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Abstract

Extensible typesafe systems, such as Java, rely criti-
cally on a large and complex software base for their
overall protection and integrity, and are therefore dif-
ficult to test and verify. Traditional testing techniques,
such as manual test generation and formal verification,
are too time consuming, expensive, and imprecise, or
work only on abstract models of the implementation
and are too simplistic. Consequently, commercial vir-
tual machines deployed so far have exhibited numer-
ous bugs and security holes.

In this paper, we discuss our experience with using
production grammars in testing large, complex and
safety-critical software systems. Specifically, we de-
scribe lava, a domain specific language we have de-
veloped for specifying production grammars, and re-
late our experience with using lava to generate effec-
tive test suites for the Java virtual machine. We
demonstrate the effectiveness of production grammars
in generating complex test cases that can, when com-
bined with comparative and variant testing techniques,
achieve high code and value coverage. We also de-
scribe an extension to production grammars that en-
ables concurrent generation of certificates for test
cases. A certificate is a behavioral description that
specifies the intended outcome of the generated test
case, and therefore acts as an oracle by which the cor-
rectness of the tested system can be evaluated in isola-
tion. We report the results of applying these testing
techniques to commercial Java implementations. We
conclude that the use of production grammars in com-
bination with other automated testing techniques is a
powerful and effective method for testing software
systems, and is enabled by a special purpose language
for specifying extended production grammars.

1. Introduction

This paper describes lava, a special purpose language
for specifying production grammars, and summarizes

how production grammars can be used as part of a
concerted software engineering effort to test large
systems. In particular, we describe our experience with
applying production grammars written in lava to the
testing of Java virtual machines. We show that pro-
duction grammars, expressed in a suitable language,
can be used to automatically create, and reason about,
complex test cases from concise, well-structured speci-
fications.

Modern virtual machines [Lindholm&Yellin 99, In-
ferno, Adl-Tabatabai et al. 96], such as Java, have
emerged in recent years as generic and ubiquitous
components in extensible applications. Virtual ma-
chines can now be found in hypertext systems [Bern-
ers-Lee et al. 96], web servers [SunJWS], databases
[Oracle], desktop applications, and consumer devices
such as cellphones and smartcards. The primary appeal
of virtual machines is that they enable users to safely
run untrusted, and potentially malicious, code. The
safety of modern virtual machines, Java in particular,
depends critically on three large and complex software
components: (1) a verifier for static inspection of un-
trusted code against a set of safety axioms, (2) an in-
terpreter or a compiler to respect instruction semantics
during execution, and (3) a runtime system to correctly
provide services such as threading and garbage collec-
tion. A failure in any one of these components allows
applications to violate system integrity, and may result
in data theft or corruption [McGraw & Felten 96].

This capability to execute untrusted code places a
large burden on the system implementers to ensure
overall system safety and correctness. A typical mod-
ern virtual machine such as Java contains hundreds of
fine-grain, subtle and diverse security axioms in its
verifier, as well as many lines of similarly subtle code
in its interpreter, compiler and system libraries. Con-
sequently, verifying the correctness of a virtual ma-
chine is a difficult task.



Testing Alternatives

The current state of the art in formal program verifica-
tion is not yet sufficient to verify large, complex vir-
tual machines. While the theory community has made
substantial progress on provably correct bytecode veri-
fiers [Stata&Abadi 98,Freund&Mitchell 98], current
results exhibit three serious shortcomings. Namely,
they operate on abstract models of the code instead of
the actual implementation, cover only a subset of the
constructs found in a typical virtual machine and re-
quire extensive human involvement to map the formal
model onto the actual implementation. In addition,
these type-system based formal methods for verifiers
do not immediately apply to interpreters, compilers or
the runtime system, whose functionality is hard to
model using static type systems.

 Subsequently, virtual machine developers have had to
rely on manual verification and testing techniques to
gain assurance in their implementations. Techniques
such as independent code reviews [Dean et al. 97] and
directed test case generation have been used exten-
sively by various commercial virtual machine vendors.
However, manual testing techniques, in general, are
expensive and slow due to the amount of human effort
they entail. In addition, independent code reviews re-
quire relinquishing source code access to reviewers,
and lack a good progress metric for the reviewers’
efforts. Manual test case generation, on the other hand,
often requires massive amounts of tedious human ef-
fort to achieve high code coverage.

A common approach to automating testing is to simply
use ad hoc scripts, written in a general-purpose lan-
guage, to generate test inputs. While this approach
may save some time in test creation, it exhibits a num-
ber of shortcomings. First, writing such test scripts is
time consuming and difficult, as scripting languages
often do not provide any convenient constructs for this
programming domain beyond string manipulation.
Second, managing many such scripts is operationally
difficult once they have been written, especially as
they evolve throughout the life cycle of the project.
Third, the unstructured nature of general-purpose lan-
guages poses a steep learning curve for those who need
to understand and modify the test scripts. Fundamen-
tally, a general-purpose language is too general, and
therefore too unstructured, for test generation.

Production Grammars

In this paper, we describe lava, a special purpose lan-
guage for specifying production grammars. A produc-

tion grammar is a collection of non-terminal to termi-
nal mappings that resembles a regular parsing gram-
mar, but is used “in reverse.” That is, instead of
parsing a sequence of tokens into higher level con-
structs, a production grammar generates a stream of
tokens from a set of non-terminals that specify the
overall structure of the stream. We describe how lava
grammars differ from traditional parsing grammars,
and illustrate the different features we added into the
language to support test generation. Our experience
with lava demonstrates that a special purpose language
for specifying production grammars can bring high
coverage, simplicity, manageability and structure to
the testing effort.

Production grammars are well-suited for test genera-
tion not only because they can create diverse test cases
effectively, but also because they can provide guid-
ance on how the test cases they generate ought to be-
have. It is often hard to determine the correct system
behavior for automatically generated test cases -- a
fundamental difficulty known as the oracle problem.
In the worst case, automated test generation may re-
quire reverse engineering and manual examination to
determine the expected behavior of the system on the
given test input.

We address the oracle problem in two ways. We first
show that test cases generated with production gram-
mars can be used in conjunction with comparative
testing to create effective test suites without human
involvement. Second, we show how an extended pro-
duction grammar language can generate self-
describing test cases that obviate the need for com-
parative testing. In simple production systems, the
code producer does not retain or carry forward any
information through the generation process to be able
to reason about the properties of the test case. We
overcome this problem by extending the grammar
specification language to concurrently generate certifi-
cates for test cases. Certificates are a concise descrip-
tion of the expected system behavior for the given test
case. They act as oracles on the intended behavior of
the generated test program, and thereby enable a single
virtual machine to be tested without comparison
against a reference implementation.

Overall, this paper makes three contributions. First, we
describe the design of a domain specific language for
specifying production grammars, and illustrate how it
can be used on its own for carrying out performance
analyses, for checking robustness, and for testing
transformation components such as compilers. Further,
we show that combining production grammars with



other automated techniques, such as comparative
evaluation, can achieve high code coverage. Finally,
we show that the structured nature of production
grammars can be used to reason about the behavior of
test cases, and address the oracle problem. Testing,
especially of commercial systems, is a field where
success is fundamentally difficult to quantify because
the number of undiscovered bugs cannot be known.
We relate anecdotal descriptions of the types of errors
uncovered by our approach, and use quantitative
measures from software engineering, such as code
coverage, whenever possible.

In the next section, we provide the necessary back-
ground on the Java virtual machine and define the
scope and goals of our testing efforts. Readers with a
background in the Java virtual machine can skip ahead
to the end of that section. Section 3 describes the lava
language, and illustrates how the language can be used
to construct complex test cases from a grammar. Sec-
tion 4 discusses the integration of production gram-
mars with other automated testing techniques. Section
5 describes extensions to the lava language to concur-
rently generate certificates along with test cases. Sec-
tion 6 discusses related work, and section 7 concludes.

2. Background & Goals

A Java virtual machine (JVM) is an extensive system
combining operating system services and a language
runtime around a typed, stack-based, object-oriented
instruction set architecture. The integrity of a Java
virtual machine relies critically on the three funda-
mental components that comprise the JVM; namely,
on a verifier, interpreter/compiler and a set of standard
system libraries. We focus our testing efforts on the
first two components. The system libraries are written
mostly in Java, and consequently benefit directly from
increased assurance in the verifier and the execution
engine. Verification and compilation form the bulk of
the trusted computing base for a JVM, and embody a
large amount of complex and subtle functionality.

The Java verifier ensures that untrusted code, pre-
sented to the virtual machine in the richly annotated
bytecode format, conforms to an extensive suite of
system security constraints. While these constraints are
not formally specified, we extracted roughly 620 dis-
tinct security axioms through a close examination of
the Java virtual machine specification and its errata
[Lindholm&Yellin 99]. These safety axioms range in
complexity from integer comparisons to sophisticated
analyses that rely on type inference and data flow.
Roughly, a third of the safety axioms are devoted to

ensuring the consistency of top level structures within
an object file. They deal with issues such as bound
checks on structure lengths and range checks on table
indices. Around 10% of the safety checks in the veri-
fier are devoted to ensuring that the code section
within the object file is well structured. For instance,
these checks restrict control flow instructions from
jumping outside the code segment or into the middle
of instructions. Another 10% of the checks are devoted
to making sure that the assumptions made in one class
about another class are valid. These checks ensure, for
example, that a field access made by one class refers
to a valid exported field in another class of the right
type. The remaining 300 or so checks are devoted to
dataflow analysis, and form the crux of the verifier.
They ensure that the operands for virtual machine in-
structions will be valid on all dynamic instruction
paths. Since Java bytecode does not contain declara-
tive type information, the type of each operand has to
be inferred for all possible execution paths. This stage
relies on standard dataflow analysis to exhaustively
check the system state on all possible paths of execu-
tion, and ensures, for instance, that the operands to an
integer addition operation always consist of two inte-
gers. Further, these checks also ensure that objects are
properly initialized via parent constructors, and that
every use of an object is preceded by an initialization
of the same object. Based on various analyses [Dros-
sopoulou+ 97,Drossopoulou+ 99,Syme 97], we assume
that a correct implementation of these 620 axioms is
sufficient to ensure typesafety and to protect the as-
sumptions made in the virtual machine from being
violated at runtime. The task of the system designer,
then, is to ensure that the implementation of safety
axioms in a verifier corresponds to the specification.

Similarly, the Java execution engine, whether it is an
interpreter, a just-in-time compiler, a way-ahead-of-
time compiler [Proebsting et al. 97] or a hybrid
scheme [Muller et al. 97,Griswold], needs to imple-
ment a large amount of functionality to correctly exe-
cute Java bytecode instructions. Since the JVM in-
struction set architecture defines a CISC, the instruc-
tion semantics are high-level and complex. There are
202 distinct instructions, whose behavioral description
takes up more than 160 pages in the JVM specifica-
tion. In addition, the architecture allows non-uniform
constructs such as arbitrary length instructions, in-
struction padding and variable opcode lengths, which
introduce complications into the implementation.

The challenge for testing JVMs, then, is to ensure that
the implementation of safety checks in a bytecode
verifier, and that the implementation of instruction



semantics in an interpreter, compiler and optimizer,
are correct. We faced this challenge when we devel-
oped our own Java virtual machine [Sirer et al. 98].
Our attempts to create test cases manually were soon
overwhelmed, and we sought a testing scheme that
possessed the following properties:

• Automatic: Testing should proceed without human
involvement, and therefore be relatively cheap.
The technique should be easy to incorporate into
nightly regression testing.

• Complete: Testing should generate numerous test
cases that cover as much of the functionality of a
virtual machine as possible. It should also admit a
metric of progress that correlates with the amount
of assurance in the virtual machine being tested.

• Conservative: Bad Java bytecodes should not be
allowed to pass undetected through the bytecode
verifier, and incorrectly executed instructions in
the compiler or interpreter should be detected.

• Well structured: Examining, directing, check-
pointing and resuming verification efforts should
be simple. Error messages should be descriptive;
that is, it should be easy for a programmer to track
down and fix a problem.

• Efficient: Testing should result in a high-
confidence Java virtual machine within a reason-
able amount of time.

The rest of this paper describes our experience with
lava aimed at achieving these goals.

3. Lava and Grammar-based Test Genera-
tion

Our approach to test generation is to use an automated,
well-structured process driven by a production gram-
mar. A production grammar is the opposite of a regu-
lar parsing grammar in that it produces a program (i.e.
all terminals, or tokens) starting from a high-level de-
scription (i.e. a set of non-terminals). The composition
of the generated program reflects the restrictions
placed on it by the production grammar. Figure 1 il-
lustrates the high-level structure of the test generation
process. A generic code-generator-generator parses a
Java bytecode grammar written in lava and emits a
specialized code-generator. The code-generator is a
state machine that in turn takes a seed as input and
applies the grammar to it. The seed consists of the
high-level description that guides the production proc-
ess. Running the code-generator on a seed produces

test cases in Java bytecode that can then be used for
testing.

The input to the lava code-generator-generator consists
of a conventional grammar description that resembles
the LALR grammar specification used in yacc (Figure
2). This context-free grammar consists of productions
with a left-hand side (LHS) containing a single non-
terminal that is matched against the input. If a match is
found, the right-hand side (RHS) of the production
replaces the LHS. As with traditional parser systems,
we use a two-phase approach in lava for increased
efficiency and ease of implementation. The code-
generator-generator converts the grammar specifica-
tion into a set of action tables, and generates a code-
generator that performs the actual code production
based on a given seed. In essence, the code-generator-
generator performs code specialization on a generic
production system for a particular grammar. We
picked this two-phase approach to increase the effi-
ciency of the code-generator through program spe-
cialization.

Figure 1. The structure of the test generation proc-
ess. A code-generator-generator parses a production
grammar, generates a code-generator, which in turn
probabilistically generates test cases based on a seed.

     Virtual Machine

               Grammar
                   =>

                   =>

            =>

     Test N    Test 1

       Seed
   Code Generator

 Code Generator Generator

    Test 2



Within the code-generator, the main data structure is a
newline-separated stream, initially set to correspond to
the seed input. Being able to specify arbitrary seeds
enables us to modify parts of existing programs in

controlled ways. Each line in this stream is scanned,
and occurrences of an LHS are replaced by the corre-
sponding RHS. If there is more than one possible ac-
tion for a given match, the code-generator picks an
outcome probabilistically, based on weights that can
be associated with each production. When all possible
non-terminals are exhausted, the code-generator out-
puts the resulting stream. We then use the Jasmin
bytecode assembler [Meyer & Downing 97] to go from
the textual representation to the binary bytecode for-
mat.

Lava grammars can be annotated with three properties
that are useful for test generation. First, each produc-
tion rule can have an associated name. Along with
each test case, the code-generator creates a summary
file listing the names of the grammar rules that gave
rise to that test case, thereby simplifying test selection
and analysis. We used these summary files extensively
during JVM development to pick (or to skip) test cases
that exhibit certain instruction sequences, as the high-
level descriptions were easier to act on than reverse
engineering and pattern-matching instruction se-
quences. In addition to a name, each grammar rule in
lava may have an associated limit on how many times
it can be exercised. Java, unlike most language sys-
tems, enforces certain structural limits, such as limits
on code length per method, in addition to any limits
the tester may impose to guide the test generation pro-
cess. The limits on production rules enable the gram-
mar to accommodate such constraints. Finally, in order
to enable the production of context-sensitive outputs,
lava allows an optional code fragment, called an ac-
tion, to be associated with each production. This code
is executed when the production is selected during
code-generation, in a manner analogous to context-
sensitive parsing using yacc grammars. An escape

sequence facilitates the substitution of variables de-
fined in actions on the RHS of productions. Actions
are widely used in this manner to generate labels,
compute branch targets, and perform assignment of
values to unique local variables. The code in action
blocks, like the entire lava system, is written in AWK
[Aho et al. 88].

In addition to these attributes, each production carries
a weight that determines which productions fire in
case more than one are eligible for a given LHS. This
case occurs frequently in code production, as it is quite
often possible to insert just about any instruction se-

quence at any point within a program. The probabilis-
tic selection based on weights, then, introduces non-
determinism and enables each code-generator run to
produce a different test case. The weights, specified as
part of the seed input, determine the relative occur-
rences of the constructs that appear in the grammar.
Separating the weights from the rest of the grammar
enabled us to generate different instruction mixes
without having to rewrite or rearrange the grammar
specification.

Figure 2. The grammar for the lava input language
in EBNF form. Its simplicity makes the language
easy to adopt, while variable substitution and arbi-
trary code sequences make it powerful.

Grammar-Rule := name [limit]
    identifier “=>” identifier*
                    [guard] [action]
Identifier := Token | Variable
Token := [a-zA-Z_][a-zA-Z0-9_]*
Variable := “$” Token
Guard := “guard{“ code “}”
Action := “action{“ code “}”

Figure 3. A simplified lava grammar and a corre-
sponding seed for its use. Non-terminals are in upper
case and dollar signs indicate that the value of the
variable should be substituted at that location.
Weights in the seed specify the relative mix of jsr
and if statements. Overall, the grammar specification
is concise and well-structured.

insts 5000 INSTS => INST INSTS
emptyinst  INSTS => /* empty */
ifeqstmt
INST => iconst_0; INSTS; ifeq L$1;
        jmp L$2; L$1: INSTS; L$2:
jsrstmt
INST => jsr L$1; jmp L$2;
        L$1: astore $reg; INSTS;
        ret $reg; L$2:
action{ ++reg; }

Weight jsrstmt 10
Weight ifeqstmt 10
Weight insts 1
Weight emptyinst 0

.class public testapplet$NUMBER

.method test()V
  INSTS; return
.end method



Figure 3 shows a sample grammar written in lava. This
particular grammar is intended to exercise various
control flow instructions in Java virtual machines, and
is a simplified excerpt from a larger grammar that
covers all possible outcomes for all branch instructions
in bytecode. The insts production has a specified limit
of 5000 invocations, which restricts the size of the
generated test case. The two main productions, jsrstmt
and ifeqstmt, generate instruction sequences that per-
form subroutine calls and integer equality tests. These
concise descriptions, when exercised on the seed
shown, generate a valid class file with complicated
branching behavior. The seed itself is a skeletal class
file whose code segment is to be filled in by the
grammar. Equal weighting between the if and the jsr
statements ensures that they are represented equally in
the test cases. A weight of 0 for the emptyinst pro-
duction effectively disables this production until the
limit on the insts production is reached, ensuring that
test generation does not terminate early. The grammar
also illustrates the use of unique labels and the inte-
gration of actions with the grammar in order to create
context-sensitive code. While the lava input language
is quite general and admits arbitrarily complex gram-
mar specification, we found that most of the grammars
we wrote used common idioms which reflected the
constructs we wished to test, as in the example above.
Figure 4 contains a sample output generated by this
toy grammar that was designed to generate “spaghetti
code.” Overall, the description language is concise, the
test generation process is simple, and the generated
tests are complex.

Initially, we considered lava’s limitation of left-hand
sides to a single non-terminal as a serious restriction
that would need to be addressed. We found, however,
that cases that warrant multiple non-terminals on the

LHS arise rarely in practice. In contrast, we found that
there were numerous cases where a context free
grammar would indicate that a given production is
eligible for a particular location, but context-sensitive
information prohibited such an instruction from ap-
pearing there. For example, the use of an object is le-
gal only following proper allocation and initialization
of that object. While it is possible to keep track of ob-
ject initialization state by introducing new non-
terminals and rules into the grammar, this overly com-
plicates grammar specifications, and scales badly with
the number of objects to be tracked. It is significantly
simpler to keep track of such state in auxiliary data
structures through actions, much like in yacc gram-
mars. However, since these data structures are not
visible to the code production engine, the code-
generator may lack the information it needs to decide
for which spots certain productions are not eligible. To
address this problem, we introduced guards into the
grammar specification. A guard is a Boolean function
that is consulted to see if a given production can be
used in a particular context. If the guard returns false,
that replacement is not performed, and another pro-
duction is selected probabilistically from the remain-
ing set eligible for that substitution. Hence, guards
enable the context-sensitive state that is tracked
through actions to influence the choice of productions.
While it is possible to use guards to associate prob-
abilistic weights with productions, we decided to re-
tain explicit support for weights in the language.
Weights are such a common idiom that special-casing
their specification both greatly simplifies the gram-
mars, and increases the performance of the code gen-
erator. Further, using guards to implement weights
would encode probabilities in the grammar specifica-
tion, whereas in our implementation, they are specified
on a per-seed basis, obviating the need for testers to
modify the grammar specifications.

Results

We have used lava in a number of different testing
scenarios including performance analysis and fault
detection of the virtual machine, and integrity of code
transformation engines such as compilers and binary
rewriters.

First, we used the test cases to test for easy-to-detect
errors, such as system crashes. Typesafe systems such
as virtual machines are never supposed to crash on any
input. A crash indicates that typesafety was grossly
violated, and that the error was luckily caught by the
hardware protection mechanisms underneath the vir-
tual machine. We used a simple grammar with three

Figure 4. A sample method body produced by the
grammar shown in Figure 3. The resulting test cases
are complex, take very little time to produce, and are
more reliable than tests written by hand.

    iconst_0
    iconst_0
    jsr L18
    jmp L19
L18:astore 3
    ret 3
L19:ifeq L4
    jmp L5
L4:
L5: iconst_0
    ifeq L10
    jmp L11
L10:
L11:ifeq L0
    jmp L1

L0: jsr L6
    jmp L7
L6: astore 1
    ret 1
L7: jsr L12
    jmp L13
L12:astore 2
    ret 2
L13:
L1: jsr L2
    jmp L3
L2: astore 0
    iconst_0
    ifeq L14
    jmp L15

L14:
L15:ret 0
L3: iconst_0
    ifeq L8
    jmp L9
L8:
L9: iconst_0
    ifeq L16
    jmp L17
L16:
    return



productions, and the very first test case that we gener-
ated found that the Sun JDK1.0.2 verifier on the DEC
Alpha would dump core when faced with numerous
deeply nested subroutine calls.

Second, we used stylized test cases generated by lava
for characterizing the time complexity of our verifier
as a function of basic block size and total code length.
The parameterizable nature of the grammar facilitated
test case construction, and only required a few runs of
the code-generator with different weights and seeds. It
took less than 10 minutes to write the grammar from
scratch, and only several minutes to generate six test
cases ranging in size from a few instructions to 60000.
Each generated test case was unique, yet was compa-
rable to the other tests on code metrics such as average
basic block size and instruction usage. These tests un-
covered that our verifier took time O(N2log N) in the
number of basic blocks in a class file, and motivated
us to find and fix the unnecessary use of ordered lists
where unordered ones would have sufficed.

Finally, we used the generated tests to verify the cor-
rectness of Java components that perform transforma-
tions. Components such as Java compilers and binary
rewriting engines [Sirer et al. 98] must retain program
semantics through bytecode to native code or bytecode
to bytecode transformations. Such components can be
tested by submitting complex test cases to the trans-
formations, and comparing the behavior of the trans-
formed, e.g. compiled, program to the original. In our
case, we wanted to ensure that our binary rewriter,
which performs code movement and relocation, pre-
served the original program semantics through its ba-
sic block reordering routine. Our binary rewriter is a
fairly mature piece of code, and we had not discovered
any bugs in it for a while. To test the rewriter, we cre-
ated 17 test cases which averaged 1900 instructions in
length and exercised every control flow instruction in
Java. The grammar was constructed to create test cases
with both forward and backward branches for each
type of jump instruction, and instrumented to print a
unique number in each basic block. We then simply
executed the original test cases, captured their output
and compared it to the output of the test cases after
they had been transformed through the binary rewriter.
This testing technique caught a sign extension error
that incorrectly calculated backward jumps in ta-
bleswitch and lookupswitch statements, and took a
total of two days from start to finish.

Though production grammars facilitate test case gen-
eration, they do not by themselves provide a complete
solution to software testing. The main problem in

software testing has to do with determining when the
tested system is behaving correctly on a given input,
and when it is not. In the next section, we illustrate
how this problem can be addressed by comparative
evaluation.

4. Comparative Testing with Variations

Our first approach to addressing the oracle problem,
that is, the problem of detecting when a virtual ma-
chine is misbehaving on a given input, is to rely on
multiple implementations of a virtual machine to act
as references for each other in a process commonly
known as comparative, or differential, testing. The
core idea in comparative testing is simply to direct the
same test cases to two or more versions of a virtual
machine, and to compare their outputs. A discrepancy
indicates that at least one of the virtual machines dif-
fers from the others, and typically requires human in-
volvement to determine the cause and severity of the
discrepancy. Since the Java virtual machine interface
is a de facto standard for which multiple implementa-
tions are available, we decided to use it to address the
oracle problem for automatically generated test cases.

A separate reason compelled us to expand comparative
testing by introducing variations into the test cases
generated by production grammars. A variation is sim-
ply a random modification of the test case to generate
a new test. The assembly language in which the test
cases were generated hide some of the details of the
Java bytecode format, making it impossible to exercise

Test
Base 1

Test
Base 2

Test
Base N

   Variation
    Engine

   Reference
     Verifier

           Test
  Verifier

     Comparison

Figure 5. Comparative Evaluation. A variation en-
gine injects errors into a set of test bases, which are
fed to two different bytecode verifiers. A discrep-
ancy indicates an error, a diversion from the specifi-
cation, or an ambiguity in the specification.



certain conditions. For example, there is no way to
generate a class file which exhibits internal consis-
tency errors, such as out of bounds indices, using an
assembly language such as Jasmin. To overcome this
difficulty of manipulating low-level constructs from
assembly language, we decided to introduce variations
into the tests generated by lava. The overall process
we followed is illustrated in Figure 5.

We compared our virtual machine implementation to
Sun JDK 1.0.2 and the Microsoft Java virtual machine
found in Internet Explorer 4.0. We formed the test
inputs by taking the output of a production grammar
and introducing one-byte pseudo-random modifica-
tions, or variations. We experimented with introducing
multiple modifications into a single test base, but
found that multiple changes made post-mortem inves-
tigation of discrepancies more difficult. Therefore,
each test case was generated by introducing only a
single one-byte value change at a random offset in a
base class file.

In most cases, all consulted bytecode verifiers agreed
that the mutated test inputs were safe or unsafe, yield-
ing no information about their relative integrity. In
some cases, however, one of the bytecode verifiers
would disagree from the rest. Cases where the class
file was accepted by our bytecode verifier but rejected
by a commercial one usually pointed to an error in our
implementation. We would fix the bug and continue.
Conversely, cases where the class file was rejected by
our bytecode verifier but accepted by a commercial
bytecode verifier usually indicated an error in the
commercial implementation. Occasionally, the differ-
ences were attributable to ambiguities in the specifica-
tion or to benign diversions from the specification.

Results

We found that the complex test cases generated by
production grammars achieved as good as or better
code coverage than the best hand-generated tests, had
higher value coverage, and were in addition much
easier to construct. Figure 6 examines the number of
safety axioms in our verifier triggered by a hand-
generated test base versus a test base generated by a
lava grammar. The hand-generated test case was labo-
riously coded to exercise as many of the features of the
Java virtual machine, in as diverse a manner as possi-
ble. The graph shows that automatically generated test
cases exercise more check instances than hand-
generated test cases. Indeed, after 30000 variations,
the coverage attained by automatically generated test
cases is a strict superset of the manually generated

tests. We attribute this to the greater amount of com-
plexity embodied in the test cases generated by the
grammar. Further, the tests that are exercised only by
grammar-based tests are those cases, such as polymor-
phic merges between various types at subroutine call
sites, for which manual tests are especially hard and
tedious to construct.

Further, we found that comparative testing with varia-
tions is fast. At a throughput of 250K bytes per second
on a 300 MHz Alpha workstation with 128K of mem-
ory on five different base cases, comparative evalua-
tion with variations exercised 75% of the checks in the
bytecode verifier within an hour and 81% within a
day. Since our test bases consisted of single classes,
we did not expect to trigger any link-time checks,
which accounted for 10% of the missing checks in the
bytecode verifier. Further inspection revealed that an-
other 7% were due to redundant checks in the byte-
code verifier implementation. More specifically, there
were some checks that would never be triggered if
other checks were implemented correctly. For exam-
ple, long and double operands in Java take up two ma-
chine words, and the halves of such an operand are
intended to be indivisible. Although various checks in
the bytecode verifier prohibit the creation of such op-
erand fragments, our bytecode verifier redundantly
checks for illegally split operand on every stack read
for robustness.

We attribute this high rate of coverage to three factors.
First, Java bytecode representation is reasonably com-

Figure 6. A plot of code coverage for hand gener-
ated and lava generated test cases shows that auto-
matically generated test cases are as effective as
carefully constructed hand-generated test cases at
achieving breadth of coverage.
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pact, such that small changes often drastically alter the
semantics of a program. In particular, constant values,
types, field, method and class names are specified
through a single index into a constant pool. Conse-
quently, a small variation in the index can alter the
meaning of the program in interesting ways, for in-
stance, by substituting different types or values into an
expression. For example, one of the first major secu-
rity flaws we discovered in commercial JVM imple-
mentations stemmed from lack of type-checking on
constant field initializers. A single variation, within
the first 10000 iterations (15 minutes) of testing, un-
covered this loophole by which integers could be
turned into object references.

A second reason that one-byte variations achieve
broad coverage is that the Java class file format is ar-
ranged around byte-boundaries. Since the variation
granularity matches the granularity of fields in the
class file format, a single change affects only a single
data structure at a time, and thereby avoids wreaking
havoc with the internal consistency of a class file. For
example, one test uncovered a case in both commer-
cial bytecode verifiers where the number of actual
arguments in a method invocation could exceed the
declared maximum. Had this field been packed, the
chances of a random variation creating an interesting
case would have been reduced. Similarly, random
variations uncovered a case in the MS JVM where
some branches could jump out of code boundaries,
likely due to a sign extension error. Packing the desti-
nation offset would have made it harder for single byte
variations to locate such flaws.

Finally, we attribute the effectiveness of this approach
to the complexity of the test bases generated by lava
grammars. In testing with one-byte variations, the total
complexity of the test cases is limited primarily by the
original complexity of the test bases. The grammar
based test cases achieve high-complexity with very
little human effort.

While comparative testing with variations partially
addresses the oracle problem and enables the complex
test cases generated by production grammars to be
used effectively in testing, it requires another imple-
mentation of the same functionality to work. Even
though finding alternative implementations was not at
all difficult in the case of the Java virtual machine,
comparative evaluation is not always the best testing
approach. A duplicate may not be available or differ-
ent implementations may exhibit too many benign
differences. Most importantly, even when there is a
second implementation to compare against, it may be

in error in exactly the same way as the implementation
of interest.

5. Producing Self-Describing Test Cases

We address the shortcomings of comparative evalua-
tion by extending grammar testing to generate certifi-
cates concurrently with test cases. A certificate is a
behavioral description that specifies the intended out-
come of the generated test case, and therefore acts as
an oracle by which the correctness of the tested system
can be evaluated in isolation. The insight behind this
technique is that certificates of code properties allow
us to capture both static and dynamic properties of test
programs, such as their safety, side effects or values
they compute. The behavior of a virtual machine can
then be compared against the certificate to check that
the virtual machine is implemented correctly.

Two types of useful certificates may accompany syn-
thetically generated code. The first form of a certifi-
cate is a proof over the grammar, which can accom-
pany all test programs generated by that specification
as a guarantee that they possess certain properties. For
instance, it is easy to see, and inductively prove, that
the sample grammar given in Figure 3 will execute all
labeled blocks it generates. Using a third production,

A Sample Lava Grammar and Corresponding
Behavioral Description
1: STMTS => STMT STMTS
2: STMTS => nil

: N = λt.t
3: STMT => iconst 0

: A = λS.λt.(S (cons 0 t))
4: STMT => iconst 1

: B = λS.λt.(S (cons 1 t))
5: STMT => iadd

: C = λS.λt.(S (cons
 (+ (car t) (cadr t)) (cddr t)))

6: STMT => ifeq LN+1;

                    LN: STMTS; goto LN+2

                    LN+1: STMTS
                    LN+2: STMTS
              : D = λS1.λS2.λS3.λt.(if
                              (equal (car t) 0)

                 (S3 (S1 (cdr t)))
                 (S3 (S2 (cdr t))))

Figure 7. A sample grammar with a corresponding
behavioral description.



we can instrument every labeled basic block produced
by that grammar, and check to ensure that a virtual
machine enters all of the blocks during execution. We
simply print the block label when the block is entered,
and, at the end of the test run, check to make sure that
all blocks appear exactly once in the trace. Using this
technique, for instance, we found that some of the
control flow instructions in an early version of our
interpreter had the sense of their comparisons reversed.

Not all grammars lend themselves to such inductive
proofs. We found a second form of certificates, de-
scribing the runtime behavior of a specific test, often
more applicable. In essence, what the tester needs to
overcome the oracle problem is a specification of what
the test ought to compute, in a format other than Java
bytecode that can be automatically evaluated. We
chose to use lambda expressions for specifying such
certificates because of their simplicity. Such certifi-
cates are difficult to construct by hand, however, as
they require reasoning about the composition of the
productions that generated that test case. Instead, we
generate these certificates concurrently with the test
program, based on annotations in the grammar. The
annotations, in lambda expression form, are arranged
by the programmer such that they capture interesting
aspects of corresponding productions. The lava system
merges these annotations together through the test
production process, and generates a resulting lambda
expression, which computes the same result as the test
case when evaluated. The correctness of a compiler or
interpreter can then be checked by executing the test
case and comparing with the result of the lambda ex-
pression.

We have extended lava such that it takes two gram-
mars, one for the intended test language and one for
the behavioral description. Whenever a production in
the first grammar is chosen, the corresponding pro-
duction rule in the second grammar is also selected.
Test generation thus creates two separate outputs cor-
responding to the test case and its behavioral descrip-
tion. We have used Scheme for our behavioral de-
scription language, and thus can compare the correct-
ness of a Java virtual machine simply by evaluating a
test program in Java and comparing its output to that
of the Scheme program.

Figures 7 illustrates a behavioral specification for a
limited grammar that supports stack push, arithmetic
and control flow operations. Our behavioral descrip-
tions use lambda expressions in continuation passing
style. Each production is annotated with an expression
that takes the current machine state and continuation

as input, and performs the operations of the right hand
side. Non-terminals appearing on the RHS constitute
free variables, and each production step forms a sub-
stitution. The overall behavioral description is formed
by substituting lambda expressions corresponding to
productions for free variables. For instance, suppose
that we start with a seed of “STMTS” and pick pro-
ductions 1, 3, 1, 4, 1, 5, 1, 6, 1, 4, 2, 1, 3, 2, 2. The
corresponding behavioral description would be (A (B
(C (((D (B N)) (A N)) N)))). This expression, when
evaluated on the initial state, yields (1), the result of
executing the program. If execution of the generated
bytecode disagrees with this result, there is a fault with
either the virtual machine implementation or the
lambda expression evaluator. Consequently, this ap-
proach enables checking the correctness of a JVM
against a simple, formally-analyzed and time-tested
implementation.

While behavioral descriptions in lava resemble opera-
tional semantics, they are vastly simpler to specify
than a full formal semantics for the Java virtual ma-
chine. This is because the behavioral descriptions need
to be provided not for every construct in the language,
but only for idioms of interest, and need capture only
those properties of the idioms in which the tester is
interested. For example, providing the correct seman-
tics for each of the Java virtual machine’s control flow
opcodes, which include conditional branches, jumps,
method invocations, subroutine calls and exceptions, is
a difficult task [Drossopoulou+ 98]. However, effects
of an idiom, say one that consists of a jump, loop, ex-
ception raise, compute and return from exception,
which uses these opcodes to push a predetermined
value onto the stack, is easy to capture in a behavioral
description. Essentially, lava enables the tester to pro-
vide partial operational descriptions at the production
level, instead of having to provide complete and

Currently, lava’s support for extended grammars is not
as general as we would like. The behavioral descrip-
tions are limited to grammars where the main produc-
tion is right-recursive, as shown in production 1 in
Figure 6.

Overall, extended code generation with certificates
determines precise properties about test cases without
recourse to a second implementation of the same
functionality. This powerful technique is widely appli-
cable in testing virtual machine components, including
bytecode verifiers, compilers, and interpreters.



6. Related Work

Production grammars have been studied from a theo-
retical perspective, and adopted to a few domains be-
sides testing. [Dershowitz+ 90,Dershowitz 93] give an
overview of rewriting systems, of which production
grammars are a subclass, and provide a theoretical
foundation. In practice, production grammars have
been used to describe fractals, and have been adopted
in computer graphics to efficiently generate complex
visual displays from simple and compact specifications
[Prusinkiewicz et al. 88]. Our approach expands this
work by applying production grammars to the testing
of complex systems, and, within the testing field,
overcomes the oracle problem by generating self-
describing certificates concurrently with test cases to
aid standalone testing.

There has been substantial recent work on formal
methods for ensuring correctness of bytecode verifiers,
especially on using type-systems as a foundation for
bytecode verifier implementations. Stata and Abadi
have formally analyzed Java subroutines for type-
safety and postulated a type-system that can be used as
the basis of a Java verifier [Stata&Abadi 98]. Freund
and Mitchell have further extended this model to cover
object allocation, initialization and use
[Freund&Mitchell 98, Freund&Mitchell 99]. While
these approaches are promising and address one of the
most safety critical components in a virtual machine,
to date, only a subset of the various constructs permit-
ted by the Java virtual machine have been covered by
these type system-based frameworks. Further, these
approaches operate on abstract models of the code
instead of the implementation, and require extensive
human involvement to ensure that the model accu-
rately captures the behavior of the bytecode verifier.
The strong guarantees of formal reasoning are under-
mined by the manual mapping of a model onto the
actual implementation.

An approach to verification that is common in industry
is to perform source code audits, where a group of
programmers examine the code and manually check
for weaknesses. The Secure Internet Programming
group at Princeton has found a number of security
flaws in Java implementations using this technique
[Dean et al. 97]. The primary shortcoming of manual
audits is that they require intensive human labor, and
are thus expensive. Further, providing source access to
auditors is not always possible or desirable.

Production grammars have been used in conjunction
with comparative evaluation to check compiler im-

plementations for compatibility [McKeeman 98]. The
author used a stochastic C grammar to generate test
cases for C compilers. This work focused primarily on
ensuring compatibility between different compilers,
and relied on comparative evaluation. This approach
resembles our second technique, and suffers from the
same problem of requiring a second, preferably
stronger implementation of the tested application. We
extend this work by generating certificates for test
cases that enable the testing of a program without ref-
erence to a second implementation. Similarly, [Celen-
tano+ 80] outlines a scheme for generating minimal
test cases that cover a BNF grammar, and in their ex-
periences section, mention that the minimal test cases
are at times too simple to test interesting inputs. Use of
probabilistic productions in our scheme generate much
more complex test cases, and provide a point of con-
trol for steering the testing effort.

Within the software engineering community, there are
various efforts aimed at automatic test generation from
formal specifications. [Weyuker et al. 94] describes a
set of algorithms for generating tests from boolean
specifications. [Mandrioli et al. 95] outline the TRIO
system, which facilitates the semi-automatic creation
of test cases from temporal logic specifications.
[Chang et al. 95] describes a flexible, heuristic-driven,
programmable scheme for generating tests from speci-
fications in ADL, a language based on first-order
predicate logic. [Gargantini+ 99] illustrates how a
model checker can be used to create tests from state
machine specifications, and [Bauer&Lamb 79] dis-
cusses how to derive test cases from functional re-
quirements for state machines. These efforts all require
a formal, modular and accurate specification of the
system to be tested in a restrictive formal specification
language. Such specifications are not always possible
to write for large, complex, andin particular legacy
systems, and require expertise to develop and main-
tain. Further, it is not clear how well the testing proc-
ess can be steered using these automated testing tech-
niques.

Proof carrying code [Necula 97] and certifying com-
pilers [Necula & Lee 98] resemble extended grammars
in that they associate certificates, in their case formal
proofs, with code. Proof carrying code associates in-
herently tamper-proof typesafety proofs with native
code, enabling it to be safely integrated into a base
system. Certifying compilers are an extension of proof
carrying code, where a compiler automatically gener-
ates safety proofs along with binary code. The safety
proofs are expressed as statements in first-order logic,
and are derived and carried forward from the type-



safety properties of the source language. Our work
shares the same insight that associating mechanically
parseable certificates with code is a powerful tech-
nique, but differs from certifying compilers in two
ways. First, and most fundamentally, we use extended
grammars to ascertain the correctness of a virtual ma-
chine implementation, whereas certifying compilers
ascertain the safety of a compiled application program.
And second, certifying compilers require their input to
be written in a typesafe language and construct proofs
attesting to static properties such as typesafety,
whereas we generate behavioral descriptions based on
a programmer specified specification, and reason
about dynamic program properties such as program
results.

7. Conclusion

In this paper, we have described lava, a language for
specifying production grammars, and demonstrated
how production grammars can be used in software
testing. Lava grammars enable a well-structured, man-
ageable and simple testing effort to be undertaken us-
ing concise test descriptions. The language facilitates
the construction of complex test cases, which can then
serve as bases for comparative testing. An extended
form of the lava language can not only generate inter-
esting test cases, but also generate certificates about
their behavior. Overall, these techniques enable the
verification of large and complex software systems,
such as virtual machines, cheaply and effectively.

Systems get safer only if they are designed, developed
and refined with testing in mind, and only if the requi-
site testing infrastructure is in place to guide this ef-
fort. We hope that as virtual machines, which have
promised safety but not yet delivered, become more
pervasive, their growth is accompanied by the adop-
tion of automated verification techniques.
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