USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

5" USENIX Conference on Object-Oriented Technologies and Systems
(COOTS '99)

San Diego, California, USA, May 3-7, 1999

Adaptation and Specialization
for High Performance Mobile Agents

Dong Zhou and Karsten Schwan
Georgia Institute of Technology

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org ~ WWW: http://www.usenix.org

Adaptation and Specialization for High Performance Mobile
Agents

Dong Zhou and Karsten Schwan

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332
{zhou,schwan }@cc.gatech.edu

Abstract

Mobile agents as a new design paradigm for dis-
tributed computing potentially permit network ap-
plications to operate across dynamic and hetero-
geneous systems and networks. Agent computing,
however, is subject to inefficiencies. Namely, due
to the heterogeneous nature of the environments in
which agents are executed, agent-based programs
must rely on underlying agent systems to mask some
of those complexities by using system-wide, uniform
representations of agent code and data and by ‘hid-
ing’ the volatility in agents’ ‘spatial’ relationships.

This paper explores runtime adaptation and agent
specialization for improving the performance of
agent-based programs. Our general aim is to enable
programmers to employ these techniques to improve
program performance without sacrificing the funda-
mental advantages promised by mobile agent pro-
gramming. The specific results in this paper demon-
strate the beneficial effects of agent adaptation both
for a single mobile agent and for several cooperat-
ing agents, using the adaptation techniques of agent
morphing and agent fusion. FExperimental results
are attained with two sample high performance dis-
tributed applications, derived from the scientific do-
main and from sensor-based codes, respectively.

1 Introduction

Mobile agent[4, 14, 18, 42] as a new design paradigm
for distributed computing potentially permit net-
work applications to operate across heterogeneous

systems and dynamic network connectivities, to re-
duce their bandwidth needs, and to avoid overheads
caused by large communication latencies. In addi-
tion, mobile agent systems[11, 20, 24, 38] are de-
signed to facilitate the construction of distributed
programs that have the flexibility to adapt their op-
eration in response to the heterogeneous nature of
or dynamic changes in underlying distributed com-
puting platforms.

Agent computing, however, is subject to several in-
efficiencies. Some of these inefficiencies are caused
by the complexities of the environments in which
mobile agents are deployed. Such environmental
complexities include heterogeneity in architectures,
communication networks (both at the hardware and
protocol levels), operating systems, and agent man-
agement systems. This diversity requires agent-
based programs to rely on underlying agent systems,
most of which are based on interpreted languages
like Java and Tecl/Tk[10, 26], to mask some of these
complexities, by using system-wide, uniform repre-
sentations of agent code and states to store, trans-
port and execute agent programs. Additional inef-
ficiencies in agent computing are caused by the dy-
namic nature of agent-based programs, where differ-
ent components of these programs exhibit volatile
‘spatial’ relationships. Such ‘spatial’ volatility re-
sults from agents’ mobility and from the runtime
service/agent discovery schemes being used. The
underlying agent systems ‘hide’ this volatility by en-
suring that remote agent invocations are directed to
current agent execution sites.

There has been considerable work on dealing
with inefficiencies in agent computing, including
the development of Just In Time (JIT) compil-

ers for agent code[23], of methods for creating
efficient Java programs[37], and of performance
tuning techniques and tools for distributed agent
applications[15]. These efforts are particularly rele-
vant to performance-constrained distributed appli-
cations, such as data mining, where large amount of
states may have to be moved upon discovery, and in-
teractive simulations, where application must offer
real-time performance to end users [12, 21].

Our research is exploring two approaches for im-
proving the performance of distributed, agent-based
programs: (1) runtime adaptation and (2) agent
specialization. The general aim of this work is to en-
able programmers to employ these techniques to im-
prove program performance without sacrificing the
fundamental advantages promised by mobile agent
programming. This paper explores the effects of us-
ing two specialization approaches: agent morphing
on a single mobile agent and agent fusion on multi-
ple cooperating agents.

The remainder of this paper is organized as follows:
Section 2 presents two applications that can benefit
from the use of agent technologies while also requir-
ing levels of performance not easily attained with
current agent systems. interactive continuously Sec-
tion 2 also describes the performance implications
of using agent- vs. compiled object-based repre-
sentations of the software components involved in
interactive data viewing. Based on these evalua-
tions, Section 3 next describes two agent specializa-
tion techniques — morphing and fusion — that ad-
dress some of the runtime performance problems
of applications like these. Significant performance
gains are demonstrated from applying these tech-
niques to the aforementioned applications for a va-
riety of typical scenarios of use. Based on the im-
provements demonstrated in this section, Section 4
then describes next steps in our research, includ-
ing the design of runtime support in which various
adaptation techniques are easily applied. The paper
concludes with a discussion of related research (see
Section 5), conclusions, and future work (Section 6).

2 Using Agents with High Performance
Applications

2.1 Mobile Agents and High Performance

Advances in the processing and communication ca-
pabilities of today’s computer systems make 1t possi-
ble to wire heterogeneous and physically distributed
systems into computational grids[8] that are able to
run computation- and communication-intensive ap-
plications in real time. Consequently, end users are
encouraged to interact with their applications while
they are running, from simply inspecting their cur-
rent operation, to ‘steering’ them into appropriate
directions[27]. Examples of such applications in-
clude teleimmersion, interactively steered high per-
formance computations, data mining, distributed
interactive simulations, and smart sensors and in-
struments [12, 21, 41, 44].

Data in such applications comes from sources like
sensors, disk archives, network interfaces, and other
programs, is transformed while passing through the
computational grid, and is finally output into sinks
like actuators, storage devices, and the user inter-
faces employed by interactive end users. Applica-
tion interfaces also permit applications to be re-
configured on-line in response to explicit user re-
quests or to changes in user behavior. Sample re-
configurations include the creation or termination of
certain application components, component replica-
tion, changes in dependencies between components,
and changes in the mapping of components to com-
putational grid elements.

Our aim is to use mobile agents to implement some
of the data processing tasks of interactive high per-
formance applications. More specifically, while it is
unlikely that a high performance simulation like a
fluid dynamics[39] or a finite element code will em-
ploy mobile agents for the simulation itself, it 1s de-
sirable to represent as agents many of the computa-
tions and data transformations required for their in-
teractive use. Such representations enable end users
to interact with their long running simulations from
diverse locations and machines (e.g., when working
from home), and they permit the appropriate place-
ment of data transformations such that data reduc-
tions are performed where most appropriate (e.g.,
before sending data to a weakly connected machine
located in an end user’s home). Our efforts are sup-
ported by several recent developments, including the

creation of agent-based visualization and collabo-
ration tools for high performance computations[13,

40].

Our second aim is to freely mix the use of agent-
vs. compiled object-based representations of data
transformation tasks, such that end users need not
be aware of the current task representations and
such that changes in task location and represen-
tation are made in response to current user be-
havior and needs. This paper presents our design
ideas and initial implementation concerning a mixed
agent/object system. This work is based on recent
work elsewhere on object or agent specialization[28]
and by our own work on object technologies for high
performance and interactive parallel or distributed

programs[6, 35, 36].

The remainder of this section describes and evalu-
ates two applications that are representative of in-
teractive scientific programs and sensor processing
applications, respectively. The application drawn
from the scientific domain, termed Interactive Ac-
cess to Scientific Data (ISDA), has performance con-
straints due to the amounts of data being manip-
ulated and displayed, regardless of end users’ lo-
cations. The other application’s performance con-
straints are derived from the necessity to process
data in real-time or at certain rates, while sensor
(source) and sink locations may change. This ap-
plication, termed Parallel Scalable SAR Processing
Simulator (PSSPS) is derived from the standard
SAR (Synthetic Aperture Radar) benchmark origi-
nally developed at Lincoln Labs[46].

2.2 Sample Applications: Interactive Sci-
entific Data Access (ISDA) and Par-
allel Scalable SAR Processor Simu-

lator (PSSPS)

Both the ISDA and PSSPS applications are stream-
based, driven by multiple inputs (stream sources)
and able to service any number of end points
(stream sinks). The purpose of ISDA (Figure 1)
is to enable human end users to view and steer a
high performance simulation (a global atmospheric
model acting as a data source) via visualizations
of the model’s output data (ie., the stream sinks).
The model simulates the transport of chemical com-
pounds through the atmosphere. It uses assimilated
windfields derived from satellite observational data
for its transport calculation, and known chemical

concentrations also derived from observational data
as the basis of its chemistry calculations.

Of interest to this paper are the ancillary compu-
tations that ‘link’ the atmospheric model itself to
various visualizations, where the set of these ad-
ditional computations is depicted as a ‘cloud’ con-
necting the simulation to its inputs/outputs in Fig-
ure 1. Most such ‘cloud elements’ implement trans-
formations that prepare model data for viewing by
end users, e.g., reducing the amount of model data,
transforming model data from its model-internal to
a user-viewable representation, etc. Other ‘cloud el-
ements’ perform additional computations like com-
paring model outputs with satellite observational
data.

The specific cloud elements used in our work are (1)
a regression model with which statistical tests may
be performed on selected data, (2) a specialized data
reduction code that ‘clusters’ scientific data[29] as
per end user needs, (3) the Spectral-to-Grid trans-
former(s) that transforms the simulation model’s in-
ternal data representation to the grid-based repre-
sentation suitable for data visualization, and (4) the
Isosurface calculator(s) that computes volumes of
data of interest to end users and also generates the
graphical primitives based on which this data may
be viewed (an example of data of interest to end
user 1s data volumes in which certain chemical con-
stituents have equal levels of concentration, and an
example of generated graphical primitives are the
triangular representations of data suitable for the
OpenGL rendering commands used in the 3D data
visualization).

For the ISDA application, the argument for using
agent-based representations for selected ‘cloud’ ele-
ments is apparent from the fact that the visualiza-
tion engines themselves may have agent-based rep-
resentations, as in the case of VizAD[40], in addi-
tion to object-based representations such as the SGI
Openlnventor-based visualizations described in [30].
Specifically, when end users work in laboratories,
they are likely to use high end machines capable of
running the Openlnventor-based visualizations in-
teractively in order to inspect model data in detail.
When end users are simply ‘looking a colleague over
the shoulder’ with the collaborative interfaces used
in our work, then they require less detailed infor-
mation and are likely to use ubiquitously runnable
visualization tools like VizAD that enable such col-
laboration across a large diversity of machines and
locations.

Difference

repository of observational data

> Spectral2Grid —]
3D visualization
& steering

=

IDL visualization

Residual Circulation

chemical model

historical chemical model results

Isosurface
C
Backend ‘

3D visualization
& steering

TR
@] @]
©

Nple

suahzation
\ >

active interface

visualization and steering
interfaces

Figure 1: Computational components in ISDA.

Consequently, the associated data transformations
may need to change data representations repeat-
edly, first from the model’s internal spectral form
of data to grid form, second from grid form to de-
scriptions that may be rendered graphically, as ex-
emplified by an Isosurface calculator. This trans-
former may reside as an agent on the same machine
as the agent-based VizAD visualization or it may
reside on a remote machine and operate as a spe-
cialized data reduction engine if the VizAD visual-
ization is run on a weakly connected machine, such
as a laptop or a computer located in a user’s home.
Clearly, the suitable choices of representation and
the locations of agent- or object-based cloud ele-
ments depend on many factors, including current
user needs and computing platform characteristics.
The results presented below represent a first step to-
ward automating choices like these, as they demon-
strate the tradeoffs in performance when different
element representations are used.

In PSSPS (Figure 2), data is either synthesized on-
line or read from disk files that contain radar im-
ages. The processing of this data is performed by
cloud components that include (1) selectors that fil-
ter out uninterested frames, (2) FIR filters for video
to baseband I/Q conversion, (3) range compression
units for pulse compression, and (4) Azimuth Com-
pression Units for cross-range convolution filtering.
Convolution results are the output strip-map im-
ages used for visualization. The implementation of

PSSPS used in our work exhibits both the pipeline
parallelism similar to that of the ISDA application
and additional parallelism internal to pipeline stages
that are able to utilize it, as is exemplified by the
data parallel processing of the convolution stage for
the purpose of speeding up this process.

In the PSSPS application, agent representations
are useful for sensors in remote or mobile locations
and/or for end users who wish to understand sen-
sor data from mobile or remote locations. One ex-
ample 18 a battlefield where radar data should be
made accessible in some form to mobile units in the
field operating at locations remote from the radar it-
self, only when such operational capabilities are cur-
rently required, whereas more permanent processing
is installed and operated at regional or global com-
mand sites. This implies the need for flexibility in
the location and execution of agent-based SAR com-
putations associated with data sources and sinks.

2.3 Tradeoffs across Alternative Program
Representations

The basic performance problems arising from the
use of agent vs. compiled object representations of
ISDA or PSSPS components are well understood.
Usage of interpreted languages, such as Java[38, 20,
24], is a major cause of these problems as is depicted
by experiment results listed in table 1. These ex-

Data from

Azimuth
Compression

Selector

sensor or for

disk archive

Fir Filtering }ﬁ\

interesting
data

Range Compression [_Range pulse

Azimuth Imagery for

display and

Compression

processing

Azimuth
Compression

Figure 2: Structure of PSSPS.

periments use the Sun Solaris native C compiler to
generate compiled code and use JDK1.2-beta3 pack-
age for the Java compiler and runtime environment
(including the JIT compiler used in our later exper-
iments). The platforms used in the experiments are
the Sun Ultra-Sparc 30 uniprocessor systems with
Solaris 2.5.1 and 100MB FastEthernet interconnec-
tion.

Specifically, these measurements demonstrate that
for an application component like PSSPS’ Azimuth
computation, which has a large amount of compu-
tationally expensive floating point operations, the
Java code realization runs almost 10 times slower
than compiled code implemented with C. And simi-
larly, for an application component like ISDA’s Iso-
surface generation back-end, the Java code imple-
mentation on average takes 17 times more time than
its native counterpart for a random set of grid data.

Agents java | compiled | ratio

code code
Azimuth processing | 30,992 2,948 10.513
Isosurface back-end | 8,348 461 18.11

Table 1: Comparing the performance of Java vs.
native code(in msecs except for ‘ratio’).

In comparison with Table 1, the measurements pre-
sented next demonstrate the utility of JIT compil-
ers for Java, which constitutes one way in which
agent-based programs and their runtime environ-
ment may be specialized for efficient execution on
target machines that have such compilers available.
Specifically, Table 2 shows that with JIT, Java re-
alizations of application components are from more
than 3 times (for Isosurface back-end) to close to
5 times (for Azimuth processing) faster than those
without JIT. This table also shows that static op-
timizations done by compilers vary in their effec-

tiveness and that Java inter-class optimization does
not much affect either of the two application com-
ponents.

The performance improvements demonstrated in Ta-
ble 2 might be sufficient for some applications. How-
ever, for applications like PSSPS and ISDA, their
scalability and utility for large-scale data sets and
for realistic execution rates would be compromised
substantially by the fact that their JIT-based Java
representations are 70% (in the case of Azimuth pro-
cessing) to 300% (in the case of Isosurface back-
end) slower than native code. However, perhaps
even more important is the fact that significant ad-
ditional overheads exist for distributed agent-based
programs in which multiple agents must cooperate
remotely, as is the case for both the ISDA and PSSPS
applications.
tems obviously need efficient communication mech-

Agent-based high performance sys-

anism to facilitate cooperation, which may involve
large amounts of data, among agents. Unfortunately,
our third experiment shows that Java RMI[43], which
is being used for agent communication in many of
the Java-based agent systems, has overheads which
limit these applications’ scalability in the presence
of intensive agent communication.

Our experiment uses three components of PSSPS:
Fir filtering, Range processing and Azimuth pro-
cessing, to construct three pipelines with length of
0(Azimuth only), 1(Azimuth and Range), and 2(all
three components). Our agent implementation uses
Java and RMI, while the compiled object implemen-
tation uses C and OTL. OTL 1is the object invo-
cation layer of the COBS CORBA-compliant ob-
ject infrastructure developed at GT for high perfor-
mance object-based programs[36, 7]. OTL is built
on top of TCP and can perform object invocation
across heterogeneous platforms.

Agents No Normal Inter-class
Optimization | Optimization | Optimization
Azimuth | Without JIT 30,992 30,885 30,736
processing With JIT 5,246 5,223 5,258
Ratio 5.908 5.913 5.846
Isosurface | Without JIT 8,348 7,452 7,469
back-end With JIT 1,921 1,812 1,819
Ratio 4.364 4.113 4.106

Table 2: Effects of using JIT compilation(in msecs except for ’ratio’).

The experimental results depicted in Table 3 demon-
strate the importance of RMI performance for even
the computationally intensive applications. With
increased pipeline lengths, the relative performance
of the compiler optimized, JIT-enabled Java repre-
sentation over that of the compiled code using our
efficient distributed object infrastructure gets pro-
gressively worse. We suspect that this performance
problem of Java RMI is due to marshaling overhead
(object creation, stream creation) and to threading
and synchronization costs. There has been research
on improving the performance of Java RMIs[19], but
this has not yet resulted in improvements to the
standard Java distribution.

pipeline | java | native | ratio
length code code | ratio
0 5223 | 2,948 | 1.772
1 23,095 4,968 4.649
2 34,404 6,054 5.683

Table 3: JIT’s effectiveness for pipelined applica-
tions(in msecs except for 'ratio’).

The measurements depicted above demonstrate the
need for additional optimizations of agent-based rep-
resentations of distributed programs if they are to
be used to implement high performance applica-
tions. One basic issue, we believe, is that current
JIT-based optimizations lack information about the
operation and behavior of these distributed appli-
cations that can be exploited to further improve
their performance. Specifically, first, if the dura-
tion of an agent’s operation is known, then it be-
comes feasible to morph at runtime an agent-based
representation to one using native code, invisibly to
end users and using techniques like cross-platform
binary code generation or access to code reposito-
ries. The technique assumed in this paper relies on
the presence of code repositories[2]. Second, if mul-
tiple agents residing and cooperating on one ma-
chine could be ‘compiled’ as if they were one unit,

then this compilation could use global knowledge
not accessible to either method-based JIT compila-
tion or component-based Javac compile-time opti-
mization, thereby able to address both intra- and
inter-component (e.g., RMIs) performance issues.
Such global properties are considered by the agent
fusion technique explored in this paper, which com-
bines multiple agents into single, more powerful and
potentially, more efficient agent representations.

Morphing, fusion, and their application to the ISDA
and PSSPS distributed programs are discussed in
more detail next.

3 Techniques for High Performance
Agent Realization

3.1 Agent Morphing

Morphing Concepts. One specialization mech-
anism proposed in this paper is morphing, which
means changing the form of a mobile agent to adapt
to the specific platform on which it is currently run-
ning. Namely, each agent may have two forms:
a platform independent form — henceforth termed
neutral form — and a platform dependent form —
henceforth termed natiwe form. The agent is pro-
grammed to be able to morph between these two
forms, using some of the techniques exposed in Sec-
tion 3 below.

This paper establishes the importance of agent mor-
phing and describes the internal structure of mor-
phable agents. Briefly, we assume that all agents
start with their neutral forms, which implies that
they have no architectural knowledge of the hosts
when they are deployed; this also facilitates the dy-
namic introduction of new architectures into the

system. Once started, the agent will spawn a low
priority thread to acquire its native implementation,
and 1f such a native form exists, the agent can then
switch from its former agent mode into native mode
whenever deemed necessary. Such mode switching
can occur either

e immediately after the agent has acquired its
native form,

e when a morphing instruction in the program
1s encountered,

e or in response to end user request or to events
generated by the quality of service manage-
ment system[33] that controls agents/objects’
efficient execution.

During mode switching, the system transforms and
copies the agent-mode states into its native-mode
representation. Such transformation and copying
are platform-dependent, and are carried out by a
set of functions within the native implementation
(for our experiments, in a JNT module). This func-
tion set can either be user- or system-defined. In
the latter case, the application programmer has to
define an interface describing the data fields that
need to be transformed and copied when morphing
is performed. This interface has to be written in
both native (in our case C) and agent (Java) code.
System-provided state transformation functions rely
on these interface definitions; they also rely on ob-
ject reflection techniques to achieve transformation
and copying.

An agent may also morph back from its native form
to 1ts neutral form, which happens when the agent
decides to migrate. In this case, the agent first
transforms and copies its native states into neutral
states, then switches back into agent mode, and
finally migrates, with the help from the underly-
ing agent system[38]. In general, morphing may
be triggered at any point during agent execution
in response to externally generated events or by the
agent itself in response to internal state changes.
However, after morphing, an agent has to restart
from a fixed entry point, which essentially requires
an agent to record its (application) state prior to
morphing.

The morphable agents designed and used with the
ISDA and PSSPS applications described in this pa-
per utilize two key abstractions: (1) invocation adap-
tors and (2) events.

The purpose of the adaptor is like that of the poli-

cies associated with objects described in [9, 16, 35]:
it intercepts all incoming invocations to the mor-
phable agent, ‘translates’ them to the form appro-
priate for the agent’s current representation (neu-
tral or native), and then directs the invocations to
this representation’s implementation. Each agent
uses a native form adaptor and a neutral form adap-
tor at the same time, so that invocation clients of
the agent can invoke the agent regardless of their
current states. The system we are constructing as-
sumes that each agent is morphed in its entirety,
either residing in its native or its neutral state; this
eliminates problems with partial state translation
and state consistency when state is accessed simul-
taneously by native and neutral method implemen-
tations.

The purpose of events is to provide a uniform man-
ner in which morphing is initiated, in response to
the receipt of events that are internal or external
to the agent. Internal events may be raised when
certain state changes occur; external events may be
raised by other agents or by a resource management
system that has global knowledge of the agent pro-
gram’s behavior.

Application of Morphing to Sample Applica-
tions. Sample morphable agents have been con-
structed with Java, where specialized (morphed) ver-
sions of these agents are also available as native code
for SUN Sparc/Solaris machines. The performance
benefits of agent morphing have already been pre-
sented in tables 1 and 2, when applied to the Isosur-
face and Azimuth transform agents. In these partic-
ular examples, morphing overheads only come from
native library loading and minimal application state
translating and copying and are thus almost negligi-
ble. However, we expect such overheads to be higher
when a code repository server is involved and/or
when the amount of shared data is significant and
morphing is applied more frequently. These agent
realizations utilize the adaptors described in this
section, using internally generated events. We man-
ually program adaptors in our sample applications,
but we believe that such adaptors can be readily
generated by a compiler from IDL files.

The conditions under which morphing is applied are
straightforward. In each example, when the amount
of data being processed by agents increase (e.g.,
the ISDA application’s visualization wishes to view
more data or the PSSPS application’s image resolu-
tion is increased), then the agent implementations

of these transformers do not deliver suitable per-
formance. This fact 1s detected by inspection of
internal data buffer fill levels'. To speed up data
processing, the agent first acquires its native rep-
resentation, then invokes an application-provided
state-checkpointing method (if such a method was
defined by the user), then transforms its state us-
ing the function set provided either by the system
or the application programmer, and finally, initiates
execution of its native form from a fixed entry point.

Discussion. Advantages of morphing include the
performance improvements demonstrated in this sec-
tion and also potential improvements concerning the
predictability of agent execution. Predictability is
particularly important for real-time and embedded
applications and because Java code execution times
are believed to be difficult to predict due to in-
terpretation and garbage collection[25]. Difficulties
with morphing arise from two sources. First, if na-
tive implementations cannot be acquired from a ma-
chine’s local file system, then morphing overheads
may become large due to the costs of access to re-
mote repositories. Second, increased generality and
complexity of native code compared to the sample
agents used in our work may make morphing in-
feasible and/or require the provision of additional
mechanisms to enable morphing. For example, with
the sample applications and with the object real-
izations used in our research, agent safety may be
guaranteed due to the sample objects’ relative lack
of internal complexity (e.g., no object-initiated file
accesses) and due to the object system implementa-
tion’s lightweight nature and heavy use of libraries.
For general CORBA- or DCOM-based object im-
plementations, guaranteeing improved performance
or predictability as well as safety will require ad-
ditional effort. Furthermore, internal native states
like ‘open file descriptors’ cause problems for mor-
phing not easily addressed for future agent systems
(see [5] for a more detailed discussion of this topic).

3.2 Agent Fusion

Fusion Concepts. Fusion is useful for distributed
agents that communicate within and across different
machines. For closely coupled cooperating agents,

communication overheads can constitute significant

I More sophisticated techniques for first detecting and di-
agnosing performance problems with pipeline-structured ap-
plications are described in [22, 34]

portions of their operating costs. For example, in
the sample applications described above, when an
‘upstream’ agent filters out much of the data, then
the remaining data handed off to the ’downstream’
agent may not result in significant communication-
based overheads. This is the case for the ‘statis-
tics” agent operating on the atmospheric data in the
ISDA application, for example. Conversely, when
such filtering does not remove much data, commu-
nication overheads may be substantial, as evident
for many of the PSSPS application’s agents.

The intent of agent fusion i1s to remove communi-
cation overheads from collaborating sets of agents
and to enable optimizations across agent bound-
aries. Briefly, these overheads include actual net-
work transport and protocol processing times, data
copying costs, and thread/process scheduling and
context switching costs that arise when tasks are
performed by multiple vs. single agents residing on
the same machine. Possible optimizations across
agent boundaries are similar to those performed
by compilers across procedure boundaries, includ-
ing inter-procedural analysis leading to code or data
motion and procedure integration where multiple
overlapping procedures are combined into a smaller
number of more efficient, combined procedures|3,
31, 32]. One particularly unfortunate communica-
tion cost is that incurred by multiple cooperating
agents residing on the same machine, where their
shared location is due to unforeseen agent migration
actions (e.g., both agents ‘found’ interesting data
on the same machine, or both agents moved to that
machine due to local resource availability). In this
case, 1t is clear that such agents would operate much
more efficiently if they were placed into the same
address space and used shared user-level threads, as
this would reduce agent invocation costs to the costs
of a few procedure calls (via adaptors). It would
also eliminate overheads associated with the imple-
mentation of asynchronous invocations, such as the
use of additional threads and their scheduling and
synchronization, and additional data copying due to
asynchrony and kernel /user space crossings.

In summary, while agent morphing specializes indi-
vidual mobile agents, fusion performs runtime opti-
mizations across multiple, cooperating agents. Fu-
sion may be applied repeatedly, to create single ef-
ficient agents from multiple collaborating agents.

Application of Fusion to Sample Applications.
Agent fusion is applied to those components in the

Host A

I sosur face
Frontend A

I sosurfaceg
backend

I sosurfaceg
backend f

= | | sosurface
Frontend B

Isosurface

I sosurface
Frontend C

Host D

(a) Initially multiple frontends are sharing
one backend.

Migrate |

(b) Later there is only frontend B1 left. The
backend decides to migrate to host B.

Host A

Host A

Host B

Host B

I sosurface
Frontend B

I sosur face
backed fused
with

frontend B1

.

(c) The backend is fused with frontend B1
for better performance.

Host D

Host C

Figure 3: A scenario for fusion of Isosurface calculation front-end and back-end.

sample applications for which co-location on the
same machine and with the same internal form (na-
tive or neutral) is likely to occur. For instance, Iso-
surface calculations in the ISDA application may be
performed outside the scope of the visualization en-
gine (if the visualization runs on a remote or weakly
connected machine) and jointly with visualization.
In fact, earlier versions of ISDA always performed
Isosurface calculation within the visualization agent
itself, as the visualization was running on a strongly
connected and high end visualization engine (i.e.,
an SGI Octane). The versions of ISDA now used
by end users do not wish to use such an instance of
the visualization agent due to their desire to operate
across a wider spectrum of machines and service a
larger number of end users.

Figure 3 depicts the situation in which fusion is car-
ried out on the Isosurface front-end and back-end,
where the back-end does the actual isosurface cal-
culation and then sends the computed isosurfaces
as data to front-end on which visualization agent
runs. Originally, there are multiple Isosurface front-
ends, and the back-end is not co-located with any of
the front-ends, with the intent of minimizing overall
communication cost and avoiding burden the visual-
ization engines with isosurface calculations. When
all front-ends except one complete their execution,
then the back-end might migrate to the remaining
front-end’s location, in order to reduce the commu-
nication cost between the two parties. The system 1s
then able to fuse the two agents to further enhance
performance. Table 4 shows the potential perfor-
mance improvements resulting from such a fusion

action. The same table also lists the results of fus-
ing two agents in the PSSPS application: fir filtering
and range processing.

In both of the experiments shown below, fusion is
done manually through simulating the actions would
have been taken by the fusion compiler. Such ac-
tions include procedure in-lining, data sharing, and
asynchrony elimination.

Discussion of Results. The results in Table 4
indicate the benefits of agent fusion clearly. The
table’s first three columns show program perfor-
mance when agents interact via remote object invo-
cation, where references to other agents are remote
object references received from a registry service.
The fourth column shows the performance of the
same programs in which references to cooperating
agents are replaced by references to local objects,
but object fusion has not been performed (ie., the
compiler did not compile both agents as one unit).
The next column shows performance subsequent to
joint agent compilation.

These experiments demonstrate that it is highly de-
sirable to put two agents into the same virtual ma-
chine and treat them as local object to each other if
they are running on the same host and closely coop-
erating. In these experiments, the largest gain from
agent fusion is due to the replacement of remote ob-
ject invocation. The gains indicated in the last col-
umn are due solely to the compiler’s use of global op-
timizations when multiple agents’ code is combined;

Different | Same Host Same process Local Fully | Fusion

Agents Realization Hosts Diff Proc Remote Object | Object | Fused | Benefit
[sosurface Java code 8,909 22,377 12,713 2,194 2,021 7.88%
back & front-end | Compiled code 4,135 4,134 575 575 511 11.13%
Fir-Range Java code 17,950 28,787 21,624 2,714 2,427 10.57%
processing Compiled code 4,177 4,166 1,488 1,487 1,039 30.13%

Table 4: Result of fusion applied to different agent forms.

They range from 7.88% to 30.13% and are due to
inter-class optimizations like inter-procedural alias-
ing and procedure in-lining, and most importantly,
the elimination of asynchrony.

3.3 Summary

Experiments with sample applications built on top
of our current infrastructure demonstrate that both
morphing and fusion have significant performance
benefits. Morphing provides 70% to 300% gains in
performance, while fusion provides from 7.88% to
30.13% additional improvements after co-locating
two agents in the same process.

The overheads caused by the acquisition of native
realizations and by state transformation in morph-
ing are relatively low, provided that morphing is not
frequently invoked and that each run of the appli-
cation lasts reasonablely long. We believe that the
frequency of morphing will be low in most cases, as
it needs to be invoked only once, unless migration is
involved. However, migration itself tends to be an
expensive activity; morphing will simply add some
costs to this process. Similar arguments hold for
object fusion.

4 Toward a System for Mobile Agent
Optimization

The performance benefits derived from agent mor-
phing and fusion presented in Sections 2 and 3
are significant. They are motivating us to construct
an agent system within which agent/object—objent—
programs are easily constructed and adapted at run-
time. Such a system consists of contracts for per-
formance requirement specifications, a notification
system for contract monitoring, policies for appli-
cation specified adaptation enactment, and finally,

system or application defined adaptations.

This paper only addresses adaptation methods and
adaptation enactment mechanisms unique to mobile
agent-based applications. In our ongoing research,
we are identifying other aspects unique to mobile
agents and therefore, appropriately addressed by an
adaptive Objent system. We expect to base this
work on previous and current research in distributed
adaptive systems[34, 6] and in distributed object
systems[45].

Specifically, our Objent system has to address the
following issues to support morphing and fusion adap-
tation:

1. Where and how are native agent forms created
and maintained?

2. How does the system ensure consistency be-
tween the migratory and native versions of
agent state?

3. When an agent’s form is being or has been
changed, can external agents not aware of this
change continue invoking it?

4. What are useful fusion algorithms?

The basic fundamental components of the ‘Objent’
system we are developing have been described in
We next outline our so-
lution approaches to the specific questions posed
above.

a previous publication[2].

Acquiring an Agent’s Native Version. Agents
platform-

Their native forms

are created and migrated in their
independent(neutral) forms.
may be created by (1) acquisition of a trusted na-
tive version from the agent’s current execution site,
involving agent retrieval from a local repository
and/or its generation by a locally resident com-

piler, or (2) agent acquisition from a remote, trusted

repository to which providers submit agents in forms
suitable for various platforms. Initial design ideas
on such a repository are described in [2].

Consistency Between Multiple Agent Forms.
An agent capable of morphing never has more than
at most two implementations, a platform-neutral
and a native one. At any one time, only one of
these implementations is active. This implies that
agent morphing necessitates state copying from the
previously active to the new agent form. We intend
to develop methods for full state copying, for par-
tial state copying, and for permitting developers to
provide specialized state maintenance methods.

Agent Invocation. When an agent changes its
form, it is not likely that the agent’s new form is
able to efficiently interpret the objects passed to it
via invocations to its old form. Moreover, one of
the purposes of agent morphing is to enable efficient
and direct communications between agents in their
native forms whenever possible.

The solution being developed in our current research
is one that permits the (inefficient) invocation of re-
mote agents that differ in form, coupled with the im-
plementation of notification protocols among agents
that enable agents to switch to an efficient invo-
cation protocol whenever possible. Specifically, we
employ adaptors that are present in all agents ca-
pable of morphing. Each adaptor has two forms:
(1) the neutral form is visible to the agent’s neu-
tral implementation; (2) the native form is visible
to the native code. An adaptor is much like an ob-
ject ‘policy’ in that all invocations in the respective
agent forms are directed to the appropriate adap-
tor. The adaptor, then, knows about the agent’s
current form, has methods generated from its inter-
face definition for request translation from one form
to the other, and is able to deal with issues arising
from the agent’s concurrent invocation in both of its
forms.

The overheads of using agent adaptors are small
when agents communicate in the same form, as was
the case for the overheads incurred by policies evalu-
ated in [35]. When adaptors must translate between
forms, overheads depend on the complexities of in-
vocation parameters.

Fusion Algorithms. The fusion algorithms used
in our current work carry out inter-procedural opti-
mization, and they reduce or eliminate the multi-
threading overheads caused by asynchronous re-
mote agent invocation. For example, in PSSPS,
an asynchronous invocation is implemented as fol-
lows: with each method in an agent’s interface def-
inition, we associate a special modifier that de-
notes whether the method should be invoked syn-
chronously (SYNC_IF_FUSED) or asynchronously
(ASYNC_IF_FUSED) by fellow fused agent(s). An
invocation to SYNC_IF_FUSED methods by a fel-
low fused agent(s) is replaced by a direct local pro-
cedure call. The fusion algorithm then applies inter-
procedural analysis to perform aliasing and, in the
case of SYNC_IF_FUSED methods, procedure in-
lining. Aliasing attempts to eliminate unnecessary
data copying, since data formerly located in differ-
ent address spaces or on different hosts may poten-
tially be shared subsequent to agent fusion and co-
location.

Fusion may be applied repeatedly, possibly later fol-
lowed by agent ‘splitting’, if indicated. Agent ‘split-
ting’ is an agent adaptation method we are aware
of, it applies program slicing to an agent operating
on a distributed data set and distributes agent slices
so that each agent slice operates on some local data
which is a subset of the distributed data set.

5 Related Work

Recent active research on mobile agent systems con-
cerns the areas of agent facility standardization, mo-
bile agent system interoperability, and operating sys-
tem support [17, 20, 24, 38]. The platforms devel-
oped by such works provide the basic agent sys-
tem functionality upon which our runtime system
is built. We add to this functionality the ability to
adapt mobile agent and we add the event mecha-
nisms necessary for building dynamic runtime sup-
port for monitoring and for adaptation initiation
and enactment.

Research results from software specialization sys-
tems like SPIN, Exokernel, and Synthetix may be
applied to our adaptable agent architecture to cus-
tomize the agent system itself and/or individual
agents. We will focus on customization issues more
specific to mobile agent environments.

We have already benefited from research on object
policies and on meta-objects[35, 16] to develop the
‘adaptor’ concept presented in section 3. Our work
will also take advantage of current research on qual-
ity of service infrastructures like BBN’s QuO[45]
and Honeywell’s ARA[34], but we will adapt their
techniques to the mobile agent domain targeted by
our work.

Our work 1s part of a broader project described in
[1], with early results are presented in [2].

6 Conclusions and Future Work

Agent computing is subject to several inefficien-
cies, some of which are due to the complexities of
the environments in which mobile agents are de-
ployed. Our research is exploring runtime adapta-
tion and agent specialization to improve the perfor-
mance of agent-based programs, aiming at enabling
programmers to employ these techniques and run-
time adaptation in general, to improve program per-
formance without sacrificing the fundamental ad-
vantages promised by mobile agent programming.
We explore the effects of using two specialization
approaches, morphing and fusion, on a single mo-
bile agent and on several cooperating agents. Our
experimental results with two sample applications,
ISDA and PSSPS, show that such specialization
approaches result in considerable performance im-
provement.

We have built a preliminary infrastructure for on-
line morphing, which offers mechanism for inter-
language remote invocation using the model of invo-
cation adaptors developed in our research. Infras-
tructures and mechanisms are applied to the ISDA
and PSSPS distributed high performance applica-
tions. Also used with these applications is a real-
ization of mobile event channels that allow reliable
event delivery during end-point migration.

Our future work concerns systematic support for
specialization approaches like morphing, fusion and
others such as slicing. This support will comprise
event mechanisms and quality of service infrastruc-
ture, both of which are important to a general agent
adaptation system. We will also work on compilers
for agent fusion and the adaptation of agent invo-
cations.

Acknowledgments. Prof. Raja Das is partici-
pating in the Objent system design, with focus on
the application of compilation methods to improve
agent or object performance, including the use of
fusion techniques. Prof. Mustaque Ahamad has
been investigating the overheads of agent commu-
nications (e.g., Java RMI) and methods for creating
quality-controlled Java-based objects. Greg Eisen-
hauer and Beth Plale are responsible for the ISDA
application, Davis King provided the code for Iso-
surface calculation, and Fabian Bustamante is cur-
rently creating additional elements part of the ISDA
application. Rajkumar Krishnamurthy provided the
SAR benchmark code used in our work.

References

[1] Mustaque Ahamad, Raja Das, and Karsten
Schwan. Integrating object and agent tech-
nologies for high-end collaborative applications.

http://www.cc.gatech.edu/systems/facstaff/ahamad/
objent.html.

[2] Mustaque Ahamad, Raja Das, Karsten Schwan, Sumeer
Bhola, Fabian Bustamante, Greg Eisenhauer, Jeremy
Heiner, Vijaykumar Krishnaswamy, Todd Rose, Beth
Schroeder, and Dong Zhou. Agent and object technolo-
gies for high-end collaborative applications. In OOP-
SLA’97 Workshop on Java-Based Paradigms for Mobile
Agent Facilities, 1997.

[3] Michael Burke and Jong-Deok Choi. Precise and ef-
ficient integration of interprocedural alias information
into data-flow analysis. ACM Letters on Programming
Languages and Systems, 1(1), Mar. 1992.

[4] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris,
and G. Tsudik. Itinerant agents for mobile computing.

IBM T.J. Watson Research Center, 1995.

[5] F. Douglis and J. Ousterhout. Transparent process mi-
gration: Design alternatives and the sprite implemen-
tation. Software — Practice and Ezperience, 21(8):757—
785, August 1991.

[6] Greg Eisenhauer and Karsten Schwan. An object-based
infrastructure for program monitoring and steering. In
Proceedings of the 2nd SIGMETRICS Symposium on
Parallel and Distributed Tools (SPDT’98), Aug. 1998.

[7] COBS: Configurable OBjectS for High
Performance Systems. College of com-
puting, georgia institute of technology.

http://www.cc.gatech.edu/systems/projects/COBS/.

[8] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. Intl Journal of Supercomputer
Applications, 11(2):115-128, 1997.

[9] Ahmed Gheith and Karsten Schwan. Chaos-arc — ker-
nel support for multi-weight objects, invocations, and

atomicity in real-time applications. ACM Transactions
on Computer Systems, 11(1):33-72, April 1993.

[10] James Gosling, Bill Joy, and Guy L. Steele. The Java
Language Specification (Java Series). Addison-Wesley,
1996.

(11]

(12]

(13]

(14]

[15

(16]

(17]

[18

(19]

(20]

(21]

[22

(23]

(24]

(25]

26]

Robert S. Gray. Agent Tcl: A transportable agent sys-
tem. In Proceedings of the CIKM Workshop on Intel-
ligent Information Agents, Fourth International Con-
ference on Information and Knowledge Management
(CIKM 95), Baltimore, Maryland, December 1995.

Robert Grossman. The terabyte challenge: An open,
distributed testbed for managing and mining massive
data sets. http://www.lac.uic.edu/hpcc-grossman.html.

Habanero. National Center for Supercomputing Appli-
cations and university of illinois at urbana-champaign.
http://notme.ncsa.uiuc.edu/SDG /Software /Habanero.

Colin G. Harrison, David M. Chess, and Aaron Kershen-
baum. Mobile agents: Are they a good idea? Technical
report, IBM T.J. Watson Research Center, 1995.

Delbert Hart and Eileen Kraemer. An agent-based per-
spective on distributed monitoring and steering. In Pro-
ceedings of the SIGMETRICS symposium on Parallel
and distributed tools, Welches, Oregon, Aug. 1998.

Jun ichiro Itoh, Rodger Lea, and Yasuhiko Yokote. Us-
ing meta-objects to support optimisation in the apertos
operating system. In Proceedings of USENIX Confer-
ence on Object-Oriented Technologies (COOTS), Jun.
1995.

Dag Johansen, Robbert van Renesse, and Fred B.
Schneider. Operating system support for mobile agents.
In Proceedings of the 5th. IEEE Workshop on Hot Top-
ics in Operating Systems, Orcas Island, Wa, USA, May
1995.

Keith D. Kotay and David Kotz. Transportable agents.
In CIKM Workshop on Intelligent Information Agents,
Gaithersburg, Maryland, Dec. 1994.

Vijaykumar Krishnaswamy, Dan Walther, Sumeer
Bhola, Ethendranath Bommaiah, George Riley, Brad
Topol, and Mustaque Ahamad. Efficient implementa-
tion of java remote method invocation (rmi). In Pro-
ceedings of 4th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), Santa Fe, New
Mexico, April 1998.

Danny B. Lange and Daniel T. Chang. White paper.
IBM Aglets Workbench, Sep. 1996.

C. Lee, C. Kesselman, and S. Schwab. Near-real-time
satellite image processing: Metacomputing in cc++.
Computer Graphics and Applications, 16(4), 1996.

Vernard Martin and Karsten Schwan. ILI: An adaptive
infrastructure for dynamic interactive distributed sys-

tems. In 4th International Conference on Configurable
Distributed Systems. IEEE, 1998.

Sun Microsystems. Java on solaris 2.6: A white pa-
per. http://wwwwseast2.usec.sun.com/solaris/java/wp-
java/.

Dejan S. Milojicice, William LaForge, and Deepika
Chauhan. Mobile objects and agents (moa). In 4th
USENIX Conference on Object-Oriented Technologies
and Systems (COOTS), Santa Fe, New Mexico, April
1998.

Akihiko Miyoshi and Takuro Kitayama. Implementation
and evaluation of real-time java threads. In Proceedings
of Real-Time Systems Symposium, Dec. 1997.

John K. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley, 1994.

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

35]

[36]

(38]

(39]

40]

[41]

Beth Plale, Greg Eisenhauer, Karsten Schwan, Jeremy
Heiner, Vernard Martin, and Jeffrey Vetter. From in-
teractive applications to distributed laboratories. IEEE
Concurrency, 6(2), 1998.

Calton Pu, Tito Autrey, Andrew Black, Charles Con-
sel, Crispin Cowan, Jon Inouye, Lakshmi Kethana,
Jonathan Walpole, and Ke Zhang. Optimistic incremen-
tal specialization: Streamlining a commercial operating
system. In proceedings of the 15th ACM Symposium
on Operating Systems Principles (SOSP’95), Copper
Mountain, Colorado, 1995.

William Ribarsky, Yves Jean, Thomas Kindler, Weim-
ing Gu, Gregory Eisenhauer, Karsten Schwan, , and
Fred Alyea. An integrated approach for steering, vi-
sualization, and analysis of atmospheric simulations. In
Proceedings IEEE Visualization 95, 1995.

William Ribarsky, Yves Jean, Song Zou,
Schwan, Bobby Sumner, , and Onome Okuma. A het-
erogeneous environment for visual steering of computer
simulations. Submitted to IEEE Computer Graphics &
Applications.

Karsten

Code
optimization across procedures. ITEEE Computer, Feb.
1989.

Stephen Richarson and mahadevan Ganapathi.

Stephen Richarson and mahadevan Ganapathi. In-
terprocedural optimization: Experimental results.

Software—Practice and Ewperience, 19(2), Feb. 1989.

Daniela Rosu, Karsten Schwan, and Sudhakar Yalaman-
chili. Fara - a framework for adaptive resource allocation
in complex real-time systems. In Proceedings of the 4th
IEEE Real-Time Technology and Applications Sympo-
stum (RTAS), Denver, USA, Jun. 1998.

Daniela Rosu, Karsten Schwan, Sudhakar Yalamanchili,
and Rakesh Jha. On adaptive resource allocation for
complex real-time applications. In Proceedings of the
18th IEEE Real-Time Systems Symposium (RTSS), San
Francisco, USA, Dec. 1997.

D. Silva and K. Schwan. Ctk: Configurable object ab-
stractions for multiprocessors. Technical Report GIT-
CC-97-03, College of Computing, Georgia Institute of
Technology, 1997.

D. Silva, K. Schwan, and G. Eisenhauer. Configurable
distributed retrieval of scientific data. In Second Inter-
national Conference on Configurable Distributed Sys-
tems (CDS’98), Maryland, May 1998.

Sandeep K. Singhal, Binh Q. Nguyen, Richard Red-
path, Michael Fraenkel, and Jimmy Nguyen. Building
high-performance applications and servers in java. In
ACM SIGPLAN Conference On Object-Oriented Pro-
gramming Systems, Languages and Applications, At-
lanta, Georgia, October 1997.

Markus Straber, Joachim Baumann, and Fritz Hohl.
Mole-a java based mobile agent system. In ECOOP ’96
Workshop on Mobile Object Systems, 1996.

J.S. Vetter and K. Schwan. High performance compu-
tational steering of physical simulations. In Proc. IPPS
97, 1997.

VizAD. Space
center university of wisconsin -

http://www.ssec.wisc.edu/ billh/visad.html.
Glen H. Wheless, Cathy M. Lascara, Donald P. Brutz-
William Sherman, William L. Hibbard,

science and engineering

madison.

man, and

(42]

[43

[44]

45]

[46]

Brian E. Paul. Chesapeake bay: Interacting with a phys-
ical/biological model. IEEE Computer Graphics and
Applications, 16(4), July /August 1996.

J. White. Mobile agents. Telescript Technical Whitepa-
per, General Magic, Inc., oct. 1995.

et. al. Wollrath. A distributed object model for the java
system. Computing Systems, 9(4):265-290, 1996.

Rich Wolski. Dynamically forecasting network perfor-
mance to support dynamic scheduling using the Net-
work Weather Service. In Proceedings of 6th High-
Performance Distributed Computing (HPDC6). IEEE,
1997.

J. A. Zinky, D. E. Bakken, and R. E. Schantz. Archi-
tectural support for quality of service for corba objects.
Theory and Practice of Object Systems, January 1997.

B. Zuerndorfer and G. A. Shaw. Sar processing for rassp
application. In Proceedings of 1st Annual RASSP Con-
ference, Arlington, VA., Aug. 1994.

