding paths like theones found on the

/I_\ Accelar. As forwarding paths can beterogeneous—
\ Wire Speed

e.g.,they can be implemented isoftware, ASICs, or
network processorsand canhave vastly different

ForwArdng - S— feature sets—it was crucial teome up with a
Rules Rules Rules forwarding API of wide applicability—i.enot a point

‘ Forwarding ‘ Forwarding || | | Forwarding solution forthe Accelar. The details of the reSUlting
Processor Brocessor Brocessor Java Forwarding APl (JFWDyre captured irSection
Statistics Statistics Statistics

‘ &Monitors ‘ &Monitors ‘ &Monitors 33

Figure 2: Architecture of the Accelar Router

Though not technically aecessity, we added separate The ORE controls allocation o$ystem resources by
layer betweerthe JVM and the EE. Thisayer Othe intercepting allocation calls from theervice code to
Oplet Runtime EnvironmerORE)] provides security the JVM.
and managemenservices that may eventually be
subsumed byhe AN NodeOSandwas deemed to be a To protect itself from denial ofservice attacks,
necessity fothe commerciaviability of the activated deadlocks,and unstable states, th@RE implements
routers. As mentionedbefore, the ORE enables a mechanisms for thread safety and revocation. The ORE
stricter intra-node trust infrastructure allowing for controls thread creation by requirii@plets to request
different per-node resource allocation policies withoutnew threads from the ORE. ThORE determines
cooperation from EE writers. Thus, ORE provides Wwhether togrant therequest based upon a nagtaicy
mechanisms for nodes to enforger-EE resource thattakes into account current thread usaed the
limits without having to trust thEE. A nicecorollary credentials of the requesting Oplet. Oncthiead is
is that the ORE allows multipleEEs (or multiple allocated, howeveithe current implementation of the
instantiations of the same EE) to ;gawned within a ORE has no mechanism in place to account féinut
single Accelar with different privileges. In the next the consumption of computing resources. In its most
section, we present details of the ORE and JFWD API.general form, th€®ORE must addresdenial ofservice
caused by a misbehaving service unduly consuming
CPU resources. To handle these issuesDRE needs
3.1 ORE: The Oplet Run-time Environment JVM support for CPU accounting [14].

The ORE is a platform for secure downloading, Sharing threadsetween Opletspresentstwo main
installation, andsafe execution of Java code (called ProPlems: () deadlock caused by a calleereintrning
servicey within a JVM. A service is a monolithic and (b) calleOplet killing the shared thread while it

piece of codehat implements specific functionality. A is executing in_ a callee Opl(_at's critical section. The
service maydependon other services in order to ORE protects itself fronthe first problem by never

execute. In order tsecurely downloadind impose Interacting directly with any Oplethat it loads.
policy, we introducehe notion of “Oplet’. Oplets are Instead it cr_eates a trustpdoxy which the ORE uses
self-contained downloadablenits thatembody anon- to delegate its commands to the untrusted Oplet. The
empty set of services. Alongith the service code, an ProXy uses a separatread to call a method on the
Oplet specifies serviceattributes, authentication Untrusted Opleandsets a timeout foreturning from
information, andresource requirements.Note that e call; if the thread caltioes notreturn after a

Opletscan encapsulate servicethat depends osome ~ Conservatively set timeout, a fail-stogituation is
other service; in these cases, Oplets also contaigsSumednd the thread isilled. Thesecond problem

dependency information. Igeneral, theORE must 'S handled by th©RE by revoking Oplet's ability to

resolveand downloadthe transitiveclosure of Oplet Manipulate a thread's running status.

dependencies before executing a single service.)) .
The ORE uses object revocation to control access to its

The ORE provides mechanisms to download Oplets@WN resources. Ithe ORE determineghat aspecific

resolve dependenciesianage the Opldifecycle, and service is no longer permitted to use a resource
maintain aregistry of active serviceShe ORE uses a 'eférence, theeferencecan berevoked. For example,

public-key hfrastructure to download “trusted” Oplets. & Service may carry dhandle” to a data structure
In brief, the security infrastructure provides ©€XPorted by another Opléhat no longeexists. The
authentication integrity, and non-repudiation ORE can detect these cases and revoke access to “stale

guarantees on downloaded Oplets. Duespmce OPiects. ~ However, for absolute peotion, non-
restrictions, we will not elaborate more on tecure Standard support is requiredrom the JVM

downloading, execution, or resource managemen@tmplementation. Significant modification would
features of Oplets. include theability to perform accounting for both CPU

and memory consumptiomnd support for per-thread
3.2 Oplet Execution Safety heap allocation and garbage collection [14].

The ORE is currentlyunderactive development. At
present, it supports secure downloading of services,
resolves service dependencies)d allows access to
native router functionality through thdFWD API.
However,the current ORE version isstill vulnerable

The ORE must providesafe executionand impose
resource limits. As far ggossiblethe ORE uses the
mechanisms provided byhe Java languagdtype
safety) and the standardVM (bytecodeverification,
sandbox, security manager) to provide executifoty.

to several flavors of denial-of-service attacks. Thesdlows;these packetsan be placed in a static hardware

include spurious triggering of the Java garbagehigh priority queue.

collector, memoryfragmentation attacksnd stalling

finalization of objecs[14]. Several memory related The filter policy can also cause packeind header

safetyhazards confronting theRE will be resolved as content to beselectively altered (e.g. theType of

JVMs support multiple heaps, revocati@md copy Service bits on wtching packetscan be set). The

semantics of the JKernel [8]. existing hardware is capable of re-computing IP header
checksum information at linepeeds even ithe IP

3.3 JFWD: The Java Forwarding API header has to be altered.

Network services supported bythe JFWD

The JFWD API specifies a platform-independent3-4
and the ORE

interface for Java applications to control a virtual
forwarding path of commercial-grade strength. The

platform-independent nature #FWD rests upon a) an In this section, we explorg¢he set ofpossible and

extensible behavioral model ofhe forwardingpath,
and b) anextensibledatamodel of controldata (e.g.,
routing tables)that need to be fednto a forwarding
path toaffectits behavior. To pordFWD to any given

precluded computations on the platforhefined by
ORE and JFWD API. Notethat theORE doesot, a-
priori, exclude any computation; instead, eihforces
node policythat may causecertain (e.g.processor-

platform, an engineer has to contrast the features of thatensive) computations to not be started or terminated

target forwardingpath with theones modeled in the
JFWD API specificationand thenproceed to either
pruning JFWD classesghat are notapplicable to the
target forwardingoath, orsub-classing existingFwWD

classes to copewith platform-specific forwarding
idiosyncrasies. Subsequent ports tfe JFWD

contribute feedbackand new classes backnto the

JFWD API specificatiorand itsmodels,and this way
the JFWD API evolves towards new forwarding
technologies.

A selected set of JFWD clasdeassbeen ported to the
Accelar. The implementation of the3WD classes is
highly platform dependent; on the Accelar, tHéVD

during execution. Computationsare, instead,
constrained by thdFWD API sincethis API defines

those capabilitieghat areexported by the hardware
and can be used to build network services.

Thus, some computations, e.g. certain video
transcoding techniqudbat mustprocess everpacket,
cannot efficiently be implemented inour system
regardless of node policy. Noall precluded
computations involvedata transformation; certain
network based anycasting/routing schemes in which a
program must bexecuted to findhe outgoingswitch

port cannot be supported either. The reasaimads
you are putting inherentlglow computations into the

classegurn out to be a wrapper around the hardwareforwarding process which is not sustainablehagh

instrumentation interface. In the rest of tkixction,
we highlight the mairmechanismghat areprovided
by the JFWD API on the Accelar switch.

Among other things, thdFWD API can beused to
instruct the forwardingpath to altempacket processing
through the installation of hardware filters.

policy. Onthe Accelar, the filter can bbased on
combinations of fields irthe MAC, IP,and transport
headers. Theolicy can define wherethe matching
packetsare deliveredand caralso be used talter the
packet content.
discarding matching packets (or conversely,
forwarding matchingpackets ifthe defaultbehavior
was to dropthem) and diverting matchingackets to
the control plane. Divertingpackets tothe control
planeallows applications, such as AREs toprocess
packets. Additionally, packetsan be‘carbon copied”
to the control plane or to a mirrored interfadeackets
may also be identified as beingart of high priority

data rates.

In general, all control-planenly computations, e.g.
installing new routing tables oparsing anew ICMP
message typesan be ratheeasily accommodated by
the ORE/JFWD API. Animportantability enabled by

The the JFWD API is toselectively route (orcopy) packets
hardware filtersexecute “actions” specified by a filter

to the control planell as we will see,this does
significantly enlarge the set afervicesthat can be
implemented on the Accelar. In the rest of this section,
we identify a specific seinpn exhaustive) of services
that can beémplemented using the current version of

Packet delivery options includethe JFWD API.

e Filtering firewall - One simple applicatiowould
be a firewall that allows or denies packets to
traverse on specified interfaces depending on
whether the packet's header matches a given bit
mask.

Application-specific firewall - It is relatively multicast scheme, send orepy of the NAK

straightforward to extend the filterin§rewall upstream anduppress duplicate NAKs. Unlike
implement certain application-specific firewalls. PGM, modulo resource constrains, ipisssible to
For example, an FTP gatewalgat dynamically implement reliable multicast servic#isat keep a
changes the firewall rules tallow ftp-data small packet cachandimmediately re-transmit a

connections to a trusted" host can be lost segment. Otheservices, such as multicast
implemented. Security functions like stopping ancestor discovery,can also be efficiently
TCP segments with no (or all) bits s@tnalso be implemented by providing theservice code
dynamically programmed othe Accelar. Almost interfaces to the routing table.
all modern routerallow for a filtering firewall
and application-specific firewall functionality. On We concludehis section with a “wish-list” of a set of
the AccelarORE/JFWD platform, it is imperative functions that, if implemented in hardware and
to note that these servicesan now be added, exported by thdFWD API, would enable a new breed
modified, and deleted dynamically, on demand, of network servicesThis wish-list is not meant to
and witiout human intervention. The next three pinpoint shortcomings of the particular commercial
servicesare example ofeaturesthat, in general, platform that wehave usedand that isquite good at
are not yet available in most commercial routers. delivering theserviceghat a traditionatustomer basis
demands. To the contrary, the wish-list represents a
Dynamic RTP flow identification - RTP over constructive hint to those engineering teams
UDP flows are identified by an ephemeral UDP endeavoring on new projects explicitly aimed to
port number. In generakome hosthooseshis programmable, active network nodes.
port number and it is navell known. We have
implemented several mechanisms to identify RTP There aretwo types offunctions that arerequired:
flows traversing the Accelar. Using th&FWD functions that are “better” substitutes for existing
API, control protocol (SIP/RTSP/H.323) messagesfunctionality, and functionsthat are notavailable, in
can be interceptecand parsed for RTP port any form, in the existing implementations.
numbers. We are currently implementing a more
dynamic solution that samples packets on specifiedhere aretwo main elements in the first class of
interfaces and uses probabilistic techniques to functionalities with marginalmprovement. The first
identify/mark RTP flows. one is the replacement of static prioritgutput
scheduler with a better scheduling algorithm (e.qg.
DiffServ: Classifier, Marker - The Accelar can Wweighted fair queuing). This would enableRSVP[5]
be turned into diffServ[6] Classifier by suitably functionality to be implemented as a service. The
programming its hardware filters. Further, thesecond one ithe ability to discard frames with a given
hardware (and in turn, th&FWD API) provides probability function. To implement RED[7and its
mechanisms to change, at line-spessdlected bits variants, a primitive of this kindeeds to be added to
in the IP header. Thisbility can beused to the discard/divert/forward/copy = semantics of
implement parts oDiffServ ingress/egresmarker ~ permissible actions upon hardware filter match.
capabilities on the Accelar. Aubtle benefit of
this solution isthat new firmware or hardware We conclude this section witlvo usefulfunctionsthat
does not have to be shipped each time a newdo not exist, in any form, in the Accelar hardware.
DiffServ scheme/PHB becom@®pular. Instead,
using existing ORE service instantiation <+ Token Bucket- The Accelar hardwareould be

mechanismsonly the service-specific logihas to augmented to provide support for a set number of
be uploaded onto the router. This can be token buckets, each with a configurabléfer and
accomplished on-line, without interrupting draining at aspecifiedrate. Obviously, DiffServ
existing flows or services. shapers andassorted RSVP policycan be

implemented using this mechanism.
PGM-like Reliable multicast - The packet
filtering capabilities of the Accelaallows certain ¢ Queue Exposure and manipulation The Accelar
packets to be copied on for inspection by the hardware/JFWD APl does not provide any

service code. This mechanism can besed to mechanisms for services to get a “sample” or
divert (negative) acknowledgements from shapshot of the set of currentfjueued packets.
multicast sessions tthe control plane. The Application-specific congestion control

service codecan, much like thePGM reliable functionality [9] can be implemented using an

interfacethatallows services to periodically check
if packets of a certainype (i.e. matching a
specified ALF header) from a giverflow are
gueued on an output port.

of the sources. As expected, the received bandwidth on
the second (high priorityjlow increasesind stabilizes
at about 70 Mbps. On our testbethis is the

An extension to themaximum end-to-end bandwidth attainable without

queue exposure interface allows services to deletany contention. After the second flow ends (at time 7.7

(in the generakase, transform) packethat are
already queued. Thequeue exposure and
manipulation techniques havbeeen applied to

seconds)the low-priority TCP flow can increase its
rate and increases its rate up to the expected 70 Mbps.

significantly improve end-to-end quality of media
streams [4, 9].

4

In this section, we describe a simple experiment on th
Accelar platform. The experimentalpology is shown

in Figure 3. The hardwarased inthe experiment

included a Accelar 1100B Routing Switch configure
with 16 10/100Mbps port and a5.6Gbps backplane.
The three hostsan GNU/Linux (kernel version 2.2.5)
over 233 Pentium Il processors.

EXPERIMENTAL RESULTS

100 |
Start Change End
2nd Flow Priority 2nd Flow
80 -
L] [.”_-_‘
IERY
(S 60 ': [l}
Q o
§ LU v
404 K
204
[S
4
(| -:.
O : I\ T T T T T T T T
o 12 3 4 5 6 7 '8 9 10
Seconds @ - Low Priority
High Priority

Source——p Accl
tcpsend() 100 Mbpd” cC1€ar
11008 | Destination
Routing 1.tcp_rec((
Switch 2.tcp_recy
Source|——p
tcpsend(100 Mbpg

Figure 3: Experimental Setup.

During the experiment, we setwo TCP flows from
the two sources tdhe single destination. In Figure 4
we show the results from a sampleun of our
experiment: the x-axis corresponds dabsolute time at
the receiver with respect to @lock that startedvhen
the first packet igeceived;the y-axis corresponds to

measured bandwidth in application-space at théondor[11],

receiver averaged over 48 12B@te segments. Note
that for our purposes,the received clocks are
synchronized as each process samplesent time
from the same hardwarelock using the Unix
gettimeofday library call. Once thesecondflow
starts (at time 1.3econds)the source TCPs contend
for bandwidth onthe outputlink and stabilize their
data rate ambout 47 Mbpseach. We theruse an
downloaded ORE servicéat time 3.8 seconds) to
dynamically increas¢he priority of thesecond flow.
In this case, theservice does namplement dynamic
flow detection, instead it just uses a fixedurce
address based filter wiscriminate packets from each

Figure 4: Experimental Results for Dynamic
Assignment of Priority to Flows.

4.1 Discussion

In isolation, the experimerand theresults described
above do not qualify as nebehaviors. Thenovelty,
however, is derived fronthe fact that the priority
assignmentcode was installed dynamically on a
commercial-grade router capablestdblysupporting a
large workgroup. Inthis section, we discuss an
immediate application of thiainctionality that we are
using in our own research facilities.

An immediate benefit of on-line identification fdws
and dynamic adjustment of packet priority is to support
cluster computing. In clustesystems such as
NOWI[3], Stealth[10], and Linger-
Longer[15] workstationsreused torun jobswhen the
computer's primary user is not usitfgeir computers.
To make thesaystems usabldhe softwarethat runs
guestjobs on uses workstationgjoes togreat lengths
to ensurghat theguest process does riaterfere with
the primary user.However,until now there haseen
no clearway toisolate guest use of a workstation from
network traffic generated by normal users.

By using active networking ahe local areaetwork
switch, we can dynamically identify the flows
associated with guesjobs. Although thesejobs
typically have a set of well-knowports, they also can
use other network services. Twlp identify these

flows, the cluster schedulesoftware,can inform the
switch when a particular nodeas started taun a

JFWD functionality, and also providesthe queue
exposureand manipulatiorfacilities on our hardware

guest process. For some clusters such as Condor awish list.

NOW, a node in a cluster is eitheunning guest
processes or local proceasd switches betweethem
on a time-scale measured in minutes. For tiygses
of systems, a simple filter toe-prioritize all traffic
from the hostrunning aguest processan be installed
by the cluster schedulerHowever, systermrsuch as
Stealth and.inger-Longer allowfine-grain sharing of
processors between gueshd local processes. To
accommodate these systerig filter needs to bable

to identify whether traffic associated from a node is dughrough paths.

to a guest process or a local process. Tthidoa more
complete dynamiflow detection O onethat can now
be implemented on the Accellaris required.

5
Theonly other commercial AN platform wienow of is

RELATED WORK

Active networking NodeOS'scan potentially be
implemented over VxWorks othe Acclear. There is
one fundamental problem: the ANNodeOS
architecture allows foall packets on specifichannels
to be delivered tohe EEfor further processing! this
would negatehe benefits ofthe hardware forwarding
path available inthe Accelar. However,the Accelar
provides a perfect platform for implementing fast cut-
TheBowman Node@[12] is a
particularly good fit as it is specifically supports cut-
through paths and designed as a layabove ahost
OS thatprovides low-levelhardwareaccess. Thus,
Bowmancandirectly be ported on tthe Accelar using
VxWorks as its host OS.

from 3Comm[18]. Weare not aware other integrated FOf Othér Node OS efforts,the VxWorks platform

active networking platform
commercial-grade hardware. Tlaetive networking
work on the Washington University Switch Kit
employs locally connectedmachines as active
processors The Tempest [13provides a customizable
control planefor ATM networks. The basic ideas of
high-performance active networking by decoupling th
forwarding path from a programmable control plane
was introduced, in a softwaimplementation, in the
Control-on-Demand (CoD) [9] platforro-developed
at AT&T Labs. Inthis section, we compare our
approach to CoDand discuss howexisting active
networking research fits within our framework.

The Control-on-Demand platformvas developed and
implemented over IPv6 as antemsion to the Linux
kernel [9f. Data packetsvere kept inthe kernel in

implementations on

already implements much of the required functionality
such as memorymanagement. However, it is not
obvious if some ofhe abstractions supported these
systems (e.g. theath abstraction i&cout)candirectly

be mapped on to the Accelar hardware features.

eJava-baseEEs candirectly be ported on tthe ORE.
Once a functional ANNode OShasbeen ported to run
over VxWorks,other “native” EEs such as CANEs can
be implemented on the Accelar.

6

We presented a summary of the challenges of bringing
Active Networking ideas taurrent highperformance
hardware-based routeamd switches. In addition, we
showedthatwhile it is not currently feasible to support
active packets foevery packet at linespeed on these

CONCLUSIONS

per-flow queues while active control could be appliedsystems(nor any system), it is possible to exploit

to the datapackets by dynamically loadé€gber-flow
controllers”thatexecuted in user spacd.he per-flow
controllers affectedhe data path using théoD API.

A meta-controller loaded each per-flow controller approach, we presented

existing hardware filtering mechanisms &low a
variety of scenariothat requireactive functionality on
routers. To demonstrate théeasibility of our
results from amitial

using a signalingrotocol. CoD was developed to be implementation ofActive Networkng support on the

specifically mapped ontbardware platformand its
relationship to ourwork is clear. Services on the
Accelar map tger-flow controllers in CoDthe JFWD
API on the Accelar maps to theoD API; the ORE
functionality on the Acdar is not completely
replicated in CoD, thoughhe meta-controllerdoes
provide a subset dhe ORE functionality. As CoD
was implemented in software; it provided of the

% See http://www.ccrc.wustl.edu/gigabitkits/kits.html
® Control on Demandwas co-developed by S.
Bhattacharjee

Nortel Accelar. This exampleshowed that it is
possible forexisting hardware to be able to support
active networking environments such as ANTS. Also,
we have described hothe programmable features of
existing ASIC-basetiardware forwarding engines can
be used as a buildinglock for extensible networks
services.

=

10.

11.

12.

13.

REFERENCES 14.

"Architectural Framework for Active
Networks Version 0.9," August 31,
1999, .Active Networks Working Group.
"NodeOS Interface Specification,"June 15,
1999,.AN Node OS Working Group.

R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, 15.

L. T. Liu, T. E. Anderson,and D. A.
Patterson, "The Interaction of Parallel and
Sequential Workloads on a Network of
Workstations," SIGMETRICS May 1995,
Ottawa, pp. 267-278.

S. Bhattacharjee, Active Networks:
Architectures, Composition, and
ApplicationsPh.D., Computer Science
Department Georgia Institute of
Technology,1999.

R. Braden, L. Zhang, Berson, S. Herzog,
and S. Jamin., Resource ReSerVation
Protocol (RSVP) RFC 2205, , September
1997.

D. Black, S. Blake, M. Carlson, E. Davies, Z.
Wang, and W. Wiss, An Architecture for
Differentiated Services RFC2475, , Dec.
1998.

S. Floydand V. Jacobson, "Random Early
Detection =~ Gateways for Congestion
Avoidance," IEEE/ACM Transactions on
Networking 1(4), 1993, pp. 397-413.

C. Hawblitzel, C.Chang, G.Czajkowski, D.
Hu, and T. v. Eicken, "Implementing Multiple
Protection Domains in Java,"USENIX
Technical Conference ProceedingsJune
1998.

G. Hjalmtysson and S. Bhattacharjee,
"Control on Demand: An efficient approach
to router programmability,” . April 1999.

P. Kruger and R. Chawla, "The Stealth
Distributed Scheduler,"ICDCS 1991, pp.
336-343.

M. Litzkow, M. Livny, and M. Mutka,
"Condor - A Hunter of Idle Workstations,"
International Conference on Distributed
Computing Systemgune 1988, pp. 104-111.
S. Merugu, S. Bhattacharjee, E. Zegura, and
K. Calvert, "Bowman: ANode OS for Active
Networks,"to appear INFOCOM'2000

J. E. v. d. Merwe, S. Rooney, M. Leslie, and
S. A. Croshy,"The Tempest - A Practical
Framework for Network Programmability,”
IEEE Network12(3), 1998.

P.Bernadat, D. Lambright, and Favostino,
"Towards a Resource-safe Java for Service-
Guarantees in Uncooperative Environments,"
IEEE Symposium on Programming Languages
for Real-time Industrial Applications
(PLRTIA) Dec. 98, Madrid, Spain.

K. D. Ryuand J. K.Hollingsworth, "Linger
Longer: Fine-Grain Cycle Stealing for
Networks of Workstations SC'98 Nov. 1998,
Orlando, ACM Press.

D. Wetherall and e. alANTS: A Toolkit for
Building and Dynamically Deploying
Network Protocols,OPENARACH'981998.

Y. Yemini and S. daSilva, “Towards
Programmable Networks,” in IFIP/IEEE
International Workshop on Distributed
Systems: Operationsand Management,
L’Aquila, Italy, October, 1996

D. Nessett, “Commercial use of Active
Networking,” OpenSIG Workshop, University
of Toronto, October 5-6, 1998

