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Abstract

Verischemelog (pronounced with 5 syllables, ver-
uh-scheme-uh-log) is a language and programming en-
vironment embedded in Scheme for designing digital
electronic hardware systems and for controlling the
simulation of these circuits. Simulation is performed
by a separate program, often a commercial product.
Verischemelog compiles to Verilog, an industry stan-
dard language accepted by several commercial and
public domain simulators.

Because many design elements are easily parame-
terized, design engineers currently write scripts which
generate hardware description code in Verilog. These
scripts work by textual substitution, and are typically
ad-hoc and quite limited. Preprocessors for Verilog,
on the other hand, are hampered by their macro-
expansion languages, which support few data types
and lack procedures. Verischemelog obviates the
need for scripts and preprocessors by providing a hard-
ware description language with list-based syntax, and
Scheme to manipulate it.

An interactive development environment gives early
and speci�c feedback about errors, and structured ac-
cess to the compiler and run-time environment provide
a high degree of recon�gurability and extensibility of
Verischemelog.

1 Introduction

1.1 The Verilog Language

In this paper we describe a language for digital
hardware design called Verischemelog, which com-
piles to Verilog.1 Currently undergoing standardiza-
tion, Verilog is a popular input language to sophis-
ticated simulators of digital electronic circuits. Com-

1Verilog is a trademark of Cadence Design Systems, San
Jose, CA, makers of the Verilog XL simulation system. Ver-
ilog and VHDL are popular standards.

mercial simulators which accept Verilog input are used
heavily in industry. Verilog is actually two languages:
one describes hardware, the con�guration of logic
gates, wires, and other components; the other con-
trols the event-based simulator, specifying input sig-
nals to circuits and the printing of textual output.
The former part of Verilog is truly a con�guration
language, describing a static structure, and is some-
times called Verilog Hardware Description Language,
or Verilog HDL. The other part of Verilog is sometimes
called its \behavioral language," an apt name because
it speci�es the behavior of the simulation. Explicit
in the behavioral language are the passage of time,
the occurrence of events, and general computation as
well. Figure 1 shows Verilog code for a half-adder,
and behavioral code for testing it on one possible set
of inputs. Verilog has a C-like syntax [KR88], both
for hardware speci�cation and for behavioral code.
The semantics of the Verilog behavioral language are
complicated by the need to explicitly allow simulation
time to pass, and by the possibly ambiguous e�ects of
statements which execute \at the same (simulation)
time." In this paper we focus on hardware speci�ca-
tion instead of simulation control for two reasons: the
Verischemelog behavioral constructs simply mirror
those of Verilog; and it is the need to automatically

synthesize hardware description code which led us to
develop Verischemelog.

1.2 Limitations of Verilog

The biggest limitation of the Verilog hardware de-
scription language is the lack of a facility for gener-

ating hardware description code. Verilog has a small
macro language, essentially based on textual substitu-
tion, which does not allow, e.g. iteration. Therefore,
although many designs are parameterized, there are no
facilities for writing procedures which, when executed,
generate hardware descriptions. Common design ele-
ments in digital systems include �nite state machines
(which are parameterized by their transition table),



// Half adder with propagation delay 10

module half_adder (bit1, bit2, sum, carry);

input bit1;

input bit2;

output sum;

output carry;

and #10 anon1(carry, bit1, bit2);

xor #10 anon2(sum, bit1, bit2);

endmodule

;; Half adder with propagation delay 10

(defmodule half_adder

(interface (input bit1 bit2)

(output sum carry))

(description "Half adder with delay 10")

(and (10) (carry bit1 bit2))

(xor (10) (sum bit1 bit2)))

(a) Verilog hardware description (b) Verischemelog hardware description

// Tests half adder on 1 + 1

module test_half_adder;

reg in1;

reg in2;

wire sum;

wire cout;

half_adder anon1(in1, in2, sum, cout);

initial

begin

in1 = 1;

in2 = 1;

#10;

$display(

"In: %d + %d ==> Sum: %d Carry: %d",

in1, in2, sum, cout

);

end

endmodule

(defmodule test_half_adder

(interface)

(description "Tests half adder on 1 + 1")

(reg in1 in2)

(wire sum cout)

(half_adder (in1 in2 sum cout))

(initial

(set! in1 1)

(set! in2 1)

(delay 10)

($display

"In: %d + %d ==> Sum: %d Carry: %d"

in1 in2 sum cout)))

(c) Verilog test program (d) Verischemelog test program

Figure 1: A half-adder computes the sum and carry of two 1-bit inputs. A Verilog module implementing a half-
adder is shown on the left (a). On the right (b) is the Verischemelog equivalent. (c) and (d) are test programs
that direct the simulator to provide a high signal, 1, for each of the input signals and then to display the output
signals after a delay of 10 simulation time units. When a hardware module is instantiated, the module name
appears �rst (followed by a propagation delay for logic gates), then the name for this particular instantiation,
and then a connection list. The latter is a list of wires which must match the module's interface. The Verilog
convention for logic gates is that the output signal is listed �rst.
The Verilog #n syntax indicates a delay of n simulation time ticks, as do the Verischemelog delay form and the
numeric parameter between the gate name and the connection list. Verilog requires instantiated modules to have
individual names; in Verischemelog they are optional.
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arithmetic operations (parameterized by the size in
bits of operands and results), multiplexers (parame-
terized by the number of inputs and their size in bits),
etc. Many web sites by and for designers who use
Verilog promote the sharing of techniques for writ-
ing scripts which produce hardware description code.2

One engineer writes, \I have written hundreds (well,
maybe I exaggerate a bit) of Perl, awk, and cshell [sic]
scripts for processing my verilog code and for synthe-
sis" [unk98a].

We have examined many of the scripts available on-
line. They vary widely in implementation language,
programming style, and documentation. They have
in common the ad-hoc nature of translators and com-
pilers which were not written using traditional tech-
niques such as lexical analysis, parsing, etc. To supple-
ment the e�orts of the script writers, a few program-
mers have contributed preprocessors which do oper-
ate on syntactic structures. These also vary widely,
although one in particular, vpp [unk98b], has both a
small sublanguage of C-like mathematical expressions
and a small set of iteration constructs. These facilities
notwithstanding, vpp is fundamentally limited by its
translation language which lacks procedures and has
only integer and 
oating point data types.

1.3 Design of Verischemelog

Verischemelog is a replacement for Verilog which
is designed to alleviate the need for ad-hoc scripts and
limited preprocessors. Verischemelog has the follow-
ing properties:

� Verischemelog is embedded in Scheme [CR98]
and has Scheme-like list-based syntax.

� Scheme is used as the \macro language" for gen-
erating hardware description and behavioral test
code.

� Many errors are reported interactively, giving
more speci�c and immediate feedback than, for
example, the commercial Cadence Systems simu-
lator.

� Verischemelog compiles to Verilog, an industry
standard.

� Verischemelog easily interfaces to existing Ver-
ilog code.

2A search of Yahoo (yahoo.com) gives 52 Verilog sites, many
of which contain scripts, tips, and commercial design tools. Al-
taVista (altavista.com) reports 48740 sites referring to Verilog.

� The programming environment includes project
management facilities in Scheme.

� Quantitative descriptions of hardware modules,
including gate count and maximum signal prop-
agation delay, can be automatically computed.
The calculation of these and other attributes can
be programmed at the user level.

� The system is extensible by the user, who
may add new operators or procedures to
Verischemelog, or even recon�gure the code gen-
erator.

Languages like Perl are popular for writing scripts
which generate Verilog hardware descriptions because
they have a rich set of string processing functions.
By using Scheme instead, and operating on list-based
structures instead of strings, the Verischemelog user
has an advantage over the Verilog user which is anal-
ogous to the advantage of Scheme/Lisp macros over
those of C (as implemented by cpp). In other words,
Verischemelog provides Scheme as a macro language.
The transformation and generation of hardware de-
scription code in Verischemelog relies on the list-
based syntax of Verischemelog and the facility with
which Scheme manipulates list structures.

Below in Section 2 we illustrate some notable fea-
tures of Verischemelog using brief examples, and in
Section 3 we present some longer examples from two
parameterized CPU designs. In Section 4 we show
how the user can access the internal system to recon-
�gure the compiler and add custom project manage-
ment tools. Section 5 discusses the implementation,
and Section 6 summarizes some related work.

2 Using Verischemelog

Verischemelog was designed in part for instruc-
tional purposes, as an alternative to Verilog for a
senior-level undergraduate course in Computer Ar-
chitecture, and as an example of a domain-speci�c
language with a compact and accessible implementa-
tion for students studying programming languages and
compilers. The considerable e�orts put into scripts for
synthesizing Verilog code by practicing engineers indi-
cates that it may be appropriate for industrial use as
well. In either environment, academia or industry, we
assume the user is familiar with the Verilog language,
and many constructs in Verischemelog exploit that
familiarity by simply mirroring Verilog constructs with
Scheme-like syntax. We also assume that users will de-
sign large systems in a modular fashion, and that some
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modules will be written in Verilog itself. Finally, al-
though Verilog is for us the target language, we expect
that Verischemelog output may at times be read by
humans, for instance by another designer who does
not use Verischemelog. For this reason we have pro-
vided a simple facility for commenting Verischemelog
programs such that the comments are transferred to
the output code upon compilation. The output code
is also properly indented, for the same reason.

2.1 Key Concepts

We note that a module is a unit of code in Verilog
which may contain hardware description, behavioral
code, or a mixture of the two. Modules contain in-
stantiations of other modules, with their dependen-
cies forming a directed acyclic graph. For example,
the half-adder modules in Figure 1 (a) and (b) each in-
stantiate one and gate and one xor gate, both of which
happen to be primitive modules. Verischemelog pre-
serves the character of Verilog's modules, which are
unrelated to any modules or packages one may �nd in
Scheme.

Verilog hardware modules have interfaces which
specify the input and output signals to the module,
giving them internal names and types. An instantia-
tion of a hardware module must provide wires of the
proper size and type, connected in the proper order,
which is speci�ed by the module's interface. In this
context, the size of a wire is the number of conductors
it carries. For example, a small bus may carry 8 wires.
Wire types include input, output, ground, and several
others. Deciding whether two types match is usually
straightforward.

The simulator is used to test hardware designs. It
is not part of Verischemelog. The simulator is said to
execute behavioral code which provides input signals
to a hardware design and displays output such as the
values of output (and internal) signals of the module.
Naturally, the test program may change the input sig-
nals over time, and make choices about what to display
and when. Verilog's behavioral language, in which test
programs are written, is much like a general purpose
procedural programming language in which computa-
tion consumes zero simulation time. Verischemelog

provides list-based syntax for Verilog behavior con-
structs and checks for several categories of errors, but
provides no new behavior language constructs.

2.2 Working Interactively

Development in Verilog follows the usual sequence
of edit, compile, and execute.3 In Verischemelog one
works interactively at the Scheme read-eval-print loop.
Using the Emacs editor with a Verischemelog session
running in an editor bu�er makes the experience quite
similar to developing in Lisp or Scheme.4 Of course,
one is conscious of the di�erences in both striking and
subtle ways. The defmodule form, which ultimately
de�nes a Verilog module, and its attendant declara-
tions of wires and gates clearly mark the domain. A
more subtle di�erence between Verischemelog and
Scheme appears in the form of restrictions on symbol
names in Verischemelog, which conform to Verilog's
C-like syntax, containing only the underscore char-
acter and alphanumerics. We chose to use this syn-
tax rather than translate from the larger universe of
Scheme symbols in order to allow humans and pro-
grams to easily match Verischemelog (source lan-
guage) names with their Verilog (target language)
counterparts, e.g. in messages produced by the sim-
ulator during execution.

Hardware development then follows this process:

1. Verischemelog hardware description and
test code is developed interactively using the
defmodule form which invokes the front-end
of the Verischemelog compiler, but does not
generate Verilog code. It is here that syntactic
and other errors are reported, and interfaces
between modules are checked for consistency.

2. When a module is to be tested using the simula-
tor, it is compiled using the compile procedure
which generates Verilog code for the target mod-
ule as well as conditionally for any modules on
which it depends.

3. The simulator is invoked on the generated Verilog
code, using a script written by Verischemelog

which enumerates the output �les needed and
contains any desired simulator options. In
a Scheme which supports such operations,
Verischemelog can run the simulator in batch
mode in a child process, displaying its output,
etc.

In the sections that follow we show how
Verischemelog can be used to automatically synthe-

3Some simulators, like Cadence Systems Verilog XL, combine
compilation and subsequent execution into one step by default.

4We do not address in this paper the possible \culture gap"
which in theory might face engineers trained in C-like languages
who are presented with Verischemelog.
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size hardware description and behavioral test code.
We begin with the most basic feature, escaping to
Scheme.

2.3 Escaping to Scheme

First note that we distinguish evaluation of a
defmodule form from compilation. To evaluate is to
run the front end of the Verischemelog compiler, in-
cluding the type checker; to compile is to perform code
generation. The defmodule form is implemented as a
Scheme macro which evaluates Scheme code embedded
in the defmodule body, inlines the results, and �nally
evaluates the module de�nition. Embedded Scheme
forms begin with one of the reserved keywords scheme
or scheme-splicing, which can be abbreviated using
$ or $$ respectively.

Both scheme and scheme-splicing behave as a
Scheme begin form: each subform is evaluated in
sequence, and the value of the last form is re-
turned. These forms parallel Scheme's unquote and
unquote-splicing. The value of a scheme form
is inserted in place directly into the surrounding
defmodule code. The value of a scheme-splicing

form must be a list; the list is \spliced into" the sur-
rounding code.

Both escape forms may be used to generate hard-
ware description code. A more basic use is to retrieve
a value. For example, the propagation delays for the
gates in the half-adder of Figure 1 could be retrieved
from the Scheme variable *delay* as follows:

(define *delay* 14)

(defmodule half_adder

(interface (input bit1 bit2)

(output sum carry))

(description

(string-append "Half adder with delay "

(number->string *delay*)))

(and ((scheme *delay*)) (carry bit1 bit2))

(xor ((scheme *delay*)) (sum bit1 bit2)))

Note that the syntax for gate instantiations requires
the delay to be in parentheses. Therefore:

((scheme *delay*))) (14).

The same parameter could be used in the correspond-
ing behavioral program which tests this half-adder,
thus ensuring their consistency.

Note also that Verischemelog evaluates the ex-
pression in the description form, which must re-
turn a string. The description form (and a similar
comment form) exist only in Verischemelog, not Ver-
ilog, and so the automatic evaluation without use of
an escape form is melli
uous.

2.4 Synthesizing Systems

A common situation calling for automatic genera-
tion of hardware description is that of parameteriz-
ing a design element, such as an adder, by the num-
ber of bits in the word size of a Central Processing
Unit (CPU). In this case we are synthesizing an en-
tire system (a CPU) which may have many variable
parameters, one of which, the word size, parameter-
izes the adder that will be used in the Arithmetic and
Logic Unit (ALU). We may proceed in one of two
ways. We may simply use an escape form such as
scheme-splicing to generate a series of full-adders
(Figure 2) or we may de�ne a Scheme procedure
which contains a defmodule form. For illustration,
we will show the latter, the code for which is in Fig-
ure 2. Figure 3 shows the Verilog code resulting from
(make-adder 3).

These very small examples serve as useful illustra-
tions, but the true utility of Verischemelog can only
be seen when designing large systems, such as a CPU.
A CPU may be parameterized by word size, instruc-
tion format, bus con�guration, etc. During the design
process, a component such as the ALU may be imple-
mented in a general form, parameterized like the adder
of Figure 2. (This may encourage code reuse, as al-
ternate con�gurations are easily generated from one
implementation.) Other components, such a micro-
programmed control unit, may be designed in a �xed
(not parameterized) form.

Even in a �xed form, however, a control unit is
easier to generate in Verischemelog than in Ver-
ilog, because attributes can be represented symbol-
ically in Scheme data structures. For example, a
Scheme variable can hold a list of symbols repre-
senting all of the control signals in the CPU. The
control unit module can be built separately from
the CPU, and we can ensure their interfaces will
match because Verischemelog can generate their in-
terfaces using the control signal list. Also, control
signals can then be referred to symbolically, by their
names, with Verischemelog automatically mapping
the names to indexed references into a control bus such
as controls[27].

Likewise, in a few lines of Scheme one can write
a small assembler for generating memory images to
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(define make-adder

(lambda (wordsize)

(let ((desc

(string-append (number->string wordsize)

"-bit adder with carry out"))

(full-adder

(lambda (carryin a b sum carryout)

`(full_adder (,carryin ,a ,b ,sum ,carryout)))))

(defmodule adder

(description desc)

(interface (input ((scheme wordsize)) a b)

(output ((scheme wordsize)) sum)

(output carry))

(supply0 ground)

(wire ((scheme (- wordsize 1))) c)

(scheme-splicing

(iterate wordsize

(lambda (i)

(full-adder (if (zero? i) ; carry in:

'ground ; 0,

(: 'c (- i 1))) ; or c[i-1]

(: 'a i) ; input a[i]

(: 'b i) ; input b[i]

(: 'sum i) ; sum[i]

(if (= i (- wordsize 1)) ; carry out:

'carry ; module output,

(: 'c i)))) ; or c[i]

))))))

(defmodule full_adder ; two half-adders make a full-adder.

(interface (input carry_in bit1 bit2)

(output sum carry_out))

(wire temp_sum temp_carry1 temp_carry2)

(half_adder half_1 (bit1 bit2 temp_sum temp_carry1)

half_2 (carry_in temp_sum sum temp_carry2))

(or (10) carry_or (carry_out temp_carry2 temp_carry1)))

Figure 2: A Scheme procedure which generates Verischemelog code for a \ripple" adder which contains wordsize
full-adders. The input signals to full-adder i are bit i of each input wire a and b, and the carry out wire of the
previous adder, c[i� 1]. The carry in of the �rst full-adder is wired to 0 (ground), and the carry out of the last
full-adder is an output wire of the adder module.
The : procedure takes a symbol (the name of a wire) and one or two numbers (indices) and generates an array-like
reference. Multiple-conductor wires in Verilog are declared as arrays with their leftmost and rightmost bit indices

given, as in input [2:0] a , which declares a three-conductor wire named a whose conductors are numbered

from left to right: 2, 1, 0. The procedure iterate is like a procedural form of Lisp's dotimes, e.g.

(iterate 5 (lambda (x) x)) ) '(0 1 2 3 4).
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// 3-bit adder with carry out

module adder (a, b, sum, carry);

input [2:0] a;

input [2:0] b;

output [2:0] sum;

output carry;

supply0 ground;

wire [1:0] c;

full_adder anon1(ground, a[0], b[0], sum[0], c[0]);

full_adder anon2(c[0], a[1], b[1], sum[1], c[1]);

full_adder anon3(c[1], a[2], b[2], sum[2], carry);

endmodule

Figure 3: The Verilog output from (make-adder 3).

be used in testing CPU designs. In Section 3 below
we describe two large projects, each a CPU design, in
which these techniques were employed.

2.5 Evaluation Catches Errors

As mentioned above, defmodule forms are evalu-
ated interactively. Verischemelog reports an error
when any of the following occur:

� Syntax errors.

� Module interface does not match connection list
(a form of type checking).

� The identi�er z is used as a variable name.

Verilog allows the use of z as a variable, but it is also
the name of a constant meaning \high impedance."
Consequently, z is a \write only" variable in Verilog
because when it appears in an expression it refers to
the constant value. The lack of a warning or error
by Verilog trips up many novice users, and probably
others as well.

Verischemelog reports several types of warnings:

� Wire used but not declared.

� Module is missing a description, has a null body,
is instantiated but not (yet) de�ned, etc.

� Signal possibly used as feedback.

These warnings illustrate how a customizable de-
velopment environment can be used to promote good
design practices. For example, Verilog allows the use
of undeclared wires, but Verischemelog generates a
warning because often this is the result of a typograph-
ical error. Similarly, Verischemelog encourages the
use of the description form, which generates a block
comment in the header of the output �le. Descriptions
of de�ned modules can also be searched interactively,
to aid in project management. Finally, sometimes the
output signal of a module is used inside the module it-
self as the input to another device. Although it can be
done intentionally, some of the time this is the result
of mis-wiring. The warning helps detect those cases,
and it can be suppressed when the use of feedback is
intentional.

2.6 Precompiled Modules

Verischemelog allows designers to declare mod-
ules \precompiled." The designer provides the mod-
ule name, its interface, and the �lename of the Ver-
ilog code which de�nes it. Although Verischemelog

will compile code which instantiates unknown modules
(and will warn about it), the ability to declare precom-
piled modules enables the same interface type check-
ing that would occur if the instantiated modules had
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(define (make-mux-n-to-1 n bits)
"BITS is the word size of mux input, N is the max number of inputs"
(let* ((name (lambda () (make-symbol 'mux_ n 'to 1 '_ bits 'bit)))

(log-n (ceil-log-n n 2))
(expt-n (expt 2 log-n)))

(make-decoder-m-control-bits log-n)
(make-tri-state-n-bits bits)
(defmodule (name)

(description desc)
(interface
(output ((scheme bits)) result)
(input ((scheme bits))

(scheme-splicing (map-bits n (lambda (n) (make-symbol 'in n)))))
(input ((scheme log-n)) control))

(wire ((scheme expt-n)) ndecode_out)

($$ (cons (list (make-symbol 'decoder_ log-n 'to expt-n)
(make-symbol 'd log-n 't expt-n)
(list 'ndecode_out 'control))

(map-bits n
(lambda (n)
(list (make-symbol 'tri_state_ bits '_bits)

(make-symbol 'ts bits '_ n)
(list 'result

(make-symbol 'in n)
(: 'ndecode_out n))))))))))

(a).

module mux_2to1_4bit (result, in0, in1, control);

output [3:0] result;
input [3:0] in0;
input [3:0] in1;
input control;

wire [1:0] ndecode_out;

decoder_1to2 d1t2(ndecode_out, control);

tri_state_4_bits ts4_0(result, in0, ndecode_out[0]);
tri_state_4_bits ts4_1(result, in1, ndecode_out[1]);

// delay of 16

endmodule

(b).

module mux_4to1_9bit (result, in0, in1, in2, in3, control);

output [8:0] result;
input [8:0] in0;
input [8:0] in1;
input [8:0] in2;
input [8:0] in3;
input [1:0] control;

wire [3:0] ndecode_out;

decoder_2to4 d2t4(ndecode_out, control);

tri_state_9_bits ts9_0(result, in0, ndecode_out[0]);
tri_state_9_bits ts9_1(result, in1, ndecode_out[1]);
tri_state_9_bits ts9_2(result, in2, ndecode_out[2]);
tri_state_9_bits ts9_3(result, in3, ndecode_out[3]);

// delay of 24

endmodule

(c).

module mux_16to1_7bit (result, in0, in1, in2, in3, in4, in5, \
in6, in7, in8, in9, in10, in11, in12, in13, in14, in15, control);

output [6:0] result;
input [6:0] in0;
input [6:0] in1;
input [6:0] in2;
input [6:0] in3;
input [6:0] in4;
input [6:0] in5;
input [6:0] in6;
input [6:0] in7;
input [6:0] in8;
input [6:0] in9;
input [6:0] in10;
input [6:0] in11;
input [6:0] in12;
input [6:0] in13;
input [6:0] in14;
input [6:0] in15;
input [3:0] control;

wire [15:0] ndecode_out;

decoder_4to16 d4t16(ndecode_out, control);

tri_state_7_bits ts7_0(result, in0, ndecode_out[0]);
tri_state_7_bits ts7_1(result, in1, ndecode_out[1]);
tri_state_7_bits ts7_2(result, in2, ndecode_out[2]);
tri_state_7_bits ts7_3(result, in3, ndecode_out[3]);
tri_state_7_bits ts7_4(result, in4, ndecode_out[4]);
tri_state_7_bits ts7_5(result, in5, ndecode_out[5]);
tri_state_7_bits ts7_6(result, in6, ndecode_out[6]);
tri_state_7_bits ts7_7(result, in7, ndecode_out[7]);
tri_state_7_bits ts7_8(result, in8, ndecode_out[8]);
tri_state_7_bits ts7_9(result, in9, ndecode_out[9]);
tri_state_7_bits ts7_10(result, in10, ndecode_out[10]);
tri_state_7_bits ts7_11(result, in11, ndecode_out[11]);
tri_state_7_bits ts7_12(result, in12, ndecode_out[12]);
tri_state_7_bits ts7_13(result, in13, ndecode_out[13]);
tri_state_7_bits ts7_14(result, in14, ndecode_out[14]);
tri_state_7_bits ts7_15(result, in15, ndecode_out[15]);

// delay of 72

endmodule

(d).

Figure 4: (a) shows a mux-generator written in Verischemelog. (b), (c), and (d) show examples of muxes gener-
ated by the mux-generator with the following arguments: (make-mux-n-to-1 2 4), (make-mux-n-to-1 4 9),

(make-mux-n-to-1 16 7). 8



been de�ned in Verischemelog. The defcompiled

form used to declare precompiled modules can even
be generated automatically from Verilog source �les.

Another important use of Verischemelog is for e�-
ciency. When a project is large, modules not actively
being modi�ed can be declared precompiled so that
only their interfaces are loaded into Verischemelog,
saving memory and time. Naturally, Verischemelog
can generate the appropriate defcompiled form for
any module already de�ned, so that in subsequent ses-
sions only the short defcompiled forms need to be
loaded, instead of the much longer defmodule forms.

3 Examples

Tables 1 and 2 show the sizes of two hardware
designs implemented in Verischemelog. Each is a
complete CPU with memory (or memories) and a
microprogrammed control unit. Each was designed
from the outset to be scalable; consequently the same
Verischemelog code was used to generate variations
of each machine with di�erent word sizes. To generate
the machines shown in the tables, a single parameter
(the data size) was changed, and the modules recom-
piled. To test each variation, a small assembler (in-
cluded in the �gures in the table) was used to produce
a memory image (or images) containing a program
and data. Also counted in the �gures in the table are
library procedures of general utility, such as iterate.

Table 1 re
ects a silicon approximation to a Tur-
ing Machine, a small processor with separate data and
instruction memories. The machine has four instruc-
tions, right, left, jump, and halt. The jump instruction
performs an unconditional branch to an absolute ad-
dress. The right and left instructions each take three
operands: match, replacement, and goto. A special
purpose register, H , contains a data memory address,
initially 0. The instruction

right a, b, l

does nothing when the contents of data memory at
address H does not match a. The next instruction
is fetched. If a is in memory at H , however, this in-
struction writes b there, increments H , and branches
to l. The operation of left is analogous, but H is
decremented.

The CPU of Table 2 has a more traditional design,
with 16 general-purpose registers, an ALU support-
ing integer arithmetic and bitwise logical operations,
three internal busses, and a RISC-style instruction set
in which the ALU operates on data in registers and

writes its result to a register. The instruction set con-
tains about two dozen instructions, and the control
unit is microprogrammed.

The tables illustrate that these parameterized de-
signs required a substantial amount of Verischemelog
code, but an amount roughly of the same order of mag-
nitude as the generated Verilog code which otherwise
might have been written by hand. For the Turing Ma-
chine, a 7 bit data size lets us write programs which
manipulate ASCII characters on the tape, and we have
not compiled a larger model. The processor of Table
2, on the other hand, has been compiled and tested for
the purposes of illustration on data sizes so large as
to be (currently!) impractical to build in silicon. We
consider this a reasonable test of the HDL synthesis
capabilities of Verischemelog.

4 Extending Verischemelog

An important aspect of Verischemelog is the ex-
tent to which it be customized, recon�gured, and ex-
tended by the user. Some of the customizations are:

� Selective control over the display of warnings

� Setting of various working and output directories

� De�nition of simulator options

� Block comments and headers for output �les

An important recon�guration feature consists of a
set of customizable tables used by the code genera-
tor. For example, users can interactively modify a list
of known Verilog behavioral procedures. New built-in
procedures in a new release of the simulator can be
added this way. Users can also tell Verischemelog
about new unary and binary operators. Finally,
Verischemelog maintains a table of translations of
operators and procedures from Verischemelog to Ver-
ilog. This allows Verischemelog users to write = in-
stead of ==, bitwise-not instead of ~, etc.

One extensibility feature is the verbatim form,
which allows the user to insert arbitrary strings into
the Verilog output. While clearly of limited utility,
it does provide a method of writing user-level code
which generates Verilog output. Of course, such code
is actually generated at evaluation time rather than
code generation time. A structured way to change
the code generator, for example to add new language
constructs, is under consideration.

With respect to hardware analysis and project man-
agement, however, Verischemelog provides su�cient

9



Table 1: Various measures of the size of the Turing Machine implementation. Data size refers to the number
of bits per cell on the tape, which was implemented as a �nite memory. Measurements of lines of code do not
include comments or blank lines. The term de�nitions refers to top-level define and defmodule forms. HDL
code includes all forms necessary to generate Verilog HDL, including Scheme procedures. Test code includes all
behavioral programs for testing the system and individual components.

Data Verischemelog source Verilog output
Size Lines of code De�nitions Lines of code

1 bit 732 HDL, 398 test 54 HDL, 35 test 530
2 bits (same) (same) 540
7 bits (same) (same) 589

Table 2: Various measures of the size of the EBP CPU implementation. Data size refers to the number of bits in
a machine word (the size of the data bus, registers, ALU operands, etc.). Address size in each case was 16 bits.
Measurements of lines of code do not include comments or blank lines. The term de�nitions refers to top-level
define and defmodule forms. HDL code includes all forms necessary to generate Verilog HDL, including Scheme
procedures. Test code includes all behavioral programs for testing the system and individual components. pThe
numbers for the HDL code includes such high level abstractions as automatic generation of the control unit's
lookup table and micromemory based on a symbolic description of the control signals, an assembler for writing
memory images, and calculations of simulated hardware delays for choosing an optimal clock speed.

Data Verischemelog source Verilog output
Size Lines of code De�nitions Lines of code

16 bits 3246 HDL, 964 test 240 HDL, 27 test 1397
32 bits 1853
64 bits 2549
128 bits 4085
256 bits 7229
512 bits 13373
Totals 3246 HDL, 964 test 240 HDL, 27 test 30486 lines, 6 processors
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structured access to its internals for the user to easily
write code to:

� Generate a di�erent script for invoking the simu-
lator.

� Generate representations of module dependen-
cies.

� Calculate the number of primitive gates or partic-
ular user-de�ned modules instantiated in a given
set of modules.

� Calculate arbitrary statistics on hardware de-
scriptions.

5 Implementation Notes

Verischemelog was written in Kali Scheme
[CJK95], a variant of Scheme48 [KR94]. Scheme48
is a compact and portable implementation of Scheme
with a module system, record package, and hygienic
macros. Scheme48's Unix interface was su�cient to
allow Verischemelog to launch the Verilog XL sim-
ulator in another process, and to display its output.
The source code for the Verischemelog run-time en-
vironment, compiler, all data structures, and an online
help facility totals 247 forms written in 3282 lines.

Kali Scheme is a novel distributed implementation
of Scheme. By using it to implement Verischemelog,
distributed synthesis, compilation, or analysis of large
systems is possible. Owing to the strength of Kali's
design, these distributed extensions can easily be writ-
ten entirely in user space, and quite simply as well.

6 Related Work

The original inspiration for Verischemelog was
a programming language and environment named
THEE [Woo93]. THEE allows Common Lisp pro-
grammers to generate C code in much the same way
that Verischemelog allows designers to generate Ver-
ilog.

Evidence that Scheme might mix well with a tradi-
tionally low-level \down and dirty" task such as hard-
ware design came in the form of the Envision sys-
tem [SF97] which extends Scheme for computer vi-
sion. The Envision environment contains a new lan-
guage, statically-typed and with di�erent semantics
from Scheme in other respects, but with Scheme's
syntax. Programmers write Scheme programs with
embedded calls to procedures in the new language.

Those procedures are transmitted to another process,
the \co-processor," which interprets them. The em-
bedded language, designed for image processing, is in-
terpreted only during development. At any time code
in the embedded language can be compiled to C and
linked with the \co-processor" for subsequent high-
performance execution when called from Scheme.

Finally, the structured access to the internals of
Verischemelog was inspired by the notion of meta-
object protocols [KdRB91].

7 Conclusion

With Scheme as a macro language, Verischemelog
users can easily generate code which compiles to Ver-
ilog, making synthesis of digital hardware designs
much more e�cient than programming directly in the
output language. By providing structured access to
the compiler and run-time system, Verischemelog en-
ables a great deal of customization, recon�guration,
and extension. By performing syntax and type check-
ing interactively, users get speci�c and timely feed-
back about errors. A variety of warnings reinforce
good coding style as well as point out possible prob-
lems. The ability to interface with existing Verilog
code and to handle moderately large designs indicates
that Verischemelog may be a practical tool for use
in industry.

The most important aspect of Verischemelog,
however, is the central idea that to allow users to e�ec-
tively generate code, they should be given a language
designed to manipulate that code. We used Scheme
for that language, and designed the list-based syntax
of Verischemelog to be manipulated by it.
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