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Abstract

This paper presents the design, simulation and perfor-
mance evaluation of a novel reordering write buffer
for Log-structured File Systems (LFS). While LFS pro-
vides good write performance for small files, its biggest
problem is the high overhead from cleaning. Previous
research concentrated on improving the cleaner’s effi-
ciency after files are written to the disk. We propose a
new method that reduces the amount of work the cleaner
has to do before the data reaches the disk. Our design
sorts active and inactive data in memory into different
segment buffers and then writes them to different disk
segments. This approach forces data on the disk into a
bimodal distribution. Most data in active segments are
quickly invalidated, while inactive segments are mostly
intact. Simulation results based on both real-world and
synthetic traces show that such a reordering write buffer
dramatically reduces the cleaning overhead, slashing
the system’s overall write cost by up to 53%.

1 Introduction

Disk I/O is a major performance bottleneck in mod-
ern computer systems. The Log-structured File Sys-
tem (LFS) [12, 15, 16] tries to improve the I/O perfor-
mance by combining small write requests into large logs.
While LFS can significantly improve the performance
for small-write dominated workloads, it suffers from a
major drawback, namely the garbage collection over-
head or cleaning overhead. LFS has to constantly re-
organize the data on the disk, through a process called
garbage collection or cleaning, to make space for new
data. Previous studies have shown that the garbage col-
lection overhead can considerably reduce the LFS per-
formance under heavy workloads. Seltzer et al. [17]
pointed out that cleaning overhead reduces LFS perfor-

mance by more than 33% when the disk is 50% full.
Due to this significant problem, LFS has limited success
in real-world operating system environments, although
it is used internally by several RAID (Redundant Array
of Inexpensive Disks) systems [20, 10]. Therefore it is
important to reduce the garbage collection overhead in
order to improve the performance of these RAID sys-
tems and to make LFS more successful in the operating
system field.

Several schemes have been proposed [9, 20] to speed up
the garbage collection process. These algorithms focus
on improving the efficiency of garbage collection after
data has been written to the disk. In this paper, we pro-
pose a novel method that tries to reduce the I/O over-
head during the garbage collection, by reorganizing data
in two or more segment buffers, before data is written to
the disk.

1.1 Motivation

Figure 1 shows the typical writing process in an LFS.
Data blocks and inode blocks are first assembled in a
segment buffer to form a large log. When the segment
buffer is full, the entire buffer is written to a disk seg-
ment in a single large disk write. If LFS has synchronous
operations or if dirty data in the log have not been written
for 30 seconds, partially full segments will be written to
the disk. When some of the files are updated or deleted
later, the previous blocks of that file on the disk are in-
validated correspondingly. These invalidated blocks be-
come holes in disk segments and have to be reclaimed
by the garbage collection process.

The problem with LFS is that the system does not dis-
tinguish active data (namely short-lived data) from in-
active data (namely long-lived data) in the write buffer.
Data are simply grouped into a segment buffer randomly,
mostly according to their arrival order. The buffer is then
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(3) After a while, many blocks in segments are invalidated,
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Figure 1: The writing process of LFS

written to a disk segment when it is full. Within the seg-
ment, however, some data are active and will be quickly
overwritten (therefore invalidated), while others are in-
active and will remain on the disk for a relatively long
period. The result is that the garbage collector has to
compact the segment to eliminate the holes in order to
reclaim the disk space.

1.2 Our New Scheme

Based on this observation, we propose a new method
called WOLF (reordering Write buffer Of Log-
structured File system) that can dramatically reduce the
garbage collection overhead. Instead of using one seg-
ment buffer, we use two or more segment buffers(here
is two), as shown in Figure 2. When write data arrives,
the system sorts them into different buffers according
to their expected longevity. Active data are grouped
into one buffer, while less-active data are grouped into
the other buffer. When the buffers are full, two buffers
are written into two disk segments using two large disk
writes (one write for each buffer).

Because data are sorted into active and inactive segments
before reaching the disk, garbage collection overhead is
drastically reduced. Since active data are grouped to-
gether, most of an active segment will be quickly in-
validated (sometimes the entire segment will be invali-
dated, and the segment can be reused right away with-
out garbage collection). On the other hand, very few
data blocks in an inactive segment will be invalidated,
resulting in few holes. The outcome is that data on the
disk have a bimodal distribution, namely segments are
either mostly full or mostly empty. Similar to Rosen-
blum and Ousterhout’s analysis [15], this is an ideal sit-
uation. In a bimodal distribution, segments tend to be
nearly empty or nearly full, but few segments are in be-
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Figure 2: Our new scheme–WOLF

tween. The cleaner can select many nearly empty seg-
ments to clean and compact their data into a small num-
ber of segments. The old segments are then freed, re-
sulting in a large number of available empty segments
for future use. Furthermore, there is no need to waste
time to clean the nearly-full segments.

Basically, while previous researchers agreed that the
cleaner plays one of the most important roles in LFS,
their work focused only on making the cleaner more ef-
ficient after data are written onto the disk. We believe
that there exists another opportunity to improve the LFS
performance. By re-organizing data in RAM before they
reach the disk, we could also make the system do less
garbage collection work. Traditional LFS did try to sep-
arate active data from inactive data and force a bimodal
distribution, but only during the garbage collection pe-
riod, long after files are written to the disk. Our sim-
ulation shows that significant performance gain can be
obtained by applying our new method.

1.3 File Access Locality

Accurate prediction of which blocks will be invalidated
soon is the key to the success of our strategy. We looked
at both the temporal and spatial locality of file access-
ing patterns. File system accesses show strong tempo-
ral locality: many files are overwritten again and again
in a short period of time. For example, Hartman and
Ousterhout [7] pointed out that 36%–63% of data would
be overwritten within 30 seconds and 60%–95% within
1000 seconds in the system they measured. In year 2000,
Roselli et al. [14] pointed out that file accesses obey a
bimodal distribution pattern: some files are written re-
peatedly without being read; other files are almost exclu-



sively read. Data that have been actively written, should
be put into active segments, and others into inactive seg-
ments.

File system accesses also show strong spatial locality, as
many data blocks are accessed together. For example,
data blocks of one file are likely to be changed together.
Similarly, when a file block is modified, the inode of the
file, together with the data blocks and the inode of the di-
rectory containing the file, are also likely to be updated.
These blocks should therefore be grouped together in se-
mantics such that when one block is invalidated, all or
most other blocks in the same segment will be invali-
dated also.

1.4 Related Work

Many papers have tried to improve the LFS perfor-
mance since the publication of Sprite LFS [15]. Seltzer
[16] presented an implementation of LFS for BSD. Sev-
eral new cleaning policies have also been presented
[2, 20, 9]. In traditional cleaning policies [15], includ-
ing greedy cleaning and benefit-to-cost cleaning, the
live blocks in several partially empty segments are com-
bined to produce a new full segment, freeing the old
partially empty segments for reuse. These policies per-
form well when the disk space utilization is low. Wilkes
et al. [20] proposed the hole-plugging policy. In their
scheme, partially empty segments are freed by writing
their live blocks into the holes found in other segments.
Despite the higher cost per block, at high disk utiliza-
tions, hole-plugging does better than traditional clean-
ing because it avoids processing so many segments. Re-
cently, Matthews et al. [9] showed how adaptive algo-
rithms can be used to enable LFS to provide high perfor-
mance across a wider range of workloads. These algo-
rithms, which use hybrid policies of the above two meth-
ods, improved write performance by modifying the LFS
cleaning policy to adapt to the changes in disk utiliza-
tion. The system switches to a different method based on
the cost-benefit estimates. They also used cached data
to lower cleaning costs. Blackwell et al. [2] presented
a heuristic cleaning to run without interfering with nor-
mal file access. They found that 97% of cleaning on
the most heavily loaded system was done in the back-
ground. We proposed a scheme called PROFS which
incorporates the knowledge of Zone-Bit-Recording into
LFS to improve both the read and write performance. It
reorganizes data on the disk during LFS garbage collec-
tion and system idle period. By putting active data in
the faster zones and inactive data in the slower zones,
PROFS can achieve much better performance for both

reads and writes [19]. Lumb et al. applied a new tech-
nique called freeblock scheduling to the LFS cleaning
process. They claimed an LFS file system could main-
tain ideal write performance when cleaning overheads
would otherwise reduce performance by up to a factor
of three [13].

In this paper, our strategy has a distinctive difference
compared with above methods: WOLF works with the
initial writes in the reordering write buffers which re-
duce the cleaning overhead before writes go to disk.
This scheme finds a new “free” time to solve the same
garbage collection problem for LFS. WOLF can be eas-
ily combined with other strategies to improve LFS per-
formance. More importantly, it helps LFS provide high
performance even in heavy loads and full disks.

Several researchers tried to improve the file system per-
formance without using LFS. Ganger and Patt [4] pro-
posed a method called “Soft Updates” that can elim-
inate the needs of 95% of synchronous writes. File
system performance can be significantly improved be-
cause most writes become asynchronous and can be
cached in RAM. Hu et al. proposed the Disk Caching
Disk [8, 11] which can improve the performance of
both synchronous and asynchronous writes. WOLF and
Soft-Updates are complementary approaches: The lat-
ter improves disk scheduling in traditional file systems
through aggressive caching, while WOLF addresses
what to do in write caching before the data go to me-
dia.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our design of WOLF. Section 3 de-
scribes our experimental methodology. Section 4 shows
the simulation results and analysis. Section 5 summa-
rizes our new strategy.

2 The Design of WOLF

2.1 Writing

After the file system receives a write request, WOLF de-
cides if the requested data is active or inactive and puts
the write data into one of the segment buffers accord-
ingly. (We discuss how to do this in Section 2.2.) Old
data in a disk segment will also be invalidated. The re-
quest is then considered complete.

When the write buffers are full, all buffers are written to



disk segments in large write requests in order to amortize
the cost of many small writes. Since WOLF contains
several segment buffers and each buffer is written into a
different disk segment, several large writes occur during
the process (one large write for each buffer).

As in the LFS, WOLF also writes buffers to the disk
when one of the following conditions is satisfied, even
when the buffers are not full:

� A buffer contains modifications that are more than
30 seconds old.

� A fsync or sync occurs

Since the LFS uses a single segment buffer, when a
buffer write is invoked, only one large write is issued.
WOLF maintains two or more segment buffers. To
simplify the crash recovery process ( discussed in Sec-
tion 2.3), when WOLF has to write data to the disk, all
segment buffers in RAM will be written (logged) to the
disk at the same time. While the logging process con-
tains several large disk write operations since each seg-
ment buffer is written to a different disk segment, WOLF
considers the log operation atomic. A logging is con-
sidered successful only if all segment buffers are suc-
cessfully written to the disk. The atomic logging feature
means that we can view the multiple physical segments
of WOLF as a single virtual segment.

The atomic writing of multiple segments can easily be
achieved with a timestamp. All segments written to-
gether will have the same timestamp and the same “num-
ber of segments written together” field. During crash re-
covery, the system searches for the segments with the
latest timestamp. If the number of segments with the
same latest timestamp matches the “number of segments
written together” field, then the system knows that the
last log-writing operation was successful.

2.2 Separating Active and Inactive data

One of the important problems in the design of WOLF is
how to find an efficient and easy-to-implement method
that can separate active data from inactive data and put
them into different buffers accordingly.

2.2.1 An Adaptive Grouping Algorithm

We developed a heuristic learning method for WOLF.
The tracking process implements a variation of the least-
recently used algorithm with frequency information.
Our algorithm is similar to virtual memory page-aging
techniques.

To capture the temporal locality of file accesses, each
block in the segment buffers has a reference count as-
sociated with it. This number is incremented when the
block is accessed. The count is initialized to zero and
is also reset to zero when the file system becomes idle
for a certain period. We call this period as time-bar. It
is initialized to 10 minutes1. If the age of this block ex-
ceeds current time-bar, WOLF will reset the reference
count of this block to zero. WOLF only does this zero
clearing in write buffers. The value of the count indi-
cates the active level of the block in most recent active
period, which starts since the time-bar. The higher the
value of the count, the more active a block is. The Time-
bar could be adaptively tuned for the various incoming
accesses. When the system identifies that there is no sig-
nificant difference among the blocks’ active ratios in the
reorder buffers, which means the 90% reference counts
of blocks are equal, the time-bar will be doubled. If most
blocks have too different active ratios, when only 10%
reference counts of blocks are equal, the time-bar will
be halved. The Time-bar makes the reordering buffers
work heuristically for different workloads. Active data
are then put into the active segment buffer, and other data
in the inactive buffer.

If two blocks have the same reference counts, then spa-
tial locality is considered. If the two blocks satisfy one
of the following conditions, they will be grouped into
the same segment buffer:

� If the two blocks belong to the same file.

� If the two blocks belong to files in the same direc-
tory.

If none of the above conditions is true, the blocks are
randomly put into buffers.

The overhead of this learning method is low. Most ac-
tive blocks have no more than a hundred accesses in a
short period. Only a small amount of additional bits

1For different workloads, this threshold may be different. We
choose this value for most workloads. This threshold works well when
active data live less than 10 minutes and inactive data lives more than
10 minutes



are needed for each block. Time-bar is managed by the
reordering buffer manager with little overhead. WOLF
only resets the reference count in the reordering buffers.

2.2.2 Data Lifetimes

In order to choose the proper threshold for different
workloads, we calculate the byte lifetime by subtract-
ing the byte’s deletion time from its creation time. This
“deletion-based” method was used by [1] in which all
deleted files are tracked. For considering the effects of
overwrites, we measured byte lifetime rather than file
lifetime. Figure 3 tells the byte lifetime of four real-
world workloads in details(these traces will be described
in section 3.2.1).
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Figure 3: Byte Lifetime of Four Real-world Workloads

From the picture, we can see the active data’s lifetimes
shows various behaviors in different workloads. More
than 70% of the data in INS and Sitar traces have a life-
time less than 10 minutes. Around 35% of the data in
RES and Harp traces have a lifetime less than 10 min-
utes. Since the lifetime of active data varies in differ-
ent workloads, it is necessary to develop this adaptive
grouping algorithm to separate active data and inactive
data for different workloads.

2.3 Consistency and Crash Recovery

In additional to LFS’ high performance, another impor-
tant advantage of LFS is fast crash recovery. LFS uses
checkpoints and maintains the order of updates in the
log format. After a crash, the system only has to roll for-
ward, reading each partial segment from the most recent
checkpoint to the end of the log in write order, which

involves incorporating any modifications that occurred.
Thus there is no need to perform a time-consuming job
like

�������
.

In WOLF, data in memory are re-grouped into two or
more segment buffers and later written into two or more
disk segments. As a result, the original ordering infor-
mation may be lost. To keep the crash recovery process
simple, WOLF employs the following strategies:

1. While data blocks are reordered by WOLF to im-
prove the performance, their original arrival order-
ing information is kept in a data structure and writ-
ten to the disk in the summary block together with
each segment.

2. While WOLF maintains two or more segment
buffers, its atomic logging feature (discussed in
Section 2.1) means that these multiple physical
buffers can be viewed as a single virtual segment.

Since WOLF maintains only a single virtual segment
which is logged atomically, and the information about
original arrival orders of data blocks in the virtual seg-
ment is preserved, crash recovery in is nearly as simple
as in LFS.

2.4 Reading

WOLF only changes the write cache structures of LFS.
The read operations are not affected. As a result, we ex-
pect that WOLF has similar read performance as that of
LFS when the system is lightly loaded. When the system
is heavily loaded, WOLF should have better read perfor-
mance because of its more efficient garbage collection
process that reduces the competition for disk bandwidth.

2.5 Garbage Collection

WOLF does not completely eliminate garbage, there-
fore garbage collection is still needed. Benefit-to-Cost
cleaning algorithm works well in most cases while hole-
plugging policy works well when the disk segment uti-
lization is very high. Since previous research shows
that a single cleaning algorithm is unlikely to perform
equally well for all kinds of workloads, we used an
adaptive approach similar to the Matthews’ method [9].
This policy automatically selects either the benefit-to-
cost cleaner or the hole-plugging method depending on
the cost-benefit estimates.



In WOLF, the cleaner runs when the system is idle or
disk utilization exceeds a high water-mark. In our sim-
ulation, the high water-mark is when 80% of the disk is
full, and idle is defined as the file system has no activ-
ities in 5 minutes. The amount of data that the cleaner
may process at one time can be varied. In this paper, we
allowed the cleaner to process up to 20 MB at one time.
To calculate the benefit and overhead of garage collec-
tion, we used the following mathematical model. These
formula were developed by Matthews et al. (See more
details in [9]).

The benefit-to-cost ratio is defined as follows:
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Here utilization represents the ratio of the live bytes to
one segment size. Specifically, the cost-benefit values
of cleaning and hole-plugging policies are calculated as
follows:
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The adaptive policy always picks up segments with the
lower Cost-Benefit estimates to clean. Segments with
more garbage (hence very low segment utilization and
high benefit-to-cost ratios) will be cleaned first. Older
segments will also be cleaned first, as data in younger
segments will have a better chance to be invalidated in
the future.

Because WOLF’s buffer manager separates the ac-
tive data from inactive data which leads to a bimodal
disk segment layout, both the benefit-to-cost and hole-
plugging methods can benefit from this nice layout. For
benefit-to-cost, since most active segments are mostly
garbage (hence very low utilization), their benefit-to-
cost ratios are very high. These segments will be
cleaned first to yield many blank segments. For hole-
plugging, when the adaptive cleaner switches to this
method (which will tend to occur in very high disk uti-
lization), cleaner uses the least utilized segments to plug
the holes in the most utilized segments. WOLF simply
reads the few remaining live bytes from an active disk
segment and plug them into the few available slots of an
inactive disk segment (very high segment utilization).

3 Experimental Methodology

We used trace-driven simulation experiments to evaluate
the effectiveness of our proposed new design. Both real-
world and synthetic traces are used during simulation.
In order to make our experiments and simulation results
more convincing, we use four different real-world traces
and four synthetic traces in the comprehensive covering
fields.

3.1 The Simulators

The WOLF simulator contains more than 10,000 lines of
C++ code. It consists of an LFS simulator, which acts as
a file system, on top of a disk simulator. The disk model
is ported from Ganger’s disk simulator [5]. Our LFS
simulator is developed based on Sprite LFS. We ported
the LFS code from the Sprite LFS kernel distribution and
implemented a trace-driven class to accept trace files.
By changing a configuration file, we can vary impor-
tant parameters such as the number of segment buffers,
the segment size and the read cache size. In the simula-
tor, data is channeled into the log through several write
buffers. The write buffers are flushed every 30 seconds
of simulated time to capture the impact of partial seg-
ment writes. A segment usage table is implemented to
maintain the status of disk segments. Meta-data struc-
tures including summary block and inode map are also
developed. We built a checkpoint data structure to save
blocks of inode map and segment usage table periodi-
cally.

The disk performance characteristics are set in
Disksim’s config files. We chose two disks for test-
ing, a small (1 GB capacity) HP2247A disk and a large
(9.1 GB) Quantum Atlas10K disk. The small HP2247A
was used for Sitar and Harp traces, because the two
traces have small data-sets (total data accessed F 1 GB).
A small disk is needed in order to observe the garbage
collection activities. The large disk was used for all other
traces. Using two very different disks also helps us to
investigate the impacts of disk features like capacity and
speed on WOLF performance. The HP2247A disk’ spin-
dle speed is set to 5400 RPM. The read-channel band-
width is 5 MB/sec. Its average access time is 15 ms. The
Quantum Atlas10K has a 10024 RPM spindle speed. Its
read-channel bandwidth is 60 MB/sec and average ac-
cess time is 6 ms.



3.2 Workload Models

The purpose of our experiments is to conduct a compre-
hensive and unbiased performance study of the proposed
scheme and compare the results with that of unmodified
LFS. We paid special attention to select the traces. Our
main objective was to select traces that match as close
to realistic workloads as possible. At the same time, we
also wanted to cover as wide a range of environments as
possible. The trace files that have been selected in this
paper are discussed below.

3.2.1 Real-world Traces

Four real-world file system traces we used in our simula-
tion. We got two sets of real-life traces from two differ-
ent universities to validate our results. Two of them came
from University of California, Berkeley, called INS and
RES [14]. INS came from a collection from a group
consisting of 20 machines located in labs for undergrad-
uate classes. RES was attained from 13 desktop ma-
chines of a research group. INS and RES were recorded
over 112 days from September 1996 to December 1996.
Both traces came from their clusters running HP-UX
9.05. The other set of two traces, from University of
Kentucky, contain all disk activities on two SunOS 4.1
machines during ten days for Sitar trace and seven days
for Harp trace[6]. Sitar trace represents an office envi-
ronment while Harp reflects common program develop-
ment activities. More specifically, Sitar trace is a collec-
tion of file accesses by graduate students and professors
doing work such as emailing, compiling programs, run-
ning LaTeX, editing files, and so on. Harp trace shows
a collaboration of two graduate students working on a
single multimedia application. Because Sitar and Harp
have a small amount data, we use the small disk model
with these two real-world traces. Notice in the experi-
ments, we expand Sitar and Harp by appending files with
same access pattern in original traces but with different
file names in order to explore the system behavior under
different disk utilizations. For large traces with more
than 10GB data traffic, we do not use this procedure.

These real-world traces are described in more detail in
Table 1.

3.2.2 Synthetic Traces

While real-world traces give a realistic representation of
some real systems, synthetic traces have the advantage

of isolating specific behaviors not clearly expressed in
recorded traces. We therefore also generated a set of
synthetic traces. We varied the trace characteristics as
much as possible in order to cover a very wide range of
different workloads.

We generated the following four sets of synthetic traces:

1. Uniform Pattern (Uniform)

Each file has equal likelihood of being selected.

2. Hot-and-cold Pattern (Hot-cold)

Files are divided into two groups. One group con-
tains 10% of files; it is called hot group because its
files are visited 90% of the time. The other group
is called cold; it contains 90% of the files but they
are visited only 10% of the time. Within groups
each file is equally likely to be visited. This ac-
cess pattern models a simple form of locality.

3. Ephemeral Small File Regime (Small Files)

This suite contains small files and tries to model
the behavior of systems such as the electronic mail
or the network news systems. The sizes of files are
limited from 1 KB to 1 MB. They are frequently
created, deleted and updated. The data lifetime of
this suite is the shortest one in this paper (90% of
byte lifetimes are less than 5 minutes).

4. Transaction Processing Suite (TPC-D)

This trace consists of a typical TPC-D benchmark
which accesses twenty large size database files
from 512 MB to 10 GB. The database files con-
sist of the different number of records ranged from
2,000,000 to 40,000,000. Each record is set to
100 bytes. Most transaction operations are queries
and updates in this benchmark. The I/O access
pattern is random writes followed by sequential
reads. Random updates are applied to the active
portion of the database. And then sometime later,
large sweeping queries read relations sequentially
[18]. This represents the typical I/O behavior of
a decision support database. In this trace, we use
sequential file reads to simulate 17 SQL queries
for business questions. As for implementing TPC-
D update functions, we generate random writes to
represent following categories: updating 0.1% of
data per query, inserting new sales data with 0.1%
of table size and deleting old sales data of 0.1% of
table size.



Features INS RES SITAR HARP Uniform Hot-cold TPC-D SmallFS
Data read(MB) 94619 52743 213 520 8000 8000 8000 8000
Data write(MB) 16804 14105 183 249 8000 8000 4000 8000
Read:Write ratio 5.6 3.7 1.16 2.08 1.0 1.0 2.0 1.0
Reads(thousands) 71849 9433 57 26 800 800 800 4000
Writes(thousands) 4650 2216 49 12 800 800 400 4000
File Size( � 16KB) 82.8% 63% 80% 73 80% 80% 0% 95 %
File Size(16KB–1MB) 16.9% 36.5% 19.96% 26.98% 19.95% 19.95% 0% 5%
File Size(1MB+) 0.2 % 0.5 % 0.04 % 0.02 % 0.05% 0.05% 100% 0%

Table 1: Four real-world traces and Four synthetic traces

The other information of these four synthetic traces can
be seen in Table 1.

4 Simulation Results and Performance
Analysis

In order to understand the insight effect of WOLF, we
compare our design with the most recent LFS using
adaptive method which is the baseline system. The rea-
son is that we want to explore the effect with our re-
ordering write buffers rather than the adaptive cleaning
policy. Therefore, two compared systems use the same
adaptive garbage cleaning strategy. In experiments, sys-
tem automatically selects either benefit-to-cost or the
hole-plugging depending on the cost-benefit estimates.
WOLF separates active data from cold data to gener-
ate active/inactive segments in initial writes. The dif-
ferent disk layouts in two systems lead to different per-
formance.

In our experiments of this paper, we set several default
parameters unless specified: a 64 MB read cache, each
disk segment is 256 KB and each segment buffer is
256 KB.

4.1 Overall Write Cost

Write cost is the metric traditionally used in evaluating
LFS write performance. It only considers the effect of
the number of segments. Matthews et al. pointed out
segment size also plays a larger role in the write perfor-
mance. They described a way to quantify this trade-off
between amortizing disk access time across larger trans-
fer units and reducing cleaner overhead: Overall Write
Cost, which captures both the overhead of cleaning as
well as the bandwidth degradation caused by seek and

rotational latency of log writes [9].

In this paper we used this new metric – overall write cost
to evaluate WOLF performance. The following formula
are adapted from [9]:

First, two terms, write cost and Transfer Inefficiency
( � ��� ������� /��

) are defined:
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is the total number of segments
written to the disk caused by new data.

< � � ���+-�.0/$1�2
and< � � � � -�.5/$1�2

are the total numbers of segments read and
written by the cleaner, respectively. This term describes
the overhead of cleaning process.
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measures the bandwidth degradation caused

by seek and rotational delays of log writes. AccessTime
represents the average disk access time.

And finally,
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4.1.1 Performance under Different Workloads

In order to understand how the WOLF and LFS perform
under different workloads, results for the four synthetic
traces and four real-world traces are compared in Fig-
ure 4.

It is clear from the figure that the WOLF significantly
reduces the overall write cost compared to the LFS. The



new design reduces the overall write cost by up to 53%.
The overall write cost is most reduced when the disk
space utilization is high. When the disk becomes more
full, the garbage collection is more important. WOLF
plays the more important role in reducing garbage on
the disk.

Although the eight traces have different characteristics,
we can see that the performance of WOLF is not sen-
sitive to the variation in workloads. This derives from
our heuristic reorganizing algorithm. On the other hand,
LFS performs especially poor for the TPC-D workload
because of its random updating behavior. This is not a
surprise. Similar behavior was observed by Seltzer and
Smith in [17]. WOLF, on the other hand, significantly
reduces the garbage collection overhead so it still per-
forms well under TPC-D.

4.1.2 Effects of the Number of Segment Buffers
with Real-world Traces

Figure 5 shows the results of the overall write cost versus
disk utilization for the four real-world traces. We varied
the number of segment buffers of WOLF from 2 to 4.
We also varied the segment buffer size of the LFS from
256 KB to 1024 KB.

Increasing the number of segment buffers in WOLF
would slightly reduce the overall write cost but does not
have a significant impact on the overall performance.

The reason we studied LFS with different segment buffer
sizes, is to show that the performance gain of WOLF is
not due to the increased buffer numbers (hence the in-
creased total buffer size). The separated active/inactive
data layout on disk segments contributes to the perfor-
mance improvement. In fact, for LFS, increasing the
segment buffer sizes may actually increase the overall
write cost. This observation is consistent with previous
studies [9, 15]

Note that because WOLF uses more segment buffers
than the LFS does, data may stay in RAM longer. How-
ever, this does not poses a reliability problem. As dis-
cussed before, in WOLF, if the segment buffers contain
data older than 30 seconds, they will be flushed to the
disk, just as LFS.

4.1.3 Effects of Segment Sizes with Real-world
Traces

The size of the disk segment is also a substantial fac-
tor on the performance of both WOLF and LFS. If the
size of the disk segment is too large, it would be a lit-
tle difficult to find enough active data to fill one segment
and enough inactive data for another segment. The result
will be active data and inactive data are mixed together
in a large segment, resulting in poor garbage collection
performance. The limited disk bandwidth will also have
a negative impact on the overall write cost when the seg-
ment buffer size exceeds a threshold. On the contrary,
if the segment size is too small, the original benefit of
LFS, namely taking the advantage of large disk transfer,
is lost.

Figure 6 shows the simulation results with the overall
write cost versus the sizes of segment buffers. We can
see that for both WOLF and LFS, a segment between
256-1024 KB is good for these kind of workloads.

4.1.4 Segment Utilization Distribution

In order to provide insights into understanding why
WOLF significantly outperforms the LFS, we also com-
pared the segment utilization distributions of WOLF and
LFS. Segment utilization is calculated by the total live
bytes in the segment divided by the size of this segment.

Figure 7 shows the distribution of segment utilizations
under the four real-world traces. We can see the obvious
bimodal segment distribution in WOLF when compared
to the LFS. Results for other workloads are similar. The
nice bimodal distribution is the key to the performance
advantage of WOLF over the LFS.

4.2 Read/Write Latency

In previous discussion, we used overall write cost as
the performance metric. Overall write cost is a direct
measurement of system efficiency. We have shown that
WOLF performs encouragingly better than LFS, as the
former has much smaller overall write cost than the lat-
ter.

However, end-users would be more interested in user-
measurable metrics such as the access latencies [3].
Overall write cost quantifies the additional I/O overhead
when LFS does the garbage cleaning. The LFS perfor-



mance is very sensitive to this overhead. To see whether
the low overall write cost in WOLF can be translated to
low access latencies, we also measured the average file
read/write response times in the file system level. We
collected the total file read/write latencies and divided
the total number of file reads/writes requests. All these
results include the cleaning overhead. The results are
presented in this subsection.

4.2.1 Write Latencies

Figure 8(a) shows the file write performance of LFS
and WOLF under eight traces. Figure 8(b) plots the
performance improvement of WOLF over LFS. We can
see that WOLF significantly enhances the write perfor-
mance by 27–35.5%, in terms of improved response
times. The lower overall write cost in WOLF directly
leads to a smaller write response time. The Hot-cold
trace achieves the best improvement because of its good
active behavior.

4.2.2 Read Performance

Figure 9(a) shows the file read performance of LFS and
WOLF under eight traces. Figure 9(b) plots the per-
formance improvement of WOLF over LFS. The re-
sults show that, for most traces, the read performance
of WOLF is at least comparable to that of LFS. This
is expected, as WOLF does not directly affect the read
operations of LFS. Although WOLF changes the physi-
cal layout on disk for LFS, WOLF’s grouping algorithm
includes the similar policy which is used in locality-
grouping rules of regular LFS, such that files in same
directory are put in same segment and etc., WOLF does
not have much impact on the read performance when the
load is light. When the load is heavy, we may see a lit-
tle better read performance of WOLF than that of LFS
because WOLF reduces the cleaning overhead so that
WOLF ameliorates the competition of disk bandwidth.
RES and TPC-D got little loss for their more random
reads because random reads have poor spatial locality
which results in much longer disk seeks and rotations
during garbage collection.

4.3 Implication of Different Disk Models

From the results of sections 4.1 and 4.2, we can see
WOLF achieves significant performance gains for both

the small/slow and the large/fast disk models. The re-
sults suggest that the disk characteristics do not have a
direct impact on WOLF. While the absolute performance
parameters may vary on different disk models, the over-
all trend is clear: WOLF can markedly reduce garbage
collection overhead under many different workloads on
different disk models.

5 Conclusion and Future Work

We have proposed a novel reordering write buffer de-
sign called WOLF for the Log-structured File System.
WOLF improves the disk layout by reordering the write
data in segment buffers before writing data to the disk.
By utilizing an adaptive algorithm that separates ac-
tive data from inactive data, and taking advantages of
file temporal and spatial localities, the reordering buffer
forces actively-accessed data blocks into one hot seg-
ment and inactive data into another cold segment. Since
most of the blocks in active segments will be quickly in-
validated while most blocks in inactive segments will be
left intact, data on the disk form a good bimodal distri-
bution. This bimodal distribution significantly reduces
the garbage collection overhead.

Because WOLF works before initial writes go to disk,
it can be integrated with other strategies smoothly to
improve LFS performance. By reducing cleaning over-
head, WOLF ameliorates the competition of disk band-
width. Simulation experiments based on a wide range of
real-world and synthetic workloads show that our strat-
egy can reduce the overall write cost by 53% and im-
prove write response time by 35.5%. The read perfor-
mance is generally better than or comparable to the LFS.
Our scheme still guarantees fast crash recovery, a key
advantage of LFS.

We believe that our method can significantly improve the
performance of those IO systems (such as some RAIDs)
that use the LFS technology. It may also increase the
chance of LFS success in the OS environments like
Linux. Moreover, since logging is a commonly used
technology to improve the I/O performance, we believe
that our new scheme will have a broad impact on high
performance I/O systems as well. We also plan to apply
this technique to other general file systems like FFS in
the future.
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Figure 4: Overall Write-cost versus Disk Utilization under different workloads. WOLF with 2 segment buffers.
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Figure 5: Overall write cost versus Disk Utilization.
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Figure 6: Overall write cost versus Segment Sizes. Disk utilization is 95%.
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Figure 7: Segment Utilization versus Fraction of Segments. Disk utilization is 80%.
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Figure 8: Average File Write Response Time. Errorbar shows the standard deviation. Disk utilization is 90%.
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Figure 9: Average File Read Response Time. Errorbar shows the standard deviation. Disk utilization is 90%.


