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ABSTRACT

COCA (Collaborative Objects Coordination Architec-

ture) was proposed as a novel means to model and sup-

port collaborations over the Internet. Our approach sep-

arates coordination policies from user interfaces and the

policies are speci�ed in a logic-based language. Over the

past year, both the collaboration model and the speci�-

cation language have been substantially re�ned and eval-

uated through our experience in building real-life collab-

oration systems. This paper presents the design of the

speci�cation language and illustrates the main ideas with

a few simple design examples. Semantics, implementa-

tion, runtime support, and applications are also covered

but not as the focus of this paper.

1 INTRODUCTION

Over the last decade, many CSCW(Computer-

Supported Cooperative Work) systems have been built.

However, in traditional systems, the coordination poli-

cies, such as those for access control and concurrency

control, are often hard-coded into the system together

with the user interfaces. Coordination policies are usu-

ally sensitive to the work style and organizational struc-

ture of individual groups. Not only do di�erent groups

have di�erent needs, but the same group may require

di�erent policies in di�erent phases of their collabora-

tion. Therefore, it is important for system support to

be 
exible and adaptable. But in general, traditional

CSCW systems are complex to build and do not easily

accommodate changes.

We proposed a novel approach called COCA [16] to

model and support collaborations over the Internet. Our

approach is di�erent from traditional CSCW systems in

the following ways. First, we separate coordination poli-

cies from user interfaces in building collaboration sys-

tems. Second, we provide an executable speci�cation

language to describe coordination policies. Those poli-

cies are enforced at runtime by the COCA virtual ma-

chine (cocavm), a copy of which runs at each participant

site. Third, at runtime participants in the same collabo-

ration take on roles(e.g. the professor and student roles

in distance learning). Di�erent roles are each controlled

by a di�erent set of rules. As a result, the design and

implementation of collaboration tools are greatly simpli-

�ed. Tools are both easy to build from scratch[17] and to

adapt from legacy tools[18]. The same set of tools can be

reused in many di�erent scenarios with di�erent policies

and without changes to the tools. Moreover, the coor-

dination policies are explicitly and collectively speci�ed

instead of being scattered in all the involved components

of the system. Systems thus built are more tractable to

manage and evolve than those developed in traditional

ways.

The notions of role and collaboration are well-accepted

in object-oriented systems design and analysis, e.g. [34],

[33], and [13]. However, their uses of those two concepts

are di�erent from ours, as was concisely illucidated by

the following excerpt [27]:

Role models provide excellent separation of

concerns due to their focus on one particular

collaboration purpose, while traditional class

diagrams necessarily interwine all di�erent ob-

ject collaboration aspects. When composing

role models, several aspects of object collab-

orations can be speci�ed without prematurely

committing to a class structure that might turn

out to be too rigid later on.

In the CSCW literature, Intermezzo[8], QUILT[14], etc.

used the concept of role. In Intermezzo and many other

systems, roles are used only for access control. We use

role as a unit to specify a wide range of coordination

policies including access control, concurrency control1,

session control, etc. As a result, the language in Inter-

mezzo is much simpler and limited in expressive power,

as compared with the language in COCA. QUILT built

1It is not unusual that preferences are given to some class of

participants over another when a con
ict arises.



three roles into the group editor: reader, commentator,

and co-author, each with di�erent privileges. In COCA,

the users are free to specify as many roles as the appli-

cation requires.

An important di�erence between groupware and tradi-

tional software is the critical need for an e�cient and

scalable group communication model. Early collabora-

tive systems were generally built based on grouping of

multiple point-to-point communications. This approach

incurs tremendous overhead on both the message senders

and the communication paths, and latency increases

with the size of the receiver population. Deering[6] pro-

posed IP multicast as a better solution to this prob-

lem. It has been well-accepted in the networking lit-

erature (e.g.[10, 23]) that IP multicast is an e�cient

model for group communication, both for delivery of

time-critical media streams and for non-realtime mes-

sages. We adopt IP multicast as the group communica-

tion model of COCA.

Major novelties of our speci�cation language include the

following. It uses roles as a unit to specify a wide range

of policies including access control, concurrency control,

session control, etc. It provides logic-based language

constructs for e�cient and 
exible group communica-

tion. The simple syntax leads to concise and easily un-

derstood speci�cations. It is potentially possible to de-

velop tools to mechanically verify and validate the spec-

i�cations, to derive test cases, to detect deadlock situa-

tions, to reason about role behavior, etc.

Over the past one year, considerable experience with

COCA has been accumulated and the system extended

to improve the usefulness of COCA in practice. The run-

time support system has been running since February

1998. Since the summer of 1998, we have been explor-

ing application domains and building systems. Speci�-

cally, COCA has been proved applicable in the following

domains: electronic meeting systems[17], online auction

systems[18], and so forth. Today over 40,000 lines of

code are running, including the core language runtime

and applications. The performance has been good de-

spite the fact that the prototype is done in pure JAVA.

The remainder of this paper is organized as follows. We

�rst brie
y overview the collaboration model of COCA

in the next section. In section 3, we try to give the read-

ers an initial feel of the language with a simple example.

Section 4 describes our speci�cation language. A more

complete design example is discussed in section 5. Some

important implementation issues are discussed in sec-

tion 6. A more detailed comparison with related work is

left to section 7. We conclude this paper in section 8 with

some directions for future research and development.

2 GENERAL MODEL

A collaboration is a group activity (e.g. a course, a meet-

ing, a game, etc.) which involves a group of participants.

A participant is usually a human being but can also be

a set of software agents. In a collaboration there are

usually multiple participants each playing one or more

roles. The concept of role refers to the set of partici-

pants governed by the same set of coordination policies.

In a collaboration, one participant may be playing mul-

tiple roles and one role could be enacted by multiple

participants at the same time. For example, in a project

meeting, one participant plays the project manager role

and the others are in a normal member role. The man-

ager is able to see and modify the drawings of the normal

members, while the latter can see but are not allowed to

modify the drawings of other participants.

cocavm

collaboration bus

Database
Inferencing
Engine

Policy
Spec

Web Browsers Whiteboard A/V tools Persistent Storages

conference bus

Figure 1: Internal structure of the cocavm

In our model, a cocavm runs at each participant site to

enforce the coordination policies by controlling the inter-

actions between this participant and other collaborators.

As shown in Figure 1, a cocavm consists of an inferenc-

ing engine and an internal database. The inferencing

engine monitors messages communicated in the collabo-

ration, �ring the active rules uni�ed with the message,

and performing actions according to the policy speci�ca-

tion. The internal database maintains state information

regarding the ongoing collaboration.

Participants in a collaboration use collaboration tools,

such as web browsers[18], whiteboard tool[17], 
oor con-

trol tool[16], and the audio/video tools, to collaborate

with each other. At each site, the collaboration tools



and a cocavm are connected by a conference bus. All

the cocavms in the same collaboration are connected

by a collaboration bus. Those buses contain channels

which communicate messages between connected enti-

ties. A channel can be both unicast(one to one) and

multicast(one to many).

csdr, the collaborative session directory tool, is the sim-

ple runtime user interface of COCA. The user can use

it to create sessions out of a given collaboration speci-

�cation, browse existing sessions, and join a session by

taking roles from it. In particular, the session creator

must provide, among other information, actual IP ad-

dresses and port numbers for the channels declared in

the collaboration bus. Individual participants must pro-

vide this information for the conference bus channels.

Such bindings were termed relocation of role and collab-

oration respectively[16].

3 A SIMPLE EXAMPLE

Floor control is often used in CSCW systems to control

the mutual exclusive access to shared resources. There

are many di�erent 
oor control policies[7]. In Figure 2

we specify a centralized policy. There are three roles.

The 
oor moderator role (line 8-34) controls who can

obtain the 
oor at any time. A 
oor aspirant (line 36-

60) is a participant who needs to apply for the 
oor from

the moderator. And the 
oor holder (line 62-63) is the

participant who currently holds the 
oor. At one time

only one participant can be the moderator and only one

can be the 
oor holder. There are no constraints on

how many participants can take the aspirant role con-

currently.

As is shown in Figure 3, participants in the 
oor mod-

erator and aspirant roles use their corresponding tools

(or graphical user interface, GUI) to interact with each

other through the cocavms. The tools are connected to

the cocavms by channels named local-in and local-out re-

spectively. And all the cocavms are connected by a chan-

nel remote. The moderator tool expects two commands

from the cocavm: one to request the 
oor, and the other

to notify the user to whom the 
oor is granted when a

coordination decision is made. It sends three commands

to cocavm: one to grant the 
oor to a given participant,

one to deny a 
oor request, and the other to revoke the


oor from the current 
oor holder. The aspirant tool

sends two commands to the cocavm: one to request the


oor, and the other releases the 
oor. Messages from

cocavm to the aspirant tool are grant, to notify the as-

pirant to whom the 
oor is granted, and deny, to report

that the 
oor request is denied.

1. collaboration sfc
2. {
3.     collaboration-bus
4.     {
5.         channel(remote).
6.     }
7.
8.     role moderator
9.     {
10.        conference-bus
11.        {
12.            channel(local-in).
13.            channel(local-out).
14.        }
15.
16.        on-arrival(gate(remote),request(Floor,Agent)) :-
17.            local-out !request(Floor, Agent).
18.         
19.        on-arrival(gate(remote),release(Floor,Agent)) :-
20.            local-out !grant(Floor, self),
21.            take holder.
22.         
23.        on-arrival(gate(local-in),grant(Floor,Agent)) :-
24.            remote !grant(Floor, Agent),
25.            isa(self, holder),
26.            drop holder.
27.         
28.        on-arrival(gate(local-in),deny(Floor,Agent)) :-
29.            remote !deny(Floor, Agent).
30.
31. on-arrival(gate(local-in),revoke(Floor,Agent)):-
32.            remote !revoke(Floor, Agent),
33.            take holder.
34.    }
35.
36.    role aspirant 
37.    {
38.        conference-bus
39.        {
40.            channel(local-in).
41.            channel(local-out).
42.        }
43.
44.        on-arrival(gate(local-in), request(Floor)) :-
45.            remote !request(Floor, self).
46.
47.        on-arrival(gate(local-in), release(Floor)) :-
48.            remote !release(Floor, self),
49.            drop holder.
50.
51.        on-arrival(gate(remote), grant(Floor, self)) :-
52.            local-out !grant(Floor),
53.            take holder.
54.
55.        on-arrival(gate(remote), revoke(Floor, self)) :-
56.            drop holder.
57.
58.        on-arrival(gate(remote), deny(Floor, self)) :-
59.            local-out !deny(Floor).
60.    }
61.
62.    role holder
63.    {}
64.}

Figure 2: A simple 
oor control policy.

In Figure 2, when an aspirant tries to request the 
oor,

the command arrives at aspirant cocavm's local-in gate

(line 44). It is forwarded to the moderator via the \re-

mote" channel (line 45). When this message arrives at

the remote gate of themoderator (line 16), it is forwarded

to the moderator tool (line 17), leaving the decision to

the user.

When the participant in the moderator role decides to

grant the 
oor to some participant (line 23), the message

is multicast via the remote channel (line 24), meanwhile

the moderator drops the holder role if she is currently

in that role (line 25-26). When the participant cocavm

receives the message which grants her the 
oor (line 51),

the message is reported to the tool (line 52) and the 
oor
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Figure 3: The 
oor moderator and aspirant roles.

holder role is taken (line 53).

To be concise, when a 
oor request is denied, the aspirant

is noti�ed (line 28-29, 58-59). When the current 
oor

holder releases the 
oor, she drops the holder role and

meanwhile multicasts the message so that the moderator

assumes it (line 47-49, 19-21). And when the moderator

decides to revoke the 
oor, the moderator assumes the

holder role and the current 
oor holder drops it (line

31-33, 55-56).

The 
oor holder role is 
uid. Anyone takes on this role

when granted the 
oor by the moderator and drops it as

a result of releasing the 
oor or when the 
oor is preemp-

tively revoked. At this moment, there is no rule speci�ed

for the 
oor holder role. More in-depth discussion of this

role resumes in section 5.

4 THE SPECIFICATION LANGUAGE

4.1 The Core Language

Following the conventions of Prolog, variables begin in

upper case. Constants, functors and predicates begin in

lower case. Anonymous variables are denoted by under-

scores.

De�nition 4.1 A term is de�ned inductively as fol-

lows:

1. a variable is a term

2. a constant is a term

3. if f is an n-ary function symbol and T1; T2; :::; Tn
are terms, then f(T1; T2; :::; Tn) is a term (called a

compound term), n � 0. For convenience, we use

f/n to denote a functor f with arity n.

De�nition 4.2 A formula is de�ned inductively as fol-

lows:

1. if p is an n-ary predicate symbol and T1; T2; :::; Tn
are terms, then p(T1; T2; :::; Tn) is a formula (called

an atomic formula or more simply, an atom), n �

0. We use p/n to denote a predicate p with arity n.

2. if F is a formula, so is (not F).

De�nition 4.3 A literal is an atom or the negation of

an atom. A positive literal is an atom. A negative

literal is the negation of an atom.

De�nition 4.4 If q is a positive literal, p1; p2; :::; pn are

literals, n � 0, then

q : �p1; p2; :::; pn:

is a rule. Atom q is called the head, and p1; p2; :::; pn
combined is called the body of this rule.

4.2 Database Operations

The above-de�ned core language is no di�erent from Pro-

log. To avoid unauthorized modi�cation to coordination

policies and for more e�ciency, however, COCA delib-

erately separates the rule base and the database. We

use a set of database operators rather than assert and

retract in Prolog. Those Prolog predicates do not dis-

tinguish predicate de�nitions and database facts.

De�nition 4.5 We de�ne database formulas as fol-

lows. If T is a compound term, the following atomic

formulas are database formulas. Keywords query, add,

and delete are database operators.

1. query T: evaluates to true if compound term T is

uni�ed with any compound term in the database;

2. add T: add compound term T to the database, eval-

uates to true if it succeeds;

3. delete T: delete a compound term uni�ed with T

from the database nondeterministically, evaluates to

true if it succeeds.

Those operators are atomic, synchronized, and nonblock-

ing. In our implementation, database facts are hashed by

functor names. Mutual exclusion is enforced so that no

two operators can work at the same time on compound

terms with the same functor name.

We can extend this set to support blocking operations

as well. For example, querysync and deletesync can be

used to denote blocking database operations respectively.

Although they are only for synchronization within the

same cocavm, those operators have a close relationship to

the tuple space operations in Linda[12]. querysync cor-

responds to rd, deletesync to in, query to rdp, delete

to inp, and add to out.



The role of the database in COCA is two-fold. First,

it provides an ephemeral memory (as opposed to persis-

tent storage systems such as a relational database) for

capturing and recording the state information regarding

the ongoing collaboration, based on which many a co-

ordination decision is made. Second, it implements a

synchronization mechanism based on which concurrenct

activities in each cocavm are coordinated.

4.3 cocavm Identi�cation

A cocavm has a unique identi�cation. This id is denoted

by keyword self. It could include the following informa-

tion: host name, user login name, command port number

on which this cocavm receives commands, a time stamp

when this cocavm is launched, a list of roles this cocavm

is enacting, etc.

4.4 Communication

4.4.1 Channel and Gate

The following channel declaration de�nes a channel with

name C:

channel(C).

We use the term gate to denote a service access point

to a communication channel. Gates use the same name

as the corresponding channels.

De�nition 4.6 We de�ne the following communica-

tion formulas as complementary to De�nition 4.2,

where operators \!" and \?" are called o�er and ac-

cept respectively.

1. G ! (T1; T2; :::; Tn)

2. G ? (T1; T2; :::; Tn)

(1) sends out a list of terms through gate G, (2) blocks

until a list of terms arriving at gate G unify with T1, T2,

..., and Tn as a whole.

De�nition 4.7 We de�ne active rules as having the fol-

lowing form:

on-arrival(gate(G), T1; T2; :::; Tn) :-

p1; p2; :::; pm.

4.4.2 Dynamic Grouping

A role name say R can be used as a channel without

being explicitly declared in the collaboration bus to de-

liver messages to all the participants currently in the

role. However, since only participants enacting role R

can receive those messages, we require that only R can

de�ne on-arrival rules at the gate it represents.

Predicate channel/2 can be used to declare channels dy-

namically. The following names a channel C which con-

nects a group of participants denoted byAgent1, Agent2,

..., Agentn:

channel(C, [Agent1, Agent2, ..., Agentn]).

Agenti can be a de�ned static channel name, a role

name, some self, or even another de�ned dynamic chan-

nel name. A channel (static or dynamic, excluding that

denoted by a role name) can be later rede�ned. The

same channel predicate, if the second argument is a vari-

able, can be used to get the list of agents connected by

a given channel.

An o�er predicate can send messages through a variable

channel like the following.

C !(T1; T2; :::; Tn)

However, the variable C must have been bound to an

agent (some self), an agent group, a role name, or a

declared channel name.

There are two ways to receive messages sent via a dy-

namical channel. One is to de�ne active rules at the gate

denoted self. Another way is to de�ne an active rule in

which the gate name is a variable. When a message ar-

rives not unifying with any active rules with constant

gate names, the variable gates rules will be tried.

4.5 Events

Events include message arrivals, timer signals and user

posted events. Messaging events were discussed in the

previous subsection. Here we discuss the latter two.

4.5.1 Event Generator

The following predicate sets a timer.

set-alarm(TimerName(FireTime)).

After a timer is set up, it �res only once and posts an

event with the same name as the timer. If it is to be �red

repeatedly, it must be reset each time. A timer event is

always asynchronous. The �ring time of a timer can be a

relative time, i.e, some period from now, or an absolute

time set on a particular time or date.

The following predicate posts a user-de�ned event either

synchronously or asynchronously.

post-eventsyncjasync (EvtName(T1; :::; Tn)).

4.5.2 Event Handler

When an event occurs, the corresponding event handler

or active rule is �red. If the event is asynchronous, the

event handler will be executed in parallel with the cur-

rent thread. If it is synchronous, the �ring will be equiv-

alent to calling a predicate in the current thread. An



event handler is de�ned as below:

on-event(EvtName(T1; :::; Tn)) :-

p1; :::; pm.

4.5.3 wait-for Predicates

Predicate wait-for/1 can be used by the current thread

to wait for some event to occur. In previous releases

of COCA, when a message was expected from a certain

object, we needed an active rule to wait for it. This new

construct can make it simpler and clearer. For example,

when a message is sent to an object and an answer is

expected from it, we simply specify the following.

p :- ...

g !(SomeRequest),

wait-for(SomeEvent),

...

A second argument can be added to wait-for which

speci�es the timeout period before wait-for/2 can be

failed. Any nonnegative number is valid or the symbol

\1" can be used to denote in�nity. If it is an unbound

variable, when the predicate succeeds this variable is

bound to the length of time from when the wait-for

was executed until the event occurred.

4.6 Role

4.6.1 De�ntion

At least one role must be de�ned in a collaboration. Each

role de�nition has the following form.

role <role name>

f

[ conference-bus f <channel declarations> g ]

<rules>

g

A conference bus declaration is optional. We can de�ne

roles which do not interact with other local components.

The conference bus is used for communication between

the cocavm and the collaboration tools for each role. So

channel names declared in a role are local to that role.

Predicate isa/2 can be used to test if a given participant

(some self) is currently in some role.

4.6.2 The Daemon Role

A collaboration typically de�nes a special role called dae-

mon, which controls for example who is allowed to take

which roles and how many participants can take a cer-

tain role 2. When a participant attempts to take a role

2[27] described four possible role constraints: role-dontcare,

role-implied, role-equivalent, and role-prohibited. Actually more

possibilities exist. For example, one can not take on the student

role in a given course if she was once the teaching assistant of the

from an ongoing session, the daemon of that session is

contacted. Possibly authentication is performed. Only

when the participant is quali�ed by the session control

policy does she obtains the rule set speci�ed for that

role. A session without a daemon role will be open to

all, i.e., any participant can take any role.

The session control may not necessarily be centralized.

It is possible for a session to have multiple daemons, e.g.

for availability and scalability. The user can specify a

daemon role which can be taken by multiple agents.

4.6.3 Constructor and Destructor

Operators take and drop can be used to take a role and

to drop a role respectively. In the following, R stands

for the name of some role and n � 0.

1. take R(T1; T2; :::; Tn)

2. drop R

To perform initialization when a role is taken and to

clean up when a role is dropped, we de�ne constructor

and destructor rules as follows.

1. on-take(T1; :::; Tn) :- p1; :::; pm.

2. on-drop :- p1; :::; pm.

Arguments of the constructor rules are optional. For

each role we can de�ne one or more constructor rules

which are �red at a cocavm when a participant takes on

this role. Only the constructor whose arguments unify

with those of the take predicate is chosen to execute

upon initialization.

However, we de�ne at most one destructor for each role.

The destructor is �red at a cocavm when the role is

dropped. At this point, it becomes inappropriate for

any rules de�ned for that role to continue their execu-

tion. Our strategy is to mark all the arrival message and

event queues in the cocavm so that no more messages or

events will be processed after the mark. When the co-

cavm comes to a quiescent state, the destructor is �red

to clean up.

4.7 Collaboration

A collaboration is de�ned in the following form:

collaboration <collaboration name>

f

[ collaboration-bus f <channel declarations> g ]

<role de�nitions>

g

same class. Sometimes it is up to the concensus (voting) of the ad-

mitted participants to decide whether to admit a new participant,

etc.



An operator \::" is used for identifying the scope of a

name. The normal form is S :: R :: C, where S stands

for collaboration or session name, R for role name, and

C for channel name or predicate name. The pre�xes can

be omitted if there is no confusion.

A collaboration may consist of sub-collaborations. For

example, in activities such as conferences and class-

rooms, it is not uncommon that participants with sim-

ilar interest form subgroups. So the language should

provide constructs to facilitate establishing new sessions

out of given collaboration types and tearing down exist-

ing sessions. The following operators are de�ned for this

purpose.

1. create Session, Collaboration

2. destroy Session

After a session is created, the user can join it by com-

mand \take Session :: Role".

4.8 Policy Composition

To better capture and specify coordination policies, we

often need to decompose a complex collaboration into

smaller pieces, and compose existing pieces to form a

larger one. Here we introduce some constructs for pol-

icy composition. These constructs provide a basis for

de�ning a library of reusable coordination policies and

predicates.

4.8.1 Parameterization

The �rst construct is for de�nition of policy templates.

For example, in de�ning the 
oor control policy in sec-

tion 3 to control the drawing 
oor, we discover that it

also applies to the audio 
oor and the video 
oor in mul-

timedia collaborations[7]. It would be advantageous then

to formalize the 
oor name so that the same speci�cation

can be reused.

template<Floor>

collaboration sfc

f

...

g

Then we can actualize this policy template by replac-

ing the formal \Floor", such as sfc<drawing-
oor> and

sfc<audio-
oor>, which becomes the name of a collabo-

ration type. Multiple formal names in a policy template

are allowed. The occurrences of each will be substituted

by corresponding actual names.

4.8.2 Inheritance

The second construct is for policy inheritance. For ex-

ample, if we have already de�ned collaborations A and

B. Now we want to de�ne a new collaboration C. And it

turns out we can reuse the de�nitions in A and B. So C

just needs to extend those two existing collaborations.

collaboration C extends A, B

f

...

g

The collaboration bus channels and roles of the resulting

collaboration C are a union of those de�ned in A, B,

and itself. Wherever there is a name con
ict, the above

scoping operator \::" and the appropriate pre�xes will

be applied to resolve it automatically.

Roles can also be extended from roles de�ned in an-

cestor collaborations or other roles de�ned in the same

collaboration. In the above example, role r3 in collabo-

ration C can extend both role r1 in collaboration A and

role r2 in collaboration B as follows.

role C::r3 extends A::r1, B::r2
f

...

g

In a sequel, conference bus channels and rules of C::r3
will be a union of those de�ned in A::r1 and B::r2 re-

spectively.

4.8.3 Polymorphism

The ordering of rules is important. The rule set of a

derived role is always put before those of its parents.

When a predicate is evaluated, the rule set of the role

which is on the lowest level of the inheritance hierarchy

is consulted �rst. If several parents exist, inherited rules

are put by the the order in which the parents appear.

If there are multiple layers of inheritance, the same rule

applies recursively. Inheritance of collaborations or roles

are acyclic. In the case that a role is inherited more than

once in the same layer or di�erent layer, the rule set of

that role is included only once.

Constructor and destructor rules are invoked when a role

is taken or dropped. Those de�ned in the lowest hier-

archy are considered �rst. In the above example, in the

constructor of C::r3, if the user wants to execute the ini-

tialization code of role A::r1 as well, the constructor of

the latter should be called explicitly as follows.

C::r3::on-take(T1; :::; Tn) :- ...

A::r1::on-take(T1; :::; Tn),

...

In COCA we use a role name as an implicit communica-

tion channel and active rules can be de�ned at the gate



it represents. For example such an active rule can be

de�ned for role A::r1. When a message is sent to gate

A::r1, participants in role C::r3 should also receive it.

The reason is that the active rule de�ned at gate A::r1
is inherited by C::r3 and becomes a part of it.

5 A COMPLETE EXAMPLE

Here we �rst consider a whiteboard meeting, then discuss

a concurrency control policy, and show how these two

policy modules can be composed into one for project

meetings. We assume that all participants join a meeting

at about the same time. It is impossible to have one

short example to illustrate all the language constructs.

Policies to handle late joins and other examples can be

found in [15].

5.1 Whiteboard Meeting

We have implemented a whiteboard tool[17] which can

be used either in a single-user mode or in a multi-user

mode. In the former case, the user can draw, delete, and

modify objects such as lines, circles, and free-hand pic-

tures, load images, etc. In a multi-user mode, COCA can

be used to enforce speci�ed coordination policies such as

those for access control, concurrency control, and session

control. For example, a policy can be speci�ed where,

when a user attempts to annotate an object, the com-

mand is sent to the owner of that object. If the owner

personally does not like the annotation, then it will not

appear on both parties' whiteboards and will not be

propagated to other sites. In the following, however,

we only consider a simplest case in which everybody can

do anything and what you see is what I see (WYSIWIS).

In[17] we showed how the same whiteboard tool can be

used under many di�erent coordination policies.

collaboration meeting
{
    role drawer
    {
        conference-bus
        {
            channel(local-in).
            channel(local-out).
        }

        on-arrival(gate(local-in), Cmd) :-
            drawer !Cmd.

        on-arrival(gate(drawer), Cmd) :-
            local-out !Cmd.
    }
}

Figure 4: A policy for WYSIWIS meeting.

In this speci�cation, each command from the whiteboard

is propagated to all participants and any commands from

other sites are sent to the local whiteboard, both without

examination. However, con
icts can arise. For example

several participants may happen to modify the same ob-

ject on the screen. Some concurrency control policy must

be enforced to resolve such con
icts. Here for simplicity,

we adopt a 
oor control scheme in which participants

take turns to draw on the whiteboard. Speci�cation of

other concurrency control policies (e.g. [9]) can be found

in [15].

In a 
oor control scheme, a particpant must have the


oor to draw on the whiteboard. We change the �rst

rule to the following.

on-arrival(gate(local-in), Cmd) :-

isa(self, holder),

remote !(Cmd).

Each time the local participant attempts to draw an ob-

ject, the command is not propagated to other sites unless

the participant currently is the 
oor holder. Note this

policy is not complete. It says nothing about how to

become a 
oor holder.

5.2 Floor Control

In section 3, we discussed a rather simple 
oor control

speci�cation. However, the sfc policy thus de�ned may

not work well in large-scale collaborations over the Inter-

net. Here we extend it to handle some exceptions which

are typical in such situations.

In a 
oor control policy it is important to make sure

there is always one and only one participant in the mod-

erator role. If the moderator is lost, for example due to

process failure or network partition, some other partici-

pant must be chosen to become the moderator. There is

a similar issue with regard to the 
oor holder role. If the


oor holder is detected lost, then the moderator must

be able to reproduce a 
oor so that the collaboration

can continue. As speci�ed in Figure 5, we use a soft-

state protocol for this purpose. The moderator and the


oor holder periodically send out a liveness report, from

which the other participants know their liveness and try

to repair if there is a loss.

The 
oor holder adds to its database the fact that it

is the current holder of the 
oor. This fact is deleted

when the role is dropped. Then a timer is set so that it

multicasts a liveness report every 10 seconds.

When the moderator role is taken, the participant auto-

matically assumes the 
oor holder role. Here two timers

are set. The \reporter" sends out the liveness report ev-

ery 10 seconds. And the \checker" checks the database

records every minute. If no liveness report is received

from the 
oor holder in one minute, the moderator itself



collaboration fc extends sfc
{
    role holder extends sfc::holder
    {
        on-take :-
            add holds(self, floor),
            set-alarm(reporter(10000)).

        on-drop :-
            delete holds(self, floor).

        on-event(reporter(Period)) :-
            remote !live(self, holder),
            set-alarm(reporter(Period)).
    }

    role moderator extends sfc::moderator
    {
        on-take :-
            take holder,
            set-alarm(reporter(10000)),
            set-alarm(checker(60000)).

        on-event(reporter(Period)) :-
            remote !live(self, moderator),
            set-alarm(reporter(Period)).

        on-arrival(gate(remote), live(_, holder)) :-
            time(Now), 
            add live(holder, Now).

        on-event(checker(Period)) :-
            query live(holder, LastT),
            time(Now),
            Now - LastT >= Period,
            take holder,
            set-alarm(checker(Period)).
    }

    role aspirant extends sfc::aspirant
    {
        ...
    }
}

Figure 5: The extended 
oor control policy.

assumes the 
oor holder role. When a report comes from

the holder, however, the database is updated accordingly.

The aspirant role can be speci�ed similarly. The di�er-

ences are that an aspirant does not need to send the

periodic liveness reports and that it must detect the

moderator loss. When the moderator is discovered to be

lost, a new one must be chosen from the participants. A

number of policies can be applied here depending on the

taste of the participants. For example, the decision can

be made by voting, by the alphabetic ordering of par-

ticipants' names, etc. For reasons of space, the aspirant

speci�cation is listed in [15] instead.

collaboration projmeeting
extends meeting, fc
{
    role manager extends moderator, drawer
    {}

    role member extends aspirant, drawer
    {}
}

Figure 6: The synthesized project meeting policy.

5.3 Synthesis

Suppose we want to have a project meeting in which

participants take turns to draw on the whiteboard. We

should somehow put together the above speci�ed two

collaboration types. In Figure 6, the collaboration we

want, projmeeting, extends collaborations meeting and

fc. Only two roles are available here. The project

manager is composed from the 
oor moderator and the

drawer. And the normal projectmember is a composition

of the aspirant and the drawer. So the manager controls

the 
oor. Participants in both roles are free to draw

on the whiteboard once they become the 
oor holder.

Roles inherited, e.g. drawer, moderator, aspirant, and

the 
oor holder are made invisible to participants of the

collaborative sessions created out of this collaboration.

6 DISCUSSION

This section discusses some important implementation

issues. We �rst brie
y present a well-accepted algorithm

in subsection 6.1 for maintaining temporal relationships

between messages. The support of transaction is dis-

cussed in subsection 6.2. Subsection 6.3 discusses the

semantics of the event constructs introduced in section 4.

In subsection 6.4 we show how to specify messaging poli-

cies for more 
exibility. Subsection 6.5 illustrates how to

specify some predicates which were introduced as built-

in predicates in section 4 using the language itself. Back-

tracking is discussed in subsections 6.6.

6.1 Logic Clock

Each cocavm has a logical clock. When a message is sent

out, the local logic clock is advanced by one. When a

message is received from another cocavm with logic time

t1, and the logic clock of this cocavm reads t2. If t1 � t2,

then we set t2  t1 + 1. This scheme maintains the

causal relationship of messages across cocavms and can

be easily extended to support a consistent total ordering

of all messages[32].

6.2 Transaction

Within the cocavm, there could be multiple threads of

execution. It is necessary to have some synchronization

mechanism between concurrent threads. For this pur-

pose, operators of the internal database are atomic and

synchronized. And we further introduce a special symbol

\@" as syntactical sugar to de�ne atomic predicates and

sequences. An atomic sequence is analyzed before exe-

cution. All the database functors (or relations) involved

in such a sequence will be locked when the critical sec-

tion is entered. The lock is released when the sequence

succeeds or is failed. A thread blocks if it can not obtain

the lock. To prevent deadlocks, all the involved functors

must be locked or none.

An atomic sequence corresponds to the concept of trans-



action. To support transactions in the internal database,

we would have to support rollback, i.e., when one predi-

cate in the atomic sequence fails, the e�ects of the whole

transaction must be undone. This is not hard to sup-

port though. For example, we can analyze the sequence

and make a backup copy of those functors that could

be a�ected. Once an operation fails, we can overwrite

the original copy with the backup copy. If the whole

transaction succeeds, we simply throw away the backup

copy.

6.3 Event Semantics

The general principle is to �nish the execution of a rule as

fast as possible. When an event is posted (synchronously

or asynchronously), the blockingwait-for predicates are

given higher priority than the on-event rules. If there

are several threads waiting for an event, then only one

of them is picked up nondeterministically to evaluate

its wait-for predicate. If no such thread is eligible to

continue, then the on-event rules are considered.

Messages are processed in the same way. Predicate ac-

cept corresponds to wait-for and on-arrival to on-

event.

6.4 Messaging Policy

In our current implementation, a thread is waiting for

message arrivals at each gate. By default, messages are

processed in an FIFO order. It is sometimes useful to

change this order for example according to the role of

the sender, the content or the logic time of the message,

etc.

We can easily specify the messaging policies. The on-

arrival rules de�ned at each gate can insert the arrived

messages to a central queue maintained in the database.

An (in�nite) loop there can activate various event han-

dlers which process messages in the queue. The following

is only one way to implement a messaging policy, where

implementation of the underlined predicates are left to

the user. These two predicates are policy-dependent.

on-take :-

add queue([]),

post-eventasync(execution-loop).

on-arrival(gate(G), ...) :-

@enqueue(G, args(...)).

enqueue(G, Msg) :-

delete queue(L0),

insert(L0, msg(G, Msg), L1),

add queue(L1).

on-event(execution-loop) :-

dequeue(G, Msg),

post-eventsync(msg(G, Msg)),

post-eventsync(execution-loop).

Timer events and user-posted events can also be pro-

cessed through the queue. To do this, the built-in post-

event predicates must be overridden to insert the events

into the queue. But care must be taken so that the post-

event predicates used above still work as intended.

This scheme has signi�cant advantages. First, the need

for concurrency control inside the cocavm is ameliorated,

since at any moment there is only one rule active in a

cocavm. We can maintain a central event queue, which

includes all message arrivals, timer or user-posted events,

instead of a pure message queue. Second, it is easier to

stop the execution of the current rule set say when the

participant wants to switch to a di�erent role or a di�er-

ent policy (rule set) at runtime[19]. When the command

to freeze the runtime state is received, each cocavm can

simply neglect messages with logical time later than that

of the freeze command.

This design assumes that predicates in event handlers

can �nish within a reasonable time. When a blocking

predicate is called, it is still feasible to specify a sophis-

ticated threads scheduling policy to suspend the waiting

thread and continue to process another event. But if a

predicate takes too long or loops forever, however, all

the other events must su�er even inde�nitely, as such

situations are hard to detect mechanically.

6.5 Some Predicates Revisited

A number of database predicates can be easily de�ned

by atomic sequences and atomic predicates, for exam-

ple, update, collect, deleteAll, etc. While collect

and deleteAll must be implemented assuming a total

ordering of facts, update does not. Predicate update is

implemented simply by an atomic sequence as follows.

update(OldT, NewT) :-

@(

delete OldT,

add NewT

).

The blocking database operators introduced above can

be implemented with wait-for. For example, predicate

\querysync f(a, b)" can be de�ned by the following. Op-

erator deletesync can be de�ned similarly.

querysync f(a, X) :-

query f(a, X).

querysync f(a, X) :-

wait-for(add-f(a, X)).



However, when a fact say \f(a, b)" is added into the

database, an event \add-f(a, b)" must be posted either

by the user or by the runtime system.

The accept operator can also be elegantly de�ned in

terms of wait-for as follows, where g is the name of a

gate.

g ? (X, a) :-

wait-for(g(X, a)).

on-arrival(gate(g), X, a) :-

post-eventasync(g(X, a)).

Predicatewait-for also provides a possible means to im-

plement locking and unlocking of database relations, as

follows.

lock(Object) :-

query locked(Object),

wait-for(unlocked(Object)),

add locked(Object).

lock(Object) :-

add locked(Object).

unlock(Object) :-

delete locked(Object),

post-eventasync(unlocked(Object)).

Once an \unlocked(Object)" event is posted, only one

thread waiting for it is woken up nondeterministically to

consider its wait-for predicate. So this de�nition guar-

antees that the lock not be grabbed by several threads

at the same time.

Since those predicates can be speci�ed, we do not really

have to implement them.

6.6 Backtracking

The essence of don't-know nondeterminism is that failing

computations \dont't count" and only successful compu-

tations may produce observable results. The don't-care

interpretation of nondeterminism, on the other hand, re-

quires that results of failing computations be observable.

Hence a don't-care nondeterministic computation may

produce partial output.

Don't-care nondeterminism is essential in modeling con-

current interactive systems[31]. In concurrent systems

it would be too expensive to backtrack a choice, even if

it proves to be wrong. The reason is that a choice, and

the actions done afterwards, have already in
uenced the

environment: to maintain consistency the whole system

should backtrack, but this is too ine�cient. It is rather

preferrable to provide mechanisms to control the choices,

so to avoid as far as possible that wrong decisions are

taken[5].

COCA has constructs for communication, asynchronous

event posting, and transactions which produce side ef-

fects. We take both the don't-know and don't-care in-

terpretation of nondeterminism. Suppose the following

is the execution trace of an active rule where m;n � 0

and q1 is the �rst predicate with side e�ect.

h :- p1; :::; pm; q1; :::; qn.

This is similar to the guarded Horn clauses notation in

concurrent logic programming languages[31, 5]. The ex-

ecution of an active rule is implicitly divided into two

parts. p1; :::; pm corresponds to the guard part, and

q1; :::; qn the body. A failed predicate in the guard part

may incur backtrack. But once the body part is entered,

the side e�ects ever generated cannot be undone.

As was introduced in subsection 6.2, failure of a pred-

icate within a transaction causes the whole transaction

to rollback. Not to contradict the don't-care semantics,

we restrict that the de�nition of a transaction should not

call (directly or indirectly) predicates that communicate

or post events.

7 RELATED WORK

7.1 Other Approaches in Collaboration Speci�cation

Trellis[11] and DCWPL[3] also advocated separating co-

ordination from computation so that the former can be

speci�ed in a more declarative way and interpreted at

runtime.

DCWPL provides a rather ad hoc scripting language

with facilities for modeling and controlling access to

shared artifacts. It allows for de�nition of a �xed set

of artifact attributes such as \Authorized", \MaxIn-

stance", and trigger-like attributes such as \Preexecu-

tion", \Postexecution". Even if we can presume that the

set of attributes provided is su�cient to capture every

possible artifact in all collaborations so that we do not

need to extend the language under any circumstances,

the problem is that whenever a policy or function is not

directly available in the declarative language DCWPL,

the user still needs to program it in a procedural lan-

guage. In this way the declarativeness of the language

is undermined. The language we propose in COCA,

however, is self-contained. The users can specify what-

ever coordination policies they want without constantly

resorting to a procedural language, assuming the tools

have the required functionality. In this way the declara-

tive feature is reserved.

Trellis used a variant of Petri Nets, CTN or colored timed



nets, to specify group interaction protocols. Trellis is

a client/server architecture in which a centralized con-

troller processes service requests from clients according

to the speci�cation. We argue that a centralized ar-

chitecture like Trellis may work well for small groups

which primarily exchange textual messages. But for

large groups with hundreds of participants, especially

when multimedia data is widely communicated, it is not

clear how it is modeled and handled in Trellis and what

level of performance can be expected. It is also not clear,

at least in the paper, how CTN models the collaboration

of large groups whose participants are highly 
uid, and

how exceptions, such as 
oor loss and unexpected loss of

the current 
oor holder, are handled in a Trellis speci�-

cation.

[26] attempted to use LOTOS[22] to specify a group

drawing tool. However, our observation is that LO-

TOS and other process algebra based formal methods

are not convenient for specifying collaborations. In

LOTOS, communicating components must be explic-

itly connected by parallel composition operators. This

proved su�cient for some situations where communicat-

ing components are �xed and relatively small in num-

ber. But in many collaborations, only the participant

types (namely the roles) are �xed, while the number of

involved participants is large and 
uid, the exact num-

ber cannot be determined at speci�cation time. LOTOS

is not directly convenient for specifying such situations.

And even for small and �xed-population collaborative

situations, LOTOS is also not always convenient. For

example, in order to model situations where a process

o�ers a value and several other processes accept it, LO-

TOS uses a multi-way synchronization which fails if even

one process fails to synchronize at that point. Many col-

laborations can actually tolerate such exceptions by al-

lowing processes that have received the value to proceed

while ignoring or trying to re-transmit the lost data to

processes which are temporally unavailable due to com-

munication link delay or failure. We replace the parallel

composition operators in LOTOS with the collaboration

bus and the conference bus, synchronization among com-

municating components are achieved by explicit message

passing.

7.2 Coordination Languages

Moses[24] was originally intended to make the Linda[12]

communication safer by ensuring that the interaction of

each process with the shared tuple space be managed

by a controller. Each controller enforces a set of rules

to capture the following two events: when a message

is sent out by the local agent, and when one arrives at

this agent, the local control state is checked, transfor-

mation is possibly performed, then this message is ei-

ther forwarded to the tuple space, or delivered to the

local agent, or blocked according to the rule de�nition.

Our work is di�erent from Moses in the following ways:

(1) we explicitly divide participants in a policy group by

roles. Di�erent roles are controlled by di�erent set of

rules rather than all participants governed by the same

set of rules as in Moses. Messages can be directed to

roles (
uid sets of participants) as well as individual par-

ticipants. We further allow participants to dynamically

join and leave a collaboration by taking and dropping

roles, and support the dynamic modi�cation of rules at

runtime. (2) We borrowed the concept of \gate" from

LOTOS to denote the points where our controller, the

COCA virtual machine, interacts with its environment,

and de�ne active rules upon the arrival of messages at

these gates. In this way, the controller can monitor mes-

sages arriving at multiple di�erent gates instead of just

one to and one from the tuple space as de�ned in Moses.

Both the tuple space in Linda and the internal database

in COCA are associate memory for coordination between

concurrency activities. Linda is often criticized for its

overheads to maintain a tuple space. Such overheads

become more aggravated when situated in large-scale

distributed systems. In COCA, there are actually two

levels of concurrency. First, activities of all the partic-

ipant cocavms are concurrent. Their coordination and

synchronization are achieved by explicit, asynchronous

message passing. Second, within each cocavm, multiple

threads are executed concurrently. Their coordination

is primarily through database operations which are cor-

respondent to those in Linda. The cost of maintaining

such an internal database is trivia, if not none.

In Manifold[1], ports are unidirectional and are consid-

ered as part of the de�nition of a component or mani-

fold. Channels are established between the output port

of a manifold to the input port of another manifold. Al-

though this kind of connections are not restricted to be

one-to-one, multi-point communication must be ful�lled

by connecting one output port to multiple input ports.

So it is not the multicast bus architecture as we are us-

ing.

7.3 Logic Programming

In concurrent logic programming (CLP) languages[31],

each goal atom is viewed as a process. Concurrent pro-

cesses communicate and synchronize via instantiation of

shared logical variables. In COCA, however, an active



rule is �red upon the arrival of a message at a gate or

more generally the occurrence of an event. Concurrency

only occurs among those active rules. We do not delib-

erately pursue the �ne-granule parallelism in CLP lan-

guages. Concurrent threads in the same cocavm syn-

chronize through operations against the shared internal

database and di�erent cocavms communicate through ex-

plicit message passing.

A number of object-oriented extensions to Prolog have

been proposed[4]. As was discussed in section 4.8, the

extensions we made in COCA, however, are no more

than syntactical sugars. They do not have any impact

on the language semantics.

Delta-Prolog[25] augmented Prolog with CSP-like com-

munication primitives. But it is not reactive, since it

may backtrack on communication[31]. [30] studied the

embedding of Linda in a CLP language. Concurrent con-

straint programming[28] embodies explicit mechanisms

for communication and synchronization consisting of two

kinds of actions, ask and tell. Semantics about concur-

rency and communication in logic has been well-studied

in the literature, e.g. [25], [2], and [29].

8 CONCLUSIONS

This language is not completely new. It has language el-

ements from Prolog, concurrent logic programming lan-

guages, process algebras, Linda, and object-oriented pro-

gramming languages. It also has concepts such as atomic

sequence (transaction) and events. To better model col-

laborations it supports the concept of role and role op-

erators. It would be interesting and challenging to de-

velop a formal semantics of this language so that the

many pieces from various sources can be reconciled in

one elegant mathematic framework.

The latest version of COCA includes the following exten-

sions. A set of role operators were introduced in [19] to

model runtime dynamics in collaborative systems, e.g.,

operators for switching between di�erent roles, transfer-

ring a role between participants, evolution of coordina-

tion policies on the 
y, in addition to the take role and

drop role operators discussed in Section 4.6. Coordi-

nation policies speci�ed in COCA can be veri�ed, as is

discussed in [20]. A new application was explored in [21]

to exercise the \dynamic grouping" feature discussed in

Section 4.4.2. Further information on COCA and its

applications can be found in [15].
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