
The following paper was originally published in the
Proceedings of the 3rd USENIX Workshop on Electronic Commerce

Boston, Massachusetts, August 31–September 3, 1998

For more information about USENIX Association contact:

1. Phone: 1 510 528-8649
2. FAX: 1 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

SWAPEROO: A Simple Wallet Architecture
for Payments, Exchanges, Refunds, and Other Operations

Neil Daswani, Dan Boneh, Hector Garcia-Molina, Steven Ketchpel, and Andreas Paepcke
Stanford University

SWAPEROO: A Simple Wallet Architecture for Payments, Exchanges,
Refunds, and Other Operations

Neil Daswani, Dan Boneh, Hector Garcia-Molina, Steven Ketchpel, Andreas Paepcke
Stanford University

Computer Science Department
Stanford, CA 94305

{daswani, dabo, hector, ketchpel, paepcke}@cs.stanford.edu

Abstract

Most existing digital wallet implementations support a
single or a limited set of proprietary financial
instruments and protocols for electronic commerce
transactions, preventing a user from having one
consolidated digital wallet to manage all of his or her
financial instruments. Commercial efforts to
implement extensible digital wallets that are capable of
inter-operating with multiple instruments and protocols
are a step in the right direction, but these wallets have
other limitations. In this paper, we propose a new
digital wallet architecture that is extensible (can support
multiple existing and newly developed instruments and
protocols), symmetric (has common instrument
management and protocol management interfaces
across end-user, vendor, and bank applications), non-
web-centric (can be implemented in non-web
environments), and client-driven (the user initiates all
operations, including wallet invocation).

1.0 Introduction

A number of electronic commerce applications allow
end-users to purchase goods and services using digital
wallets. Once a user decides to make an online
purchase, a digital wallet should guide the user through
the transaction by helping him or her choose a payment
instrument that is acceptable to both the user and the
vendor, and then hide the complexity of how the
payment is executed. A number of wallet designs have
recently been proposed, but we will argue they are
typically targeted for particular financial instruments
and operating environments. In this paper, we describe
a wallet architecture that generalizes the functionality
of existing wallets, and provides simple and crisp
interfaces for each of its components.

In particular, the architecture we propose here has the
following features. Existing proposals have some of
these features, but we believe that none provides all of
them in a comprehensive way.

Extensible. A wallet should be able to accommodate all
of the user’s different payment instruments, and inter-
operate with multiple payment protocols. For example,
a digital wallet should be able to "hold" a user’s credit
cards and digital coins, and be able to make payments
with either of them, perhaps using SET [1] in the case
of the credit card, and by using a digital coin payment
protocol in the latter case. As banks and vendors
develop new financial instruments, a digital wallet
should be capable of holding new financial instruments
and making payments with these instruments. For
instance, vendors should be able to develop electronic
coupons that offer discounts on products without
requiring that users install a new wallet to hold these
coupons and make payments with them. Similarly,
airlines should be able to develop frequent-flyer-mile
instruments so that users may pay for airline tickets
with them.

Many existing commercial digital wallet
implementations are not extensible. They support
limited, fixed sets of payment instruments and
protocols, or require extra coding effort to support each
instrument and protocol combination. In this scenario,
end-users may need to use different wallets depending
upon the payment instrument they want to use, and may
even need to use different wallets to make purchases
from different vendors. The CyberCash wallet, for
example, only supports payments using certain credit
cards and "CyberCash Coins." [2] Similarly,
DigiCash’s ecash Purse only supports ecash issued by a
set of issuer banks [3]. The Millicent wallet only
supports scrip used to make micro-payments [4].
Furthermore, while most existing wallets support at
least one protocol for issuing payments, few support
protocols for other types of financial transactions such
as refunds or exchanges.

There do exist efforts to build digital wallets that
support multiple financial instruments and payment
protocols such as the Java Wallet [5] and the Microsoft
Wallet [6]. In addition, some of these efforts are

beginning to gain support as evidenced by initiatives
such as CyberCash’s development of a CyberCoin
Client Payment Component (CPC) for the Microsoft
Wallet, allowing users to make payments with
CyberCash coins using Microsoft’s Wallet.
Unfortunately, these wallet architectures do not provide
all of the features we describe next.

Symmetric. Vendors and banks run software analogous
to wallets, which manages their end of the financial
operations. Since the functionality is so similar, it
makes sense to re-use, whenever possible, the same
infrastructure and interfaces within end-user, vendor,
and bank wallets. For example, the component that
manages financial instruments (recording account
balances, authorized uses, etc.) can be shared across
these different participants in the financial operations.
If the wallet components that are re-used are extensible,
then we automatically get extensibility at the bank or
vendor. So, for instance, an extensible instrument
manager will allow the bank or vendor to easily use
new instruments as they become available.

Current wallet implementations are often not
symmetric. For instance, the components that make up
the Microsoft Wallet are client-side objects. Seemingly
little infrastructure is shared between the server-side
CGI-scripts that process electronic commerce
transactions, and the client-side Active/X controls that
make up the wallet.

Non-web-centric. Interfaces should be similar
regardless of what type of device or computer that the
user, bank, or vendor application is running on. A
digital wallet running on an "alternative" device, such
as a personal digital assistant (PDA) or a smart card, for
example, has substantial functionality in common with
a digital wallet built as an extension to a web browser.
Thus, a digital wallet in these environments should re-
use the same instrument and protocol management
interfaces.

Many existing wallet architectures such as the
Microsoft Wallet and the Java Wallet are heavily web-
centric (as they are implemented as Active/X controls
or plug-ins, respectively). With the exception of the
JECF’s (Java Electronic Commerce Framework’s) [5]
recent inclusion of a smart card API, these wallets do
not even begin to address issues surrounding digital
wallets running on "alternative" devices (such as
PDAs), or in non-web environments.

Client-Driven. The interaction between the wallet and
the vendor, we believe, should be driven by the client
(i.e., the customer). Vendors should not be capable of
invoking the client’s digital wallet to do anything that

the end-user may resent or consider an annoyance. For
example, a vendor should not be able to automatically
launch a client’s digital wallet application every time
the user visits a web page that offers the opportunity to
buy a product. Imagine what life would be like if,
simply by walking into someone’s store, the store owner
had the right to reach into your pocket, pull out your
wallet, hold it in front of you, and ask you if you
wanted to buy something! A client-driven approach for
building a digital wallet is important because software
which customers consider "intrusive" will hinder the
success of electronic commerce for all participants
involved.

Some commercial wallets are not purely client-driven,
since some of them can allow vendors to invoke a user’s
wallet simply by either: 1) having the user visit the
vendor’s web site, or 2) having the vendor send the user
email. (See Section 6 for details.) When a vendor
invokes the Java Wallet, for example, the splash page
screen of the wallet applet is brought up and the user is
prompted to enter her wallet password.

The wallet architecture we propose here has the features
we have described. Specifically, 1) it can inter-operate
with multiple existing and newly developed instruments
and protocols; 2) it defines standard APIs (Application
Programming Interfaces) that can be used across
commerce applications for instrument and protocol
management; 3) it builds a foundation general enough
to implement digital wallets on "alternative" devices in
addition to wallets as extensions to web browsers; and
4) it ensures that electronic commerce operations,
including wallet invocation, are initiated by the client.
Our contribution is not a set of "new" services for
wallets, but rather a flexible architecture that
incorporates the best of existing ideas in a clean and
extensible way. To verify some of our functionality
claims, we have implemented this architecture in Java
and C++. The Java version supports most of the
features described in the body of the paper. In addition,
while the C++ version implements only a subset of the
features described here, it does provide support for
digital wallets to run on non-traditional devices such as
PDAs [17]. These implementations run on the
Windows and PalmOS platforms, and implementation
details are described in the body of the paper.

2.0 Terminology

In this section, we briefly define some terminology
necessary for understanding our wallet architecture.
The wallet architecture is described in the next section.

2.1 Instrument Instance & Instrument
Class

An instrument instance (or, instrument, for simplicity)
is a collection of state information representing
economic value that a protocol can operate on as part of
an electronic commerce transaction. For example,
"Gary’s Citibank Mastercard" is an instrument whose
state is made up of his full name, credit card number,
and expiration date. The instrument may also store
other information such as his billing address.

It is important to note that an instrument, in the context
of this paper, is a digital proxy for an instrument in the
"physical" world. "Gary’s Citibank Mastercard" is, in
reality, an agreement or contract between Gary and
Citibank which may be made up of a signed credit card
application in addition to other documents such as a
contract stating Gary’s credit limit and the terms of the
agreement. The digital representation of this
instrument, however, only contains state parameters
that are relevant for conducting commerce transactions
with that instrument, and the instrument’s digital
representation need not contain the actual contract. In
the case of "Gary’s Citibank Mastercard", for example,
the digital instrument may only contain those state
parameters necessary for the SET protocol [1] to
execute an online payment operation.

Each instrument belongs to an instrument class. An
instrument class defines the structure of the state
information necessary to store an instance of a given

instrument, as well as behavior that is common to all
instruments of that class. Examples of instrument
classes are CyberCoin [2], ecash [3], or Mastercard.
"Gary’s Citibank Mastercard" is an instance of the
Mastercard instrument class.

2.2 Protocol

A protocol defines a sequence of steps that accomplish
a particular operation using a specified instrument. In
each step, the protocol may send information to a peer,
or process information locally. For example, in one
step the protocol may create a certificate containing the
user’s account number and payment amount. In the
next step, it may send the certificate to the peer.

The work of a protocol is to execute a correct sequence
of steps to accomplish a requested operation; the
sequence is not necessarily static and pre-determined,
but may vary dynamically depending upon requests and
responses sent between the parties executing the
protocol. In general, a payment protocol is one that
supports a PAY operation and whose sequence of steps
results in a transfer of economic value between two or
more parties. SET is a payment protocol that may be
used to transfer monetary value from a bank to a
vendor’s account, while concurrently (and atomically)
debiting the user’s credit card account, under the
condition that the resulting balance does not exceed the
user’s credit limit.

A protocol may be defined to be compatible with one or
more instrument classes. The SET protocol is
compatible with both credit card and debit card
instrument classes, and may be used to execute
payment operations with both credit cards and debit
cards (see Figure 1). The CyberCash Protocol, on the
other hand, may only be compatible with the
CyberCoin instrument class.

Credit
Card

Debit
Card

Cyber
Coin

SET CyberCash
Protocol

Figure 1: Protocol & Instrument Class Compatibility

2.3 Client

A client is a human user or a software agent. A
software agent may allow the user to make online
purchases or participate in online auctions, for instance.

2.4 Digital Wallet

A digital wallet is a software component that provides a
client with instrument management and protocol
management services. Instrument management and
protocol management are defined in Section 3, but, in
brief, are services that allow the wallet to 1) install and
uninstall instrument classes and protocols, 2) create,
update, and delete instruments and protocols, and 3)
execute protocols. Digital wallets are capable of
executing an operation using an instrument according to
a protocol. A digital wallet presents its client with a
standard interface of functions; in the case that the
client is a human user, this standard interface of
functions may be accessed through a graphical user
interface (GUI).

A digital wallet is linked into an end-user, bank, or
vendor application and provides the application with
instrument management and protocol management
services. The digital wallets that are linked into vendor
and bank applications provide these management
services in the same way that end-user digital wallets
do. A vendor’s digital wallet, however, may be part of
a much larger software application that is integrated
with order and fulfillment systems. Similarly, a bank’s
digital wallet may be part of a larger application that is
integrated with general ledger, profit & loss, and
reconciliation systems.

Furthermore, a wallet is not limited to being a plug-in
or applet or some other extension of a web browser. A
digital wallet with a graphical user interface may also
run as an application on its own. A digital wallet may
also run on computers that are not connected to the
Internet such as smart cards or personal digital
assistants. The user interface to the digital wallet may
vary in such cases. In the case of a PDA, for example,
the digital wallet may have a pen-based user interface.
In the case of a smart card, the digital wallet may have
no user interface at all. Nevertheless, in each case, the
set of functions that the digital wallet’s interface
presents to its client should be the same.

2.5 Peer

A peer is a remote entity that may be an end-user,
vendor, or bank wallet that is capable of performing
operations on instruments according to a protocol.

2.6 Session

A session is an interaction between two peers, and state
information that may be built up over time as a result of
interaction between the two peers may be stored in a
Session object. One peer is said to initiate a session,
while the receiving peer is said to service the session.
The Session object keeps track of which peer is the
initiator and which is the servicer.

3.0 SWAPEROO Architecture

In the following, we present an extensible, symmetric,
non-web-centric, and client-driven architecture for
digital wallets.

In the SWAPEROO architecture, the interaction
between a client wallet and a peer wallet roughly works
as follows: Once a session is initiated by the client and
the peer wallet prepares to service the client, the client
can determine what instrument classes are available on
the peer wallet, and then select an instrument class that
is common to both peers. After an instrument class is
selected, protocol management functions are called to
determine what available protocols may be used to
conduct operations on an instrument of the selected
class. Depending upon what protocols are shared, a
protocol is selected. The protocol supports certain
operations for the selected instrument class, and the
client may invoke those operations on an instrument
instance. This interaction is described in detail in
Section 5.

A digital wallet is an object that has four required key
architectural component objects: a Profile Manager, an
Instrument Manager, a Protocol Manager, and a Wallet
Controller (see Figure 2).

In Figure 2, objects within the dotted lines are the core
components of the wallet object1. We assume that
communication between the core components of the
wallet object is secure such that sensitive data structures
containing private information about users and their
instruments may be passed between objects within the
wallet. In a real wallet implementation, this "boundary"
around the secure components of a wallet may be
supplied by the operating system by having the core
components reside within the address space of a
process. This approach, of course, assumes that the
operating system is trusted and safe. A trusted
operating system will not itself attempt to compromise
the security of the wallet, and a safe operating system
allegedly has no loopholes which would allow other
malicious software it is running to compromise the
security of the wallet by reaching into its address space.

Since code modules that implement instruments and
protocols may be obtained from different sources, they
cannot all be mutually trusted. In particular, it should
not be possible for instruments or protocols developed
by a software vendor to compromise the privacy,
security, or functionality of instruments or protocols
developed by another software vendor. At the same
time, it is beneficial to have instruments and protocols

1 Although the User Interface is a core component when
present, it is not a required component.

Figure 2: The SWAP Generalized Digital Wallet Architecture

User Profile Manager

Instrument Manager

Protocol
Manager

Communication Manager

Wallet
Controller

User
Interface

Client
API

User
Interface

API

Instrument Instances

Protocols

run within the same address space such that they can
exchange private data efficiently.

Two approaches should both be taken to accomplish
these conflicting goals. Code modules that implement
instruments and protocols should, first of all, be
digitally signed by their source (i.e. the software vendor
that developed the module). As part of the installation
process of such a code module into a wallet, the
signature on the code module should be checked to
determine if the module can be trusted. Secondly, after
installation of the module, a capabilities-based security
model needs to be employed to protect modules of code
from each other. In such a model, a called object would
be able to authenticate the object calling it by verifying
that object’s digital signature. The security model may
also provide support to allow an object calling another
object to verify the called object’s digital signature.
Under such a security model, objects that implement
various instruments and protocols may authenticate
each other at run-time to prevent potentially
"malicious" calls from taking place. Implementing
such a security model was beyond the scope of our
work. A Java-version of such a security model is
addressed by [16], and could be re-used within our
work.

Objects that are outside the dotted lines reside in a
different address space. However, under a capabilities-
based security model in which these external objects are
only granted the appropriate capabilities to access
privileged data, they may optionally reside in the
address space of the wallet process itself, or can be
dynamically-linked into the wallet process.

All components of the wallet are briefly described
below except for the wallet’s Cryptographic Engine
(which has been excluded from Figure 2, since all
components of the architecture within the wallet may
use the Cryptographic Engine to encrypt sensitive data).
The Cryptographic Engine resides within the wallet’s
address space.

1. The Instrument Manager manages all of the
instrument instances contained in the wallet, and
may be queried to determine which instrument
classes and instances are available to execute a
given payment or other operation.

2. The Protocol Manager manages all of the
protocols that the wallet may use to accomplish
various operations, and invokes protocols to carry
out the interaction between the digital wallet and
the vendors and banks. The Protocol Manager
relies on the Communication Manager to process

low-level communications requests with other
computers representing banks and vendors.

3. The Wallet Controller presents a consolidated
interface for the entire wallet to the client by
coordinating the series of interactions between the
Profile Manager, Instrument Manager, and
Protocol Manager necessary to carry out high-level
requests received from the client, such as "purchase
a product." The Wallet Controller hides the
complexity of the other components of the wallet,
and provides a high-level interface to the client. A
non-human client, or software agent, can make
method calls on the Wallet Controller’s interface
through the Client API. A human client may use a
graphical user interface (GUI) which may make
method calls on the Wallet Controller. The Wallet
Controller also handles end-user authentication and
access control for operations in the wallet.

4. The User Profile Manager manages information
about clients and groups of clients of the wallet
including their user names, passwords, ship-to and
bill-to addresses, and potentially other profile
information as well. In addition, the Profile
Manager keeps access control information about
what financial instruments each user has the
authority to access, and the types of operations
specific users have the privilege to execute with
them.

5. The Communication Manager provides the wallet
with an interface to send and receive messages
between a wallet and a peer by setting up a
"connection" with a remote Communication
Manager. The Protocol Manager builds on top of
the "connection" abstraction to support the concept
of a session. A "connection" is typically
asynchronous, while communications between
peers in a session occur in (message,response)
pairs where one peer sends a message, the other
peer receives the message, executes some action,
and returns a response. Depending upon the
implementation of the Communication Manager,
the messages may be sent over different types of
networks using different communication protocols.

For example, one implementation of a
Communication Manager may send and receive
messages over the Internet using HTTP requests
and responses over a TCP/IP ethernet network. In
this case, a session may be made up of a sequence
of several HTTP GET messages and their
corresponding responses. Another implementation
of a Communication Manager may send and
receive messages over an RS232 port.

Note that the Protocol Manager is responsible for
making calls to the Cryptographic Engine to
encrypt any data that is passed to the
Communication Manager, such that the data can be
securely transmitted over the communications
medium. The Communication Manager cannot be
responsible for encryption of sensitive data from
the wallet because it is not a core component, and
can be replaced by another Communication
Manager to run the wallet on another device. If the
Communication Manager is relied upon to encrypt
sensitive data, then the Communication Manager
might be replaced with a malicious
Communication Manager that sends all sensitive
data to an adversary.

6. The Client API is an interface provided by the
Wallet Controller that may be used by a software
agent acting on behalf of an end-user, vendor, or
bank.

7. The User Interface provides a graphical interface
to the services offered by the Wallet Controller’s
interface. The User Interface is an optional
component of the wallet. Some devices, such as
most smart cards, do not have the ability to display
a graphical user interface, and hence the Wallet
Controller interface must be accessed through the
Client API. Note that the User Interface is a core
component within the wallet because certain parts
of the user interface have access to sensitive user
data. For example, the edit box object into which a
user enters the password to "unlock" the wallet
should run within the wallet’s protected address
space. On the other hand, customization of the
wallet’s user interface presents an important
branding opportunity for banks and vendors that
distribute wallets.

8. The wallet’s user interface exports parts of its
interface as the User Interface API to satisfy both
the privacy and customization requirements.
Methods in the User Interface API may be
overloaded by software vendors to render
customized parts of the interface. The User
Interface API also decouples the GUI so that the
GUI can be run on a thin client, such as a network
computer, while the core components of the wallet
can be run on a server.

We will now describe each of the required core
components of the digital wallet.

3.1 Instrument Management

The Instrument Manager is responsible for managing
instrument instances, as well as information about
classes of instruments. Instrument Management is
made up of the following services: instrument
capability determination, instrument installation,
instrument storage and retrieval, and instrument
negotiation. Before describing the Instrument Manager
interface in detail, we will first briefly describe the
instrument objects that the Instrument Manager is
responsible for storing and retrieving.

An instrument may be a financial instrument that can be
used to make a payment, such as a credit card, debit
card, or electronic coin. More generally, however, an
instrument is made up of state information representing
economic value that a protocol can operate on. For
example, a digital cash instrument’s state can be made
up of its dollar (or other currency) value digitally
signed by its issuing bank. The protocol used between
an end-user wallet and a vendor wallet supports a
VERIFY operation which verifies that the cash is
authentic by applying the issuing bank’s public key to
the coin.

While end-user, vendor, and bank wallets share many
code modules, some specialization is appropriate.
Instruments may have to be managed slightly
differently in end-user, vendor, and bank wallets. To
illustrate this, we consider a trivially simple digital cash
instrument example; please note that in real systems
such a naive digital cash scheme is not viable because
of real-world security, efficiency, and performance
considerations. In this "toy" digital cash example,
every time that a vendor receives a digital coin signed
by a client’s private key, the vendor needs to keep track
of that signature in addition to its dollar value in its
digital cash instrument. On the other hand, the client
may want to keep track of the vendor’s signatures on
coins she signed for purposes of non-repudiation in her
digital cash instrument. Although this is a simple case,
we can begin to see that the state information for the
digital cash instrument may differ depending upon
whether or not the digital cash is being stored in the
end-user’s wallet or in the vendor’s wallet.

Consider a digital cash instrument whose instrument
class is Digital-Cash-Instrument. We derive
two subclasses from our Digital-Cash-
Instrument to manage the different implementations
of the digital cash instrument on the different peers. A
Vendor-Digital-Cash-Instrument is stored
on the vendor, and is able to store a list of client’s
digital coin signatures. A Client-Digital-
Cash-Instrument is able to store the vendor’s

signature on the client-signed coins. Although the
Vendor-Digital-Cash-Instrument and the
Client-Digital-Cash-Instrument, for the
most part, present similar interfaces since they both
derive from Digital-Cash-Instrument, the
subclasses present specialized interfaces to their
respective callers to access client or vendor-specific
instrument information. Note once again that this is a
trivial example, and is provided simply to illustrate that
the representation of the digital cash instrument may
need to be specialized depending upon whether the peer
is a user, vendor, or bank.

In addition to providing access to instrument
information in the digital wallet’s memory, the
Instrument Manager provides interfaces to store and
retrieve instruments to and from persistent storage.
Note that the Instrument Manager may make calls, if
necessary, to the wallet’s Cryptographic Engine to
encrypt instrument state information in preparation for
writing this information to persistent storage, and for
decrypting instrument state information when reading
this information back from persistent storage.

Upon initialization, the Instrument Manager determines
what instrument classes the wallet is capable of using
by consulting a configuration file, dynamically
determining this through introspection, or by accessing
a Capabilities Management service [7]. Alternatively,
the Instrument Manager can dynamically download an
instrument class from a trusted third-party, and install
it. The Instrument Manager may call the Cryptographic
Engine to verify that the instrument class code is signed
by the trusted third-party. Once the code supporting the
appropriate instrument classes is loaded, instrument
instances can be created by the user, but more often are
loaded from encrypted files on the user’s local hard
disk, or even potentially from a file server on a
network. Finally, the Instrument Manager supports
methods to create, modify, commit changes to, and
delete instrument instances under transactional
semantics.

The Instrument Manager supports methods that query
for available instrument classes to conduct instrument
negotiation. Note that in our client-driven approach
there is no way for a vendor to "Offer" instrument
capabilities as there might be in [8], unless the vendor
is explicitly queried.

3.2 Protocol Management

The Protocol Manager is responsible for managing
protocol objects. Protocol Management is made up of
the following services: protocol capability

determination, protocol installation, and protocol
negotiation.

Upon initialization, the Protocol Manager determines
what protocols the wallet is capable of using. As with
Instrument Managers, this information can typically be
read from a configuration file, determined dynamically
through introspection, or can be accessed through a
Capabilities Management service [7]. Once this
information is determined, a class representing each
protocol is loaded into memory, and one instance of
each protocol class is instantiated. The instantiation of
each protocol instance can be delayed until the Protocol
Manager needs to use that protocol.

A protocol is capable of performing operations with an
instrument. The exact operations that the protocol can
support during a particular session may depend upon
the type of peer the wallet is connected to. Consider,
for example, a digital coin instrument, and associated
digital coin protocols. During a session in which the
wallet is connected to a bank, the digital coin protocol
may provide deposit and withdrawal operations. On the
other hand, while connected to a vendor, the digital
coin protocol may provide purchase and refund
operations. Protocol objects are responsible for
ensuring that such operations take place under
transactional semantics.

Furthermore, the Protocol Manager is capable of
conducting protocol negotiation with peers for a
specified instrument class. That is, the Protocol
Manager is capable of determining which protocols the
local and remote peers share in common for the
specified instrument class. The Protocol Manager
accomplishes protocol negotiation with a peer through a
Protocol Negotiation Protocol (PNP). Protocol
Negotiation Protocols are subclasses of Protocol in
our architecture, and are managed in the same way as
other protocols are managed, with the exception that the
Protocol Manager must successfully load a PNP upon
initialization. At least one PNP must load successfully
such that it may engage in protocol negotiations with
peers. Additionally, although a wallet may load more
than one PNP upon initialization, the particular PNP
that will be used to conduct protocol negotiation must
be fixed by both peers before a session is initiated,
otherwise a PNP to decide which PNP to use becomes
necessary, and so forth.

Protocols may be compatible with one or more
instrument classes, and a protocol object is capable of
determining whether or not it is compatible with an
instrument class. Once an instrument class is chosen by
the client, the Protocol Manager may query the protocol
objects it manages to determine which ones are

compatible with the chosen instrument class. If more
than one protocol is compatible with the chosen
instrument class, the Protocol Negotiation Protocol may
pass the list of compatible protocols to the instrument
class to allow the instrument class to determine which
protocol is optimal for that instrument class.

To illustrate with an example, consider two protocols,
Clear-Text-HTTP-Post and SET-Protocol,
that are both compatible with a VISA-Credit-Card
instrument. When the Protocol Manager calls the
Clear-Text-HTTP-Post protocol’s
compatible-With method passing the VISA-
Credit-Card instrument class as an argument, the
return value will be true. Similarly, when the
Protocol Manager calls the SET-Protocol protocol’s
compatible-With method passing the VISA-
Credit-Card instrument class as an argument, the
return value will also be true. Both protocols may not
be available on both the client and the peer, but in the
case that they are, the PNP may call the instrument
class’s get-Preferred-Protocol method passing
both protocols as parameters. The instrument class is
responsible for determining which protocol is optimal
(using its own definition of optimal), and the VISA-
Credit-Card instrument class may return SET-
Protocol in favor of Clear-Text-HTTP-Post
to obtain the best possible security for subsequent
operations.

In summary, a protocol object is responsible for
determining compatibility with an instrument class, the
PNP is responsible for determining the availability of
protocols between peers, and an instrument class can be
called upon by a PNP for determining optimality
amongst several compatible protocols available to both
peers.

3.3 User Profile Management

The User Profile Manager stores information about
clients and groups of clients of the wallet. The model
we assume is one in which a client is a person or
software agent that has authorization to use one or more
financial instruments. It is important to note that most
existing wallet implementations only allow for clients
that are human users and not software agents.
However, for the sake of discussion in this section, we
will use the terms client and user interchangeably. A
group is a set of clients that have access to a set of
shared financial instruments, and each client within a
group is authorized to conduct financial transactions
with the set of shared financial instruments. When
financial instruments may be shared between clients in
a group, the instruments may or may not be used

concurrently by two or more users in the group
depending upon the type of the instrument. Although
the User Profile Manager provides access to
information about which clients are authorized to use
which instruments, and who "owns" or may access
which instruments, the Instrument Manager (described
in Section 3.2) provides synchronized, concurrent
access to use instruments, such that conflicting
operations are prevented. For example, a wallet should
ensure that digital cash owned by a group of clients
does not get doubly spent because two clients attempt
to concurrently make a payment using the same digital
cash instrument instance.

An example of a group might be a corporate
department. Each employee in the department may
have access to a set of shared financial instruments, but
depending upon an employee’s position within the
company, the employee may be authorized to only
conduct transactions under a certain amount.

3.4 Wallet Controller

The Wallet Controller provides an interface to all of the
services that the wallet may offer to external objects.
The "outside world" cannot see, and does not have
direct access to any of the components internal to the
wallet such as the Instrument or Protocol Managers. In
our implementation, the components of the wallet are
all private data members of the Wallet-
Controller class.

Once a Wallet Controller method is invoked, the Wallet
Controller coordinates the steps that need to be carried
out among the User Interface, Profile Manager,
Instrument Manager, Protocol Manager, and
Cryptographic Engine to execute a payment or other
operation. Before accessing or carrying out an
operation with instrument instance data, the Wallet
Controller makes the appropriate calls to the User
Profile Manager to ensure that the user involved has the
appropriate privileges to carry out the operation.

4.0 Vendor and Bank Digital Wallets

The end-user wallet interacts with bank and vendor
wallets to execute commerce transactions. The bank
and vendor wallets have architectures symmetric to the
user’s digital wallet, as shown in Figure 3.

In place of a User Profile Manager, the bank wallet has
an Account Profile Manager that allows the bank to
manage non-financial information about the bank’s
clients. (Financial information about the bank’s clients
is stored in instruments in the bank’s Instrument
Manager.) Similar to the way in which the User Profile
Manager maintains access control information about
instrument instances, the Account Profile Manager does
the same for the bank wallet. The Bank Controller
queries the Account Profile Manager before accessing
instrument instance data to determine whether or not
the user has the appropriate authorization to conduct a
transaction; in the case that a user’s credit line has been
overdrawn, or if the user’s credit card has been
cancelled, the Account Profile Manager would return an
error response to the Bank Controller’s query.

In the vendor wallet, the User Profile Manger is
replaced with a Customer Profile Manager, which is

used to store access control information about its
customers in the case of non-anonymous transactions.
For example, the Customer Profile Manager might store
the user’s age, and the Vendor Controller may query the
Customer Profile Manager to determine if the user is
above a certain age to purchase a product.

A key difference between the Wallet Controller running
in the end-user application and the Bank and Vendor
Controllers running in the bank and vendor
applications, respectively, is that the end-user Wallet
Controller drives the wallet interaction, and it is active,
in that it generates requests and receives responses.
The Bank and Vendor Controllers, on the other hand,
are passive, in that they receive requests and generate
responses. A Wallet Controller generates requests, and
these requests are pushed down through its
Communication Manager and out to the peer wallet.
Peer wallets receive requests through their
Communication Managers, and the requests are
propagated to and are serviced by the Bank and Vendor
Controllers.

The Instrument, Protocol, and Communication
Managers used by the end-user, bank, and vendor are
one and the same, and are re-used across the wallets.

Bank Wallet Vendor Wallet

Account Profile Manager

Instrument
Manager

Protocol
Manager

Communication Manager

Bank
Controller

UI

Client API

Customer Profile Manager

Instrument
Manager

Protocol
Manager

Communication Manager

Vendor
Controller

UI

Figure 3: Symmetric Bank & Vendor Wallet Architectures

Client API

UI API UI API

5.0 Wallet Operation & Interaction Model

In this section, we describe how our symmetric, client-
driven wallets operate and interact during a session to
execute a payment. (Executing any other operation
such as a refund happens in a similar fashion, and may
possibly require only a subset of the steps described
below.) In our example here, we assume that the
"ordering" phase of the shopping interaction is
complete, and the necessary "invoice" (containing
information about what products and/or services the
end-user would like to purchase) is stored in a property
list called inv as a set of (name, value) pairs. We will
describe the process from the point of view of the end-
user wallet, and we will use the diagram in Figure 4 as
an aid. To the right of the states in Figure 4, we
supplement the figure with the method names from our
wallet implementation that an application would invoke
on the Wallet Controller. Methods in boldface are
public in the Wallet Controller’s interface, while
methods in regular font are private to the Wallet
Controller. Finally, the careful reader will note that the
methods seem single-threaded; it is because the wallets
in our implementation are single-threaded. However,
we can easily extend to the multi-threaded case by
passing the Session object to each method (excluding
initiate-Session()), or by instantiating one
Wallet Controller per session.

Although we describe the interaction from the end-user
wallet point of view, it is important to keep in mind that
a vendor or bank’s wallet can also be a client in a wallet
interaction. For example, as part of a transaction with
the end-user wallet, a vendor’s wallet may act as a client
and initiate a session with a bank’s wallet to obtain
credit authorization information for a purchase.

5.1 Initialization / Session Initiation.

When an application is launched, static initialization
takes place before it starts executing. During static
initialization, the wallet components including the
Instrument Manager, Protocol Manager, and Profile
Manager are constructed and initialized. After static
initialization, the wallet may be "unlocked" by
supplying login/password information and a session
with a peer wallet may be initiated.

The Wallet Controller presents the user’s login and
password to the User Profile Manager to determine if
the user should be allowed to use the wallet. The
Wallet Controller also passes the user’s password to the
Instrument Manager so that it may use the password to

decrypt instrument instances and/or the user’s private
key from persistent store.

To initiate a session, the initiate-Session
method in the Wallet Controller is called, passing a
Peer object as a parameter. (A Peer object contains
the peer’s name and details about how to set up a
session with that peer.) The Wallet Controller’s
initiate-Session, in turn, calls the Protocol
Manager’s initiate-Session to initiate the
session. The Protocol Manager makes calls to the
Communication Manager to set up the session with the
remote peer using the underlying communication
mechanism.

5.2 Instrument Class Negotiation

The first step that takes place after session initiation is
instrument class negotiation. In this step, the client’s
wallet can determine what instrument classes are
known to both wallets by 1) determining what
instrument classes are known to its Instrument
Manager, 2) determining what instruments are known
to the remote Instrument Manager, and 3) computing
the intersection.

Those instrument classes that are available to both
wallets may offer different terms and conditions for
purchasing a given set of products or services. As an
example, the price of a product may vary depending
upon whether the customer decides to pay using a credit
card or using ecash. Furthermore, extended warranties
may be offered in the case that a credit card is used to
make a purchase. For each available instrument class,
the instrument class negotiation step also determines
these terms and conditions.

To start instrument class negotiation, the application
calls the Wallet Controller's get-Instrument-
Classes method with the invoice information, inv,
as an argument. (The invoice information is included to
determine the available instrument classes because
some instrument classes may not be applicable for
certain types of purchases. Also, the inv property list
is populated with the terms and conditions described
above such that the terms and conditions become part
of the invoice.) The Wallet Controller then calls its
get-Local-Available-Instrument-
Classes method to determine what instrument classes
the local wallet supports and are available. The Wallet
Controller makes this determination by, in turn, making
a call to the Instrument Manager to determine what
instrument classes are available to the wallet. Then, the
Wallet Controller calls its get-Remote-
Available-Instrument-Classes method to

determine what instrument classes the remote peer is
capable of dealing with.

The call to get-Remote-Available-
Instrument-Classes results in a remote
procedure call to the peer’s Wallet Controller. To
respond to the get-Remote-Available-
Instrument-Classes procedure call, the remote
Wallet Controller calls its get-Local-
Available-Instrument-Classes. Other calls
of the form get-Local... and get-Remote...
described in the following sections work similarly.
Also, in our implementation, the get-Remote-
Available-Instruments call populates a "price"
property stored in inv with a list of (instrument class,
price) pairs to indicate the different prices that would be
charged for using the corresponding instrument classes
in addition to reporting the available instrument classes.
The call chain for instrument class negotiation is
depicted in Figure 5. Solid arrows in Figure 5 indicate
method calls from the object from which the arrow
originates, and dotted arrows indicates the return of
control. (The Wallet Controller relies on the
Communication Manager to handle the low-level
details of executing the remote procedure call described
above, but the actual calls that the Wallet Controller
makes to the Communication Manager have been
omitted from Figure 5 to keep the diagram simple.
Also, arguments and return values for the methods have
been omitted from Figure 5 for the same reason, but
this information can be found in Figure 4.)

To digress momentarily from the end-user wallet’s point
of view, note that, in Figure 5, after the vendor’s Wallet
Controller calls its local Instrument Manager to
determine what instrument classes are available, it may
optionally "notify" the Vendor Application. The
vendor Wallet Controller gives the Vendor Application
the ability to subscribe to various events and possibly
filter the results before they are returned to the end-
user’s Wallet Controller. Although this capability is not
of crucial importance during instrument class
negotiation, it is useful to notify the Vendor
Application of other events, such as the successful
execution of a payment. If the Vendor Application is,
for example, a front-end for a vending machine, the
vending machine would dispense the appropriate
product after receiving notification that payment was
successfully transferred.

To complete instrument class negotiation, the Wallet
Controller calls get-Common-Instrument-
Classes to compute the intersection of available
instrument classes. The results received from get-
Local-Available-Instrument-Classes and
get-Remote-Available-Instrument-
Classes are passed as parameters to get-Common-
Instrument-Classes.

Once instrument class negotiation is completed, the
application is presented with a list of instrument classes
with which the user may execute a transaction. The
user must select one or more instrument classes before
the next step, protocol negotiation, can begin, since the
choice of what protocols can be used to execute a
transaction is dependent upon the instrument classes
that the user selects. In a typical purchase, one
instrument will be used to purchase the products and
services specified in a specific inv record. However,
multiple instruments, possibly of different instrument
classes, may be used to make such a purchase, and
protocol negotiation for each instrument class would
need to be carried out.

5.3 Protocol Negotiation

Once the instrument class has been negotiated, the
application may call the Wallet Controller’s
negotiate-Protocol method to start protocol
negotiation. The Wallet Controller’s negotiate-
Protocol method, in turn, calls the Protocol
Manager’s negotiate-Protocol method. The
Protocol Manager’s negotiate-Protocol method
then calls the doOperation method of the currently
active Protocol Negotiation Protocol (PNP), and also
sends a message to the peer informing it that the local
wallet is entering the protocol negotiation step. The
peer will symmetrically call its PNP's do-
Operation.

The default PNP that we implemented calls the Protocol
Manager's get-Local-Available-Protocols
method to obtain a list of protocols available that are
locally compatible with the selected instrument class,
and then calls get-Remote-Available-
Protocols to determine the protocols that the remote
wallet supports for the selected instrument class. The
PNP finally calls get-Common-Protocols to
compute the intersection. This default protocol
negotiation mechanism is similar to instrument
negotiation.

ProtocolRecord negotiateProtocol (InstrumentClass anInstClass)
 List getLocalAvailableProtocols(InstrumentClass anInstClass)
 List getRemoteAvailableProtocols(InstrumentClass anInstClass)
 List getCommonProtocols(List plist1,List plist2)

Initialization/
Session Initiation

Instrument Class
Negotiation

Protocol
Negotiation

Protocol
Selection

Transaction
Execution

Session Closure/
Shut Down

List getInstrumentClasses (PropertyList inv)
 List getLocalAvailableInstrumentClasses(PropertyList inv)
 List getRemoteAvailableInstrumentClasses(PropertyList inv)
 List getCommonInstrumentClasses(List iclist1, List iclist2)

void setLocalTransactionProtocol(InstrumentClass instclass,
Protocol protocol)

void setRemoteTransactionProtocol(InstrumentClass instclass,
 Protocol protocol)

List getAvailableOperations(InstrumentClass instclass,
 Protocol protocol)

List getInstruments (InstrumentClass instclass)
void executeTransaction (PropertyList pinfo,

 Instrument anInstrument,
 Operation anOperation)

void closeSession (Peer aPeer)

Session initiateSession(Peer aPeer)

Wallet Interaction
Model Wallet Controller Methods

Figure 4: Wallet Interaction Model & Wallet Controller Interfaces

Although we implemented the simple PNP above, the
remote peer could respond to get-Remote-
Available-Protocols with a list of available
protocol names and the location of the signed code for
those protocol classes. Such an implementation of a
PNP may decide to download, dynamically link, and
install a protocol that is not locally supported by the
Protocol Manager if the user agrees to permit the wallet
to do so. Such a PNP may expedite the case in which
the intersection of locally

and remotely available protocols is the null set, which
would prevent the wallets from executing a transaction.
The Java Electronic Commerce Framework (see
Section 6), for example, employs such a mechanism as
the default behavior. Finally, since the notion of a
Protocol Negotiation Protocol has been abstracted out
in our architecture, a PNP such as JEPI’s UPP protocol
(see Section 6) could be used in place of our default
PNP2.

2 Note that Instrument Negotiation can also be
abstracted out into an Instrument Negotiation Protocol,
although for our implementation we felt that
demonstrating this capability with Protocol Negotiation
was sufficient.

subscribe(GET_AVAIL_INSTR_CLASS)

getLocalAvailableInstrumentClasses

Figure 5: Instrument Class Negotiation Call Chain

User
Application

Wallet
Controller

Instrument
Manager

Vendor
Application

Instrument
Manager

getLocalAvailableInstrumentClasses

getInstrumentClasses

getRemoteAvailableInstrumentClasses

getRemoteAvailableInstrumentClasses

getInstrumentClasses

notify(GET_AVAIL_INSTR_CLASS)

getInstrumentClasses

getCommonInstrumentClasses

Wallet
Controller

End-User Wallet Vendor Wallet

5.4 Protocol Selection

If the result of protocol negotiation for a given
instrument class yields one specific protocol, then
protocol selection is automatic, and that protocol will
be used to execute transactions with instruments of the
given instrument class. On the other hand, if more than
one protocol is available for a given instrument class,
then a preferred protocol needs to be selected by the
client’s instrument class.

If the PNP reports more than one protocol in common,
the Wallet Controller calls the instrument class’s get-
Preferred-Protocol method as mentioned in
Section 3.2. The instrument class selects an appropriate
protocol among the ones available based on a variety of
parameters, such as the type of device on which the
wallet is running, the level of network connectivity and
bandwidth available, the dollar amount of the
transaction, or user preferences.

For example, when executing a transaction using a
wallet on a PDA with limited processing power but
with a direct connection (via a docking port or cradle)
to a vendor’s cash register, an unencrypted session
protocol might be preferred over an encrypted session
protocol since the link could be assumed to be secure,
and key exchange processing overhead need not be
incurred to provide for a faster transaction. Such
information about device characteristics and
connectivity may be obtained from a system properties
table similar to the table returned by Java’s
System.getProperties method. In general,
policies regarding how to carry out protocol selection
based on such parameters is beyond the scope of this
paper; our architecture does, however, provide a
framework and the appropriate "hooks" for such
policies to be implemented by implementing and/or
overloading the get-Preferred-Protocol
method.

Once the protocol is selected for the given instrument
class, the Wallet Controller invokes set-Local-
Transaction-Protocol and set-Remote-
Transaction-Protocol with the instrument class
and selected protocol as arguments. Following protocol
selection, the application may inquire what operations
the selected protocol makes available by calling the
Wallet Controller’s get-Available-Operations
method. Protocols offer different sets of operations
depending upon the instrument class over which the
protocol executes and, as described in Section 3.2,
whether the peer wallet is a bank or vendor.

5.5 Transaction Execution

At this point, the application can present the user a list
of the available operations and the user can select one
of them for execution. After that, the user must select
an instrument instance of a previously selected
instrument class on which to execute the operation. To
obtain a list of possible instrument instances that the
user may choose from, the application calls the Wallet
Controller’s get-Instruments method passing the
previously selected instrument class as a parameter.
The application presents a list of the names of each of
the returned instrument instances to the user, and the
user can choose one of the instrument instances.

Once an operation and instrument instance are selected,
the application calls the Wallet Controller’s execute-
Transaction method with these parameters, along
with the invoice information stored in inv. After the
Wallet Controller verifies that the user has the
appropriate privileges to execute the transaction by
querying the User Profile Manager, the Wallet
Controller calls the Protocol Manager’s execute-
Transaction method. The Protocol Manager then
calls the do-Operation method of the appropriate
protocol object. The peer wallet is sent a message
informing it of the name of the protocol and operation
that is to be executed, and it then starts executing that
protocol. The peer will symmetrically call the
appropriate protocol object's do-Operation method
on its side. The protocol objects then execute all of the
necessary actions to accomplish the operation.

The operation may or may not execute successfully.
An exception will be thrown by the do-Operation
method if the operation fails. The remote vendor or
bank application will typically subscribe to its wallet's
EXECUTE_TRANSACTION events, and will be
notified of a failed operation.

Until this point in the discussion, we have described the
various wallet states in succession, but it is important to
note that the application may decide to negotiate over a
different instrument class or select a different protocol.
For instance, after transaction execution, the application
may return to the instrument negotiation step to select
another instrument class for the next operation. As a
second example, after selecting an instrument class, and
after protocol negotiation and selection takes place, the
application may decide that the range of operations
available from the vendor for that instrument class and
protocol combination is not acceptable. At that point,
the application may decide to choose another protocol
instead, and protocol negotiation will be conducted
once again until a protocol is chosen and another set of
operations can be presented to the user. In general,

after instrument class negotiation the application can
return to any previous step in the wallet interaction.
(The extra arrows entailed by this have been left out of
Figure 4 to keep the diagram uncluttered.)

This capability can also allow payments to be executed
in multiple steps with different instruments. For
example, if the price of making a given purchase is
constant regardless of the instrument class, the vendor
may accept receiving large payments as a combination
of several smaller payments of different instruments.
After instrument class negotiation takes place, the end-
user selects multiple instrument classes, and protocol
negotiation and selection is completed for each one.
The end-user then specifies the amount to be paid with
each instrument, and the transaction execution step
occurs for each instrument. If the payment fails for any
one of the instruments, the user may be prompted to
select an alternate instrument, or REFUND operations
need to be executed for all the other instruments to
abort the payment. The wallets involved must take
advantage of transaction management services to ensure
that recovery and rollback are executed correctly in the
face of machine or network failures.

Finally, as presented above, when the user chooses an
instrument class, protocol negotiation and selection are
done for that instrument class, and the user then selects
an instrument instance and an operation to execute. If
there are many different possible instrument class,
protocol, and available operation options, this approach
will best guide the user through the interaction. On the
other hand, if there are relatively few instrument
classes, protocols, and available operation options, then
forcing the user to go through all those steps may be
overkill. To avoid these extra steps, the application can
“hide” some steps from the user even though both
wallets must go through each of the steps.

Consider an example in which the user has only a few
instrument instances, and wants to quickly make a
payment. After initiating a session, the user application
may call get-Instrument-Classes and then call
get-Instruments for each instrument class
returned to obtain all instrument instances, saving the
user of having to select an instrument class. The user
application can present the user with a choice of all
instruments. After the user chooses an instrument with
which to make the payment, the application determines
the instrument class from the instrument object by
calling the Instrument’s get-Instrument-Class
method, and then does protocol negotiation and
selection for the instrument class. If it turns out that no
protocol is available for that instrument class, an error
is reported to the user. Similarly, if it turns out that a
protocol can be selected, but that the PAY operation is

not available, an error is reported to the user. If a
suitable protocol can be selected, and the PAY operation
is available, the user is saved from having to explicitly
select an instrument class.

5.6 Close Session / Shut Down

In general, the application may close the session at any
time. In the typical case, the application may do so
after transaction execution, but may also do so after, for
instance, finding that it does not share any instrument
classes in common with a vendor. A peer application
has the option of closing the session (but may just
return an error if desired) if the application makes an
invalid call, such as calling a method with an
instrument class that is undefined or with an instrument
class that it did not return as the result of get-
Remote-Available-Instruments.

The application should "lock" the appropriate
instrument instances upon closing a session. The
results of all instrument negotiation, protocol
negotiation, and protocol selection are forgotten upon
close of the session, although the wallet architecture
may be extended to include a feature to support caching
of such information in the future.

After closing all sessions, the user may decide to shut
down the wallet, at which point all wallet components
save any unsaved information to persistent storage.

6.0 Related Work

Java Wallet / Java Electronic Commerce Framework.
[5] The Java Wallet is not purely client-driven. In
Sun’s Java Electronic Commerce Framework, electronic
commerce operations are initiated when a merchant
server sends a Java Commerce Message (JCM) to a
client’s web browser. A JCM has a MIME-type of
application/x-java-commerce, and the
client’s web browser will invoke the Java Wallet once
the JCM message is received [9]. By convention, a
vendor should not send a JCM to a client unless the
client clicks a "PAY" button on a form on the vendor’s
web site. However, there is nothing preventing a
vendor from sending a JCM to the client and invoking
their wallet in response to the client simply visiting a
page on the vendor’s web site. These JCMs may be
generated by CGI (Common Gateway Interface) scripts
or servlets on the server-side, and sent to the client to
invoke the Java Wallet. Alternatively, a JCM may also
be generated by an applet that is downloaded to the
client browser. In this case, the applet can make a
method call on the JECF installed on the client to
invoke the Java Wallet. Another way in which a
vendor can invoke a user’s Java Wallet in an unsolicited
fashion is by sending them HTML email with such an
applet embedded within it. Users that run HTML email
readers that are integrated with their web browser, such
as Netscape Navigator or Microsoft Internet Explorer
and also have the JECF installed can have their wallet
automatically invoked upon reading unsolicited email
received from vendors. In order to render the HTML
email message, the HTML will be parsed and the Java
Virtual Machine will be started to render the applet the
vendor embedded in the email. In this scenario, the
applet on the page will start executing, generate a JCM,
and make a JECF.startOperation method call
passing the generated JCM as a parameter to invoke the
user’s Java Wallet.

Vendors can use these mechanism to urge customers to
make impulse purchases simply by invoking an end-
user’s wallet when the end-user visits their web site or
receives email from them. Customers may resent this
feature since it gives vendors the ability to "take the
customer’s wallet out of his pocket." In our
architecture, a user must explicitly launch the wallet to
make a payment; this allows the user to make the
payment when he or she pleases, and not when the
vendor decides it is the appropriate time to pop-up the
user’s wallet.

Besides being client-driven, our digital wallet
architecture supports the notion of a session while the
JECF does not. In our model, once a client decides to
initiate a session with a vendor, state information may

be accumulated throughout the session, and multiple
operations may take place during a single session.
After initial instrument and protocol negotiation, the
negotiated selections are retained as part of the state
information in the session, and making additional
payments thereafter does not require re-negotiation for
each payment operation between the wallet and vendor.
This mechanism allows us to implement lightweight
instruments and protocols to execute micro-payments.
However, in the JECF model, a separate JCM from the
vendor is required to execute each commerce
transaction, and all of the arbitration, negotiation, and
selection may need to be done for each JCM. This can
make the execution of micro-payments more costly in
the JECF model.

Microsoft Wallet. [6] The Microsoft Wallet is
composed of two Active/X controls: an Address
Selector control, and a Payment Selector control. This
model is also not purely client-driven, since vendors
embed these controls on web pages on their web site to
prompt the user to make a payment. Furthermore, the
selection of the protocol is not client-driven. Within an
HTML tag passed as a parameter to the Payment
Selector control is an "accepted types" string which
contains a list of (instrument class,protocol) pairs that
are acceptable to the vendor. Upon choosing an
instrument class, the accepted types are scanned from
left to right searching for the first occurrence of the
selected instrument class, and the corresponding
protocol is chosen. Since the vendor orders the
accepted types string, the vendor has the ability to
choose a protocol that is advantageous to itself and
disadvantageous to the client. For example, the vendor
may choose a protocol that may lower its transaction
cost, but that may take a longer time to execute over the
network, costing the client more in network access
charges. In our architecture, the Protocol Negotiation
Protocol objects running on both the wallet and the
vendor negotiate on the protocol to be used for a
selected instrument class, and the client is not locked
into using the fixed algorithm hard-coded within the
Payment Selector control.

IBM Generic Payment Service. [15] IBM Zurich
Research proposes a Generic Payment Service as part
of the SEMPER (Secure Electronic Marketplace for
Europe) project. The service gives the user the ability
to have multiple "purses," each representing a different
payment system. The concept of a "purse" in the
contexts of the Generic Payment Service roughly
corresponds to a combination of an instrument instance
and an associated protocol.

Shopping Models. [10] The Shopping Models
Architecture formalizes many different customer,

merchant, and payment service interactions in terms of
order, payment, and delivery event handlers. Our
wallet architecture addresses payment in the context of
Shopping Models. The wallet and vendor controllers,
for example, expand on the interfaces that the
CustomerPayment and MerchantPayment event
handlers present in the context of that work.

U-PAI (Universal Payment Application Interface). [11]
U-PAI proposes a standard interface to multiple
payment mechanisms. A U-PAI AccountHandle
fits into our architecture as a combination of an
Instrument and a Protocol object since the
AccountHandle’s interface provides methods to
access instrument data, such as an account balance, as
well as methods to execute a payment such as
startTransfer.

JEPI (Joint Electronic Payments Initiative). [12] JEPI
was a joint initiative between the W3 Consortium and
CommerceNet whose goal was to develop a payment
selection protocol as an extension to HTTP. JEPI’s
UPP [13] protocol is an example of a Protocol
Negotiation Protocol in our architecture. Assuming a
Communication Manager that is capable of sending
HTTP messages (with the appropriate PEP extensions),
UPP may be implemented within our architecture as a
Protocol Negotiation Protocol.

NetBill. [14] In the NetBill protocol, payment is
guaranteed to happen atomically with the delivery of
goods by involving a trusted third party. To implement
the NetBill payment mechanism in our architecture, the
end-user wallet, vendor, and trusted third party
applications would execute a NetBill payment protocol
that would interact with NetBill money instrument
objects.

SET. [1] SET is a secure electronic transaction
protocol developed jointly by Visa and Mastercard. As
mentioned previously in examples throughout the
paper, SET is a protocol object within our architecture
that can be used to make payments, as well as execute
other operations defined in the SET protocol, with
Mastercard and VISA credit card instrument classes.

GEPS (Generic Electronic Payment Services). [7] In
the context of GEPS, the Instrument Manager takes
advantage of Capabilities Management (CM) and
Method Negotiation (MN) services. The Protocol
Manager takes advantage of Capabilities Management
(CM), Method Negotiation (MN), and Transaction
Management (TM) services. The User Profile Manager
takes advantage of Preferences Management (PM)
services.

7.0 Conclusion

We propose a new generalized digital wallet
architecture that is extensible, symmetric, non-web-
centric, and client-driven. This architecture not only is
extensible enough to inter-operate with multiple
instruments and protocols as some existing wallet
architectures are, but also incorporates other desirable
features of a digital wallet architecture in a
comprehensive way. In particular, the SWAPEROO
wallet architecture also

• Factors out symmetric infrastructure and interfaces
that may be common among end-user, vendor, and
bank wallets,

• Generalizes to operating environments beyond the
WorldWide Web, such that digital wallets can be
developed for "alternative" devices such as PDAs
and smart cards without re-inventing a new design
for the wallet, and

• Ensures that the client is the proactive party in the
payment phase of the shopping interaction.

Our proposed generalized digital wallet architecture has
been implemented in Java and C++. Using our
implementation, we built a digital wallet application for
the PalmPilot personal digital assistant, and a vendor
application that interfaces with a vending machine; the
details of that particular implementation using the
SWAPEROO wallet architecture is described in [17].
Complete Java and C++ APIs for the architecture are
available at http://www-db.stanford.edu/
~daswani/wallets/.

Acknowledgements

We would like to thank Craig Mudge for participating
in several discussions with us which helped contribute
to ideas in this paper. We also wish to thank the
anonymous referees for their helpful comments which
aided in various revisions of this paper.

References

 [1] SET Secure Electronic Transaction (TM) LLC.
SETCo website: http://www.setco.org/.

[2] CyberCash. CyberCash Home Page.
CyberCash website: http://www.cybercash.com/.

[3] DigiCash. DigiCash: Solutions for Security
and Privacy. DigiCash website:
http://www.digicash.com/.

[4] Digital Equipment Corporation. MilliCent.
MilliCent website: http://www.millicent.digital.com/.

[5] Sun Microsystems. Java Commerce Home
Page. JavaSoft website: http://java.sun.com/commerce/.

[6] Microsoft Corporation. Microsoft Wallet.
Microsoft wallet website:
http://www.microsoft.com/wallet/.

[7] Alireza Bahreman. Generic Electronic
Payment Services. In The Second USENIX Workshop
on Electronic Commerce Proceedings, 1996.

[8] Alireza Bahreman and Rajkumar
Narayanaswamy. Payment Method Negotiation Service.
In The Second USENIX Workshop on Electronic
Commerce Proceedings, 1996.

[9] Java Commerce Messages White Paper. Sun
Microsystems website:
http://java.sun.com/products/commerce/docs/whitepape
rs/jcm_whitepaper/jcm_whitepaper.html.

[10] Steven P. Ketchpel, Hector Garcia-Molina,
and Andreas Paepcke. Shopping Models: A Flexible
Architecture for Information Commerce. In
Proceedings of the Fourth Annual Conference on the
Theory and Practice of Digital Libraries, 1997. At
http://www-diglib.stanford.edu/cgi-bin/WP/get/SIDL-
WP-1996-0052.

[11] Steven Ketchpel, Hector Garcia-Molina,
Andreas Paepcke, Scott Hassan, and Steve Cousins.
UPAI: A Universal Payment Application Interface. In
USENIX 2nd Electronic Commerce workshop, 1996.

[12] W3C Joint Electronic Payments Initiative
(JEPI). W3C website:
http://www.w3.org/ECommerce/Overview-JEPI.html.

[13] D. Eastlake. Universal Payment Preamble
Specification. W3C website:
http://www.w3.org/ECommerce/specs/upp.txt.

[14] B. Cox, D. Tygar, and M. Sirbu. NetBill
Security and Transaction Protocol. In First USENIX
Workshop of Electronic Commerce Proceedings, 1995.

[15] J.L. Abad-Peiro, N. Asokan, M. Steiner, M.
Waidner. Designing a Generic Payment Service. IBM
Systems Journal Vol. 37 No. 1, 1998.

[16] T. Goldstein. The Gateway Security Model in
the Java Electronic Commerce Framework. In

Proceedings of the Financial Cryptography First
International Conference, FC ’97, 1997.

[17] N. Daswani, D. Boneh. Experimenting with
Electronic Commerce on the PalmPilot. [preprint]

