
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the Workshop on Intrusion Detection
and Network Monitoring

Santa Clara, California, USA, April 9–12, 1999

Automated Intrusion Detection Using NFR:
Methods and Experiences

Wenke Lee, Christopher T. Park, and Salvatore J. Stolfo
Columbia University

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Automated Intrusion Detection Using NFR: Methods and Experiences

Wenke Lee Christopher T. Park Salvatore J. Stolfo

Computer Science Department, Columbia University
500 West 120th Street, New York, NY 10027
{wenke,cpark,sal}@cs.columbia.edu

Abstract

There is often the need to update an installed Intrusion
Detection System (IDS) due to new attack methods or
upgraded computing environments. Since many cur-
rent IDSs are constructed by manual encoding of ex-
pert security knowledge, changes to IDSs are expensive
and require a large amount of programming and debug-
ging. We describe a data mining framework for adap-
tively building Intrusion Detection (ID) models specifi-
cally for use with Network Flight Recorder (NFR). The
central idea is to utilize auditing programs to extract
an extensive set of features that describe each network
connection or host session, and apply data mining pro-
grams to learn rules that accurately capture the behavior
of intrusions and normal activities. These rules can be
used for misuse detection and anomaly detection. De-
tection models are then incorporated into NFR through a
machine translator, which produces a working detection
model in the form of N-Code, NFR’s powerful filtering
language.

1 Introduction

With the increase of Internet connectivity, there is the
ever increasing risk of attackers illicitly gaining access
to computers over the network. Intrusion detection is
often used as another wall to protect computer systems,
in addition to the standard methods of security measures
such as user authentication (e.g. user passwords or bio-
metrics), avoiding programming errors, and information
protection (e.g., encryption). Intrusion detection tech-
niques can be categorized intoanomaly detectionand
misuse detection. While accuracy is the essential re-
quirement, its extensibility and adaptability are also crit-
ical design criteria in today’s network computing envi-
ronment. There are multiple “penetration points” for in-
trusions to take place in a network system. For exam-

ple, at the network level, carefully crafted “malicious”
IP packets can crash a victim host; at the host level, vul-
nerabilities in system software can be exploited to yield
an illegal root shell. Since activities at different penetra-
tion points are normally recorded in different audit data
sources, an IDS often needs to be extended to incorpo-
rate (additional) modules that are specialized for certain
components (e.g., hosts, subnets, etc.) of a network sys-
tems. The large traffic volume in security related mail-
ing lists and Web sites suggests that new system security
holes and intrusion methods are continuously being dis-
covered. Therefore, it is imperative that IDSs be updated
frequently and rapidly.

Currently building an effective IDS is an enormous
knowledge engineering task. System builders largely
rely on their intuition and experience to select the sta-
tistical measures for anomaly detection [6]. Many IDSs
only handle one particular audit data source, and up-
dating these systems is expensive and slow. Some of
the recent research and commercial IDSs have begun
to provide built-in mechanisms for customization and
extension. The Network Flight Recorder (NFR) [8] is
one such extensible system that combines data collec-
tion, analysis, and storage within a single platform. We
discuss NFR in more depth in Section 2.2. Such sys-
tems would normally be located between a firewall and
an Internet connection, an area aptly named the DMZ.
Analysis in NFR is accomplished by scripts based on
a language called N-code, NFR’s flexible language for
traffic analysis. Information is displayed in NFR to a
web-based interface with Java support. NFR also has a
real time alerting capability and a storage subsystem that
allows data to be stored, rotated, and archived to other
external devices [8]. However, this does not eliminate
the need for experts to first analyze and categorize attack
scenarios and system vulnerabilities, and hand-code the
corresponding rules and patterns in N-code for misuse
detection. Because of the manual and ad hoc nature of
the development process, current IDSs including NFR
have limited extensibility and adaptability. Our goal is

to substantially reduce this effort by automating:

1) the task of building intrusion detection through data-
mining.

2) generating the N-code for NFR to detect intrusions
via a machine translator.

While using such methods, system builders and admin-
istrators will still have to maintain and fine-tune the re-
spective IDS. However a large amount of their work will
be automated, thus effectively reducing time and man-
power in fielding an effective IDS.

2 Techniques for Intrusion Detection

There are two major categories of techniques that are
used by most IDS’s:

• Anomaly detection attempts to determine whether
deviation from an established normal behavior pro-
file can be flagged as an intrusion [4]. A profile
typically consists of a number of statistical mea-
sures on system activities, for example, theCPU
usageand thesaturation of bandwidth at a given
time period. Deviation from a profile can be com-
puted as the weighted sum of the deviations of the
constituent statistical measures. Profiles can be
updated periodically (aged) so that shifts of nor-
mal behavior are accounted. The key advantages
of anomaly detection systems is that they can de-
tect unknown intrusions since they require noa
priori knowledge about specific intrusions. How-
ever, defining and maintaining “normal” profiles is
a nontrivial and error-prone task.

• Misuse detection refers to techniques that use pat-
terns of known intrusions (for example,more than
three consecutive failed logins within 2 minutescan
be classified as a penetration attempt). The se-
quence of attack actions, the conditions that com-
promise a system’s security, as well as the evidence
(e.g., damage) left behind by intrusions can be rep-
resented by a number of general pattern matching
models. The key advantage of misuse detection
systems is that once the patterns of known intru-
sions are stored, future instances of these intrusions
can be detected effectively and efficiently. How-
ever, newly invented attacks will likely go unde-
tected.

In Section3.1, we discuss the data-mining algorithms
that can be used to build both anomaly and misuse de-
tection models.

3 Systematic Framework

Our framework consists of data-mining programs for
learning detections models, a translator for converting
learned rules to real-time models, and NFR for captur-
ing network traffic and applying the real-time N-code
modules for ID.

3.1 Data-Mining Algorithms

Data mining generally refers to the process of (automat-
ically) extracting models from large stores of data [3].
The recent rapid development in data mining has made
available a wide variety of algorithms, drawn from the
fields of statistics, pattern recognition, machine learning,
and databases. Several types of algorithms are particu-
larly useful for mining audit data.

Classification : maps a data item into one of several
pre-defined categories. These algorithms normally
output “classifiers”, for example, in the form of de-
cision trees or rules. An ideal application in intru-
sion detection will be to gather sufficient “normal”
and “abnormal” audit data for a user or program,
then apply a classification algorithm to learn a clas-
sifier that can label or predict new unseen audit data
as belonging to the normal class or the abnormal
class. We use the package RIPPER [2] as our clas-
sification rule-learner.

Link analysis : determines relations between fields in
database records. Correlations of system features
in audit data can serve as the basis for constructing
normal usage profiles. A programmer would have
“emacs” highly associated with “C” files, for exam-
ple. Observed deviations from these automatically
learned associations may suggest an attack. We use
the association rules algorithms [1] for this particu-
lar type of analysis.

Sequence analysis: models sequential patterns. These
algorithms can discover what (time-based) se-
quence of audit events frequently occur together.
These frequent event patterns provide guidelines
for incorporating temporal statistical measures into

duration the length (in seconds) of the connection
protocol type type of protocol being used (e.g. tcp, udp, icmp, etc.)
protocol if the protocol is privileged (≤ 1024) or not
flag normally SF (successfully connected and terminated according to

the protocols), but can be an error status such as REJ, S0, S1, etc.
urgent is the ”urgent” flag used in any of the data
wrong size rate if packet is fragmented, how many are “wrong” fragments per second

Table 1: Within Connection

count the count of such connections
rej count the count of connections to a service that get the

flag “REJ”
(i.e. a packet that has a flag SYN which is
met by an RST packet from the receiving end)

S01count the count of connections to a service that receive
an ACK on a SYN packet that they never sent

diff hosts the count of unique (different) destination hosts
diff rate diff hosts / count

Table 2: Same Service

intrusion detection models. We use the frequent
episodes algorithms [7] for this analysis.

A framework has been developed, first proposed in [4],
of applying data mining techniques to build intrusion de-
tection models. This framework consists of programs
for learning classifiers as well as a support environment
that enables system builders to interactively and itera-
tively drive the process of constructing and evaluating
improved detection models. The end product of this
process is a set of concise and intuitive rules (that can
be easily inspected and edited by security experts when
needed) that can detect intrusions. The rules are then
subsequently ported over to N-code as sub-routines or
independent functions.

3.2 Mining Data to Construct Attributes

In order for data-mining programs to compute effective
intrusion detection models, we must first process and
summarize packet-level network traffic data into “con-
nection” records. We initially start out with the raw audit
data (commonlytcpdump binary output) of the desig-
nated network we wish to monitor. This is then sub-
sequently preprocessed into individual packets/events in
ASCII format. As the packets are summarized accord-
ing to their separate connections, we record their within-
connection features which may be deemed as “tradi-
tional attributes” of a connection record. Refer to to Ta-
ble 1 for examples of these attributes. We use the mined

patterns from network connection records as guidelines
to construct temporal statistical attributes for building
classification models [5]. We performed pattern min-
ing and comparisons using intrusion data of several well-
known attacks, e.g., port-scan, ping-sweep, etc., as well
normal connection records. Each of the unique intrusion
patterns are used as guidelines for adding additional fea-
tures into the connection records to build better classifi-
cation models. These temporal and statistical attributes
are shown in Table 2, and Table 3.Same Destination
attributes deal with all connections to a particular host,
and is not concerned with the number of ports or ser-
vices being accessed; it only keeps track of the connec-
tions for the specified host.Same Serviceattributes deal
with all connections to a particular port or service being
sent throughout the network; it keeps track of the con-
nections for the specified service. An N-code filter has
been written for each of these attributes.

With the addition of these specific attributes to the stan-
dard features of connections, “rules” of intrusion detec-
tion models can be produced in NFR by machine learn-
ing via RIPPER.

3.3 Learning Detection Rules

We apply RIPPER to the connection records to generate
the classification rules for the intrusions. Like other rule
learning systems, it is used for classifications problems.

count the count of such connections
rej count the count of connections that get the flag“REJ”

met by a particular host
S01count the count of connections that send a SYN packet

but never get the ACK packet (S0), or receive
an ACK on SYN that they never have sent (s1)

diff services the count of unique (different) services
diff srv rate diff services / count

Table 3: Same Destination

Figure 1: Example tcpdump File

...
12:22:18.336681 im.a.hacker.com.2019 > your.machine.org.talk: udp 28 (frag 242:36@0+)
12:22:18.336681 im.a.hacker.com > your.machine.org: (frag 242:4@24)
12:22:18.356681 im.a.hacker.com.2019 > your.machine.org.talk: udp 28 (frag 242:36@0+)
12:22:18.356681 im.a.hacker.com > your.machine.org: (frag 242:4@24)
12:22:18.376681 im.a.hacker.com.2019 > your.machine.org.talk: udp 28 (frag 242:36@0+)
12:22:18.376681 im.a.hacker.com > your.machine.org: (frag 242:4@24)
...

A “training” period is initially required for RIPPER to
gather the necessary data on the network to compute
models. The purpose is two-fold:

1) establishing “normal” traffic patterns and variants that
the network may encounter to establish anomaly detec-
tion,

2) introducing known intrusion methods and attack
scripts into the network in order to inductively learn the
classification models of intrusions

Here we provide example rules used to detect known
attacks. In particular, we illustrate how to detect and
recognize an attack which is categorized asdenial-of-
service.

Let us suppose that a hacker launches “teardrop” from
machine im.a.hacker.com and is attempting to bring
down the server your.machine.org. Teardrop transmits
a number of overlapping fragmented UDP packets to a
specified host. Fig. 1 shows the tcpdump data of such an
attack.

Here, the data is first processed into connection records
with the attributes described in section 3.2 along with the
class label “teardrop”. RIPPER is then applied to these
records to produce a teardrop rule shown to Table 4, for
monitoring the teardrop intrusion.

While this may seem intuitive to a system builder, it is

important to distinguish that our data mining programs
hasautomatedthe process of generating such heuristics.
Our system would then call upon the machine translator
to compile the teardrop rule, and generate the appropri-
ate N-code that filters out all network traffic except for
the information concerning this particular type of attack.

3.4 Network Flight Recorder

NFR is a powerful software package that monitors and
provides information concerning network traffic. It also
analyzes the traffic and generates statistics that can then
be displayed in a graphical format. We primarily chose
NFR for the following reasons:

1) it does not interfere with network activity, necessary
for accurate data analysis

2) it possesses a language flexible and portable enough
to be programmed on an internal basis, rather than hard-
coded in the monitoring application

3) it has real-time alert capability

NFR runs primarily on a packet-sniffing engine that
is responsible for filtering and reassembling. While
packets are passed through the NFR daemon, they are
checked against a list of filters for evaluation. The fil-
ters, written in “N-code”, (an interpreted programming

Rule Translation
if (protocol = UDP and wrongsize rate≥ 3) (the current connection has succession of fragmented

packets coming in at a rate over 3 packets/sec
and the fragmentation is “wrong”)

Table 4: Tear Drop Rule

language) perform the various functions and tasks that
are activated by the incoming packets. [8]

In Appendix we have an example of the wrongsize rate
attribute concerning UDP packets.

3.5 Generation of N-Code Filters

As discussed earlier, the attributes of connection records
are implemented as subroutines that may be called upon
to check the rules that were generated by machine-
learning.

Observe that a RIPPER rule simply consists of a se-
quence of attribute value tests. With each attribute im-
plemented as an N-code filter, a rule can be automati-
cally translated into an N-code filter that consists of a
sequence of function calls to the N-code filters. For ex-
ample, the “teardrop” RIPPER rule is translated into a
“teardrop” N-code filter, as shown in Figure 2.

4 Experiments

Our network for intrusion detection research runs pri-
marily on six hosts connected to a T1 subnet of a larger
domain of a university LAN. NFR 1.6, runs on a Solaris
X86 machine where all data recorded is contained on an
external 6.0 GB SCSI HD. While a training period of 2-
3 days has been allotted for this network, it is important
to establish that training periods were continuously be-
ing conducted to fine-tune the accuracy of the detection.
Traffic is relatively light in saturation, rarely ever going
over 60-70 Megabits/sec.

The types of intrusions that we are primarily concerned
with fall into 4 main categories:

1) denial-of-service (e.g., ping-of-death, SYN flood,
smurf, teardrop, etc.)

2) unauthorized access from a remote machine (e.g. via
guessing password)

3) unauthorized access to local superuser privileges by
a local unprivileged user (e.g., various buffer overflow
attacks)

4) surveillance and probing (e.g., port-scan, IPscan, etc)

We are gathering training data on these attacks, produc-
ing RIPPER rules, and converting the rules into NFR
N-code filters.

4.1 Details

A connection filter is used to generate and store a record
for each network connection. These connection records
are kept in a global array, and are ordered by their times-
tamps (that is, the start time of the connections). This
array is used for temporal and statistical analysis on the
connections and for feature construction.

A connection record consists of a timestamp, the source
and destination hostnames, the port numbers, the “tra-
ditional” attributes, and the temporal and statistical at-
tributes.

4.2 Issues

The biggest issues we face are optimizing the connec-
tion filter, and excluding certain types of connections
that may occur within the LAN that are proven to be
harmless, but may overload the buffer allocated by the
connection filter with the number of packets being gen-
erated.

Connections within a network may remain open for long
periods of time and create large amounts of packet traf-
fic. This can occur, for example, when exporting X win-
dow system and browser applications to a remote host.
We consider all traffic generated by such remote appli-
cations to be part of one connection; consequently, key-
board, mouse, and display update operations can easily
overflow the single connection’s buffer. Currently our
only workaround is to forbid such exported applications.

filter teardrop_rule(ip.src, conn_id, ip.protocol) {
if (wrong_size_rate (conn_id) >= 3 && ip.protocol ==17)

{
$message = cat("This is a TEARDROP!* sent from " ip.src, }

}
echo ($message);

}

Figure 2: Automatically Generated N-code Filter for “teardrop”

To minimize dropped packets, NFR filters should reduce
the volume of incoming packet traffic before forwarding
to a backend;en masserecording is best done in the NFR
engine itself. Our present connection filter consumes a
substantial portion of the NFR host CPU, subsequently
increasing the number of dropped packets from the en-
gine.

Finally, an online IDS such as ours cannot afford the
luxury of deferring the analysis of packet traffic; this
analysis must be done in real-time and consumes ad-
ditional CPU over offline methods. However, we hope
to continuously improve the efficency of our filters by
considering the computational cost of the attributes and
prioritizing the rules that are being called.

5 Conclusions and Future Work

In this paper, we have outlined a data mining framework
for building ID models. We describe how models pro-
duced via on-line analysis of audit data that can be au-
tomatically translated into NFR, a real-time IDS. Our
experiences thus far show that our approaches are very
effective.

We plan to port our system to the latest 2.0.3 commercial
release of NFR, to take advantage of its new features,
such as it’s new functions and capabilities in N-code,
a faster packet-sniffing engine, and the provision of a
mini-Web Server which eliminates the need for an inde-
pendent Web daemon to be running. Preliminary steps
have already been taken to detect simple intrusions (ie
portscan, ping-of-death, synflood) and while these rules
derived from the attributes have proven to be successful,
we would like to implement more complex attributes for
sophisticated methods of intrusions.

6 Acknowledgments

We are very grateful to the NFR engineering team who
have continuously provided us with support concerning
the NFR software. We would like to also thank Matthew
Miller from Columbia University for his help and en-
couragement.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Min-
ing association rules between sets of items in large
databases. InProceedings of the ACM SIGMOD
Conference on Management of Data, pages 207–
216, 1993.

[2] W. W. Cohen. Fast effective rule induction. InMa-
chine Learning: the 12th International Conference,
Lake Taho, CA, 1995. Morgan Kaufmann.

[3] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The
KDD process of extracting useful knowledge from
volumes of data. Communications of the ACM,
39(11):27–34, November 1996.

[4] W. Lee and S. J. Stolfo. Data mining approaches
for intrusion detection. InProceedings of the 7th
USENIX Security Symposium, San Antonio, TX,
January 1998.

[5] W. Lee and S. J. Stolfo. A data mining framework
for building intrusion detection models. In1999
IEEE Symposium on Security and Privacy., Oak-
land, CA, May 1999.

[6] Teresa F. Lunt. Detecting intruders in computer sys-
tems. InProceedings of the 1993 Conference on
Auditing and Computer Technology, 1993.

[7] H. Mannila, H. Toivonen, and A. I. Verkamo. Dis-
covering frequent episodes in sequences. InPro-
ceedings of the 1st International Conference on

Knowledge Discovery in Databases and Data Min-
ing, Montreal, Canada, August 1995.

[8] Inc. Network Flight Recorder. Network flight
recorder. http://www.nfr.net, 1997.

Appendix

UDP wrong_size_rate Detection contains two filters:
First is the udpfrag filter which keeps an array indexed by
cat (ip.dst, "-", ip.src)
which keeps track of how many fragmented udp packets have been sent
between src and dst.
#
Second is the wrong_size_rate filter wich checks udpFrags every second to check
to see if hostpair has had more than m udpfrags where m is ALERT_NUM.

ALERT_NUM = 1; # The number of frags in TEAR_FREQ seconds that should
trigger an alert.

TEAR_FREQ = 1; # The frequency (in seconds) to check the frag count.

This filter will be triggered by only udp packets
filter udpFragFilter udp () {

byte(packet.blob, 14) is the first byte of the ip header
inside the ethernet frame
so: byte(packet.blob, 20) is the 7th byte of the ip header.
We only want to continue if more fragments bit is set.

The 18th and 19th bytes of the packet are the 5th and 6th bytes of
the ip header. This is the Identification, which is only used if there
is fragmentation. Thus, if it is zero, then there is no fragmentation,
and we don’t need to look at the packet.
if (short(packet.blob, 18) == 0) {

return;
}

record system.time,
$sport, $dport,
ip.src, ip.dst
to ipfrags_recorder

$message = cat (ip.src, ":", $sport, " sent ",
ip.dst, ":", $dport,
" a fragmented UDP packet.");

echo ($message);
assemble the index into udpFrags
$index = cat (host(ip.dst), ":", $dport);

No one should be sending fragments whose size is not evenly
measurable in bytes!!

if (ip.len % 8 != 0) {
if (udpFrags[[$myIndex, "badCount"]] == NULL)

udpFrags[[$myIndex, "badCount"]] = 1;
else
udpFrags[[$myIndex, "badCount"]] =

udpFrags[[$myIndex, "badCount"]] + 1;

Get together important info about the packet:
We want to know the length of the packet, and we want the
3-bit flags and 13-bit offset. These are bytes 6 and 7
of the IP header, or 20 - 21 of the ethernet packet.

$pktInfo["ip.len"] = ip.len;
$pktInfo["fragShort"] = short(packet.blob, 20);

We need 2 pkts to be able to check the offset correctedness.
If this is the first fragmented packet, we need to keep track
of the "fragShort" in order to be able to compute the offset in
subsequent packets, so we’ll record it.

if (udpFrags[$myIndex] == NULL) {
udpFrags[$myIndex] = listadd(udpFrags[$myIndex], $pktInfo);
udpFrags[[$myIndex, "firstShort"]] = $pktInfo["fragShort"];
return;

} else { # now we know it’s a subsequent packet.
udpFrags[$myIndex] = listadd(udpFrags[$myIndex], $pktInfo);
$fragList = udpFrags[$myIndex];

$n = listlen($fraglist);
while ($n > 0) {

$pkt1 = elem($fraglist, $n - 1);
$pkt1Short = $pkt1["fragShort"];
$pkt1Size = $pkt1["ip.len"];
$pkt2 = elem($fraglist, $n);
$pkt2Short = $pkt2["fragShort"];
$pkt2Size = $pkt2Short["ip.len"];

Here we figure out the fragmentation offsets by subtracting
the "firstShort". This eliminates the values of the 3-bit
flags, which we aren’t concerned with at this point.

$offset1 = $pkt1Short - udpFrags[[$myIndex, "firstShort"]];
$offset2 = $pkt2Short - udpFrags[[$myIndex, "firstShort"]];

Here’s where we test the offsets and increment
the count of udpFrags if they don’t line up.
if (($offset1 + $pkt1Size) != $offset2)) {

if (udpFrags[[$myIndex, "badCount"]] == NULL)
udpFrags[[$myIndex, "badCount"]] = 1;

else
udpFrags[[$myIndex, "badCount"]] =

udpFrags[[$myIndex, "badCount"]] + 1;
} else # we’re fine!!

return;
$n = $n - 1;

} # close while
} # close else

} # close func.

Here we free up udpFrags.
func purge_udpFrags timeout (sec: (TEAR_FREQ + 1), repeat) {

if there aren’t any entries, then exit
if (!udpFrags) {

return;
}

empty all the entries.
foreach $myIndex inside (udpFrags) {

udpFrags[$myIndex] = NULL;
}

}

This is the main filter to check for the teardrop attach using the rule:
if ((udpFrags in TEAR_FREQ) >= ALERT_NUM)

$myIndex=$conn_Id
filter wrong_size_rate timeout (sec:1, repeat) {

if (!udpFrags) {
return;

}

foreach $myIndex inside (udpFrags) {
Here we give the alarm
if (udpFrags[[$myIndex, "badCount"]] >= ALERT_NUM) {

$message = cat ("*Wrong_Size_Rate*: ", ip.src, " sent ", $index,
" more than ", ALERT_NUM,
" wrongly fragmented UDP packets in ",
TEAR_FREQ, "seconds.");

echo ($message);
}

}
Here we call our function to clear udpFrags.

purge_udpFrags();
}

